Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Determining the level of solid pollution in beach sands located near artificial inland water bodies in order to maintain high safety standards is a difficult and expensive task. The tests aimed at determining beach pollution caused by solid wastes through analysis of toxic and chemical concentrations, are time-consuming and usually require several days before the results are available. In addition, the maintenance of the beach area involving beach raking or grooming, and the seasonal replenishment of sand makes it difficult to realistically determine the chemical or bacterial contamination of the tested material. Solid pollutants, such as glass, caps, cans, thick foil, metal, and plastic fragments, pose a greater health risk to beachgoers. The above-mentioned pollutants, especially small ones, are hardly visible on the surface or they are buried at shallow depths. Beach garbage poses a serious threat that can lead to infections from cuts and scratches. These injuries can become infected, further jeopardizing the health and lives of beachgoers due to risks like tetanus, staphylococcus, etc. The authors presented a new petrographic method aimed at assessing the quality of sand by examining the content of solid pollutants. The obtained results allowed us to conclude that the mentioned procedure can be used for a quick quantitative estimation of the content of potentially dangerous and undesirable pollutants in beach sands. Consequently, the method implemented to determent the amount of solid pollutants in beach sands has proven to be a valuable tool for recreational facility administrators, helping them in taking necessary measures to ensure the safety of beach users. Petrographic analysis of beach sands revealed the presence of pollutants of plant origin (0.4–1.8%), plastic (0.1–0.4%), paper (0.1–0.6%), charcoal (0.1–0.5%), glass (0.1–0.4%), metals (0.1–0.4%), rust (0.1–0.3%), ash and slag (0.1–0.3%), and fossil coals (0.1–0.2%).
Go to article

Bibliography

  1. Badyda, A., Rogula-Kozłowska, W., Majewski, G., Bralewska, K., Widziewicz-Rzońca, K., Piekarska, B., Rogulski, M. & Bihałowicz, J. (2022). Inhalation risk to PAHs and BTEX during barbecuing: The role of fuel/food type and route of exposure, Journal of Hazardous Materials, Volume 440, 129635, ISSN 0304-3894. DOI:10.1016/j.jhazmat.2022.129635.
  2. Cesia, J. Cruz, J., Muñoz-Perez, Maribel I., Carrasco-Braganza, Poullet, P., Lopez-Garcia, P., Contreras, A. & Rodolfo Silva, R. (2020). Beach cleaning costs, Ocean & Coastal Management, 188, 105118, ISSN 0964-5691. DOI:10.1016/j.ocecoaman.2020.105118.
  3. Claisse, D. (1989). Chemical contamination of French coasts. The results of a ten years mussel watch. Marine Pollution Bulletin. 20. No. 10, pp. 523-528. https://archimer.ifremer.fr/doc/00017/12775/9713.pdf
  4. Contreras-de-Villar, F., García, FJ., Muñoz-Perez, JJ., Contreras-de-Villar, A., Ruiz-Ortiz, V., Lopez, P., Garcia-López, S. & Jigena, B. (2021). Beach leveling using a Remote Piloted Aircraft System (RPAS): Problems and Solutions. Journal of Marine Science and Engineering. 9(1), 19. DOI:10.3390/jmse9010019
  5. Działo, J., Niedźwiedzka-Rystwej, P., Mȩkal, A. & Deptuła, W. (2010). Characteristics of mucosal lymphatic tissue associated with gastrointestinal tract and respiratory system. Alergia Astma Immunologia. 15(4). pp. 197-202. http://mediton.nazwa.pl/library/aai_volume-15_issue-4_article-939.pdf
  6. Frolik, A., Gzyl, G. & Kura, K. (2007). Revitalization concepts for sand mine pit in southern Poland: preliminary assessment of impact on aquatic environment. IMWA Symposium 2007: Water in Mining Environments, Cidu, R. & F. Frau (Eds), Cagliari, Italy
  7. García-Morales, G., Arreola-Lizárraga, J.A., Mendoza-Salgado, R.A., García-Hernández, J., Rosales-Grano, P. & Ortega-Rubio, A. (2018). Evaluation of beach quality as perceived by users. Journal of Environmental Planning and Management, 61(1), pp. 161-175. DOI:10.1080/09640568.2017.1295924
  8. Halliday, E. & Gast, R.J. (2011). Bacteria in Beach Sands: An Emerging Challenge in Protecting Coastal Water Quality and Bather Health. Environ. Sci. Technol. 45, 2, pp. 370–379. DOI:10.1021/es102747s
  9. Holman, M. & Bennett, J. (1973). Determinants of use of water-based recreational facilities. Water Resources Research, 238. DOI:10.1029/WR009i005p01208
  10. ISO 8036, 2015. Microscopes - immersion fluids for light microscopy. https://www.iso.org/standard/67551.html (in Polish)
  11. Labikon, software KS Run nr 0500324, Ihnatowicz J., Manufacture of computers and peripherals - 6310106641.
  12. Li, J. & Zhang, X. (2019). Beach Pollution Effects on Health and Productivity in California. Int. J. Environ. Res. Public Health 1987, 16. DOI:10.3390/ijerph16111987
  13. Marina, V. & Popa, F. (2020). An unusual case of leg wound made by a Sea Shell (Scapharca inaequivalis). International Journal of Surgery Case Reports. 67. pp. 127-129. DOI:10.1016/j.ijscr.2020.01.039
  14. McLaughlin, E. (2017). Dealing with Marine and Saltwater Infections. World Extreme Medicine. https://worldextrememedicine.com/blog/2017/11/dealing-with-marine-and-saltwater-infections/ (accessed 3 April 2022)
  15. Moran, K. & Webber, J. (2014). Leisure-related injuries at the beach: An analysis of lifeguard incident report forms in New Zealand, 2007–12. International Journal of Injury Control and Safety Promotion, 21,1, pp. 68-74. DOI: 10.1080/17457300.2012.760611)
  16. Nowak B. (2019). Threats and water protection of Lake Powidzkie, [in:] Nowak, B. (ed.), Jezioro Powidzkie wczoraj i dziś, IMGW-PIB, Warszawa: 137-150. (in Polish)
  17. Rzętała M. (2008). The functioning of water reservoirs and the course of limnic processes in conditions of various anthropopressure on the example of the Upper Silesian region. Wydawnictwo Uniwersytetu Śląskiego, Katowice ISSN 0208-6336 http://www.sbc.org.pl/Content/74082/funkcjonowanie_zbiornikow.pdf, (accessed on 28.03.2022)
  18. Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., Faria, N., Ferreira, F.C., Gargaté, M.J., Júlio, C., Martins, M.L., Nevers, M.B., Oleastro, M., Solo-Gabriele, H., Veríssimo, C., Viegas, C., Whitman, R.L. & Brandão, J. (2014). Routine screening of harmful microorganisms in beach sands: Implications to public health. Science of The Total Environment. 472. pp. 1062-1069. DOI:10.1016/j.scitotenv.2013.11.091
  19. Şanlıtürk, G. & Güran M. (2021). Monitoring of microbiological dynamics in beach sand and seawater samples from recreational and non-recreational beaches over a two-year period. International Journal of Environmental Health Research. pp.1-13. DOI:10.1080/09603123.2021.1931049
  20. Spichler-Moffarah, A., Mohajer, M.A., Hurwitz, B.L. & Armstrong, D.G. (2016). Skin and Soft Tissue Infections. Microbiol Spectr. 4(4). DOI:10.1128/microbiolspec.DMIH2-0014-2015
  21. Stachowski, P., Kraczkowska, K., Liberacki, D. & Oliskiewicz-Krzywicka, A. (2018). Water reservoirs as an element of shaping water resources of post-mining areas. Journal of Ecological Engineering. 19(4), pp. 217-225. DOI:10.12911/22998993/89658
  22. Suárez-Ruiz, I., Luis, D. & Tomillo, P. (2023). Application of organic petrography as a forensic tool in environmental studies to investigate the source of coal pollution on beaches in Gijón (Northern Spain), International Journal of Coal Geology, 265, 104154. DOI:10.1016/j.coal.2022.104154.
  23. Tomenchok, L.E., Gidley, M.L., Mena, K.D., Ferguson, A.C. & Solo-Gabriele, H.M. (2020). Children’s abrasions in recreational beach areas and a review of possible wound infections. International Journal of Environmental Research and Public Health. 17(11), 4060. DOI:10.3390/ijerph17114060
  24. WHO (2003). Guidelines for safe recreational water environments: Coastal and fresh waters (Vol. 1). pp. 128-129. World Health Organization
  25. WHO (2021). Guidelines on recreational water quality. Volume 1 Coastal and Fresh Waters. pp. 3. World Health Organization
  26. Wufuer, R., Duo, J., Li, W., Fan, J. & Pan, X. (2021). Bioremediation of uranium- and nitrate-contaminated groundwater after the in situ leach mining of uranium. Water 13, 3188. DOI:10.3390/w13223188
  27. Wulai, X., Qingyang, R., Xuwei, D., Jun, Ch. & Ping, X. (2020). Rainfall is a significant environmental factor of microplastic pollution in inland waters, Science of The Total Environment, 732, 139065. DOI:10.1016/j.scitotenv.2020.139065.
  28. Zielinski, S., Botero, C.M. & Yanes, A. (2019). To clean or not to clean? A critical review of beach cleaning methods and impacts. Marine Pollution Bulletin, 139. pp. 390-401. DOI:10.1016/j.marpolbul.2018.12.027
Go to article

Authors and Affiliations

Sebastian Kuś
1
ORCID: ORCID
Zbigniew Jelonek
1
ORCID: ORCID
Iwona Jelonek
1
ORCID: ORCID
Edyta Sierka
1
ORCID: ORCID

  1. University of Silesia in Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The most popular field methods of measurements of raised marine beach altitudes used by geomorphologists are presented. Compared data from clisimeter routes, altimeter routes and from readings from a photogeological map and directly from air photos compose the profiles. Advantages and disavantages of each method are discussed.

Go to article

Authors and Affiliations

Jerzy Nitychoruk
Wojciech Ozimkowski
Ryszard Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The article summarizes results of the studies of the Coastal Clean Index (CCI) on selected Polish beaches. In 2022, an attempt was made to estimate the amount of litter on the beach in Ustka. Debris on the beach was collected during a peak season in July and August. An attempt was also made to estimate the daily increase in garbage on the beach. The main part of the research was based on the quality and quantity of litter in beach sediments to the east and west of Ustka. Litter was divided according to a type of material, use, size and origin. The collected material was dominated by a plastic waste. The largest amount of marine litter was collected on the beach, on the eastern side of the Słupia River.
Go to article

Authors and Affiliations

Katarzyna Bigus
1
Anna Jarosiewicz
1

  1. Pomeranian University in Słupsk, Institute of Biology and Earth Science, Arciszewskiego 22a, 76-200 Słupsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Intertidal zone of four gravel beaches in Hornsund Fjord (West Spitsbergen) were investigated in order to study macrofaunal distribution and diversity in these poor habitats. A total of 12 macrofaunal taxa were found in the collected material. The most frequent and the most abundant taxon was Lumbricillus sp. (Oligochaeta). The next most numerous group were juvenile Gammarus spp. juv. The fauna included also polychaetes, molluscs and other crustaceans. The diversity measured with Shannon-Weaver index was low and varied from 0 to 1.4. The analysis revealed that there were no statistically important differences in macrofaunal distribution among stations in fjord. However there were significant differences among various tidal mark zones and high patchiness in animals abundance at each station. Also species composition, density and biomass were diversified along the tide level profile.

Go to article

Authors and Affiliations

Marta Ronowicz
Download PDF Download RIS Download Bibtex

Abstract

Basing of fieldworks geomorphologic and geologic setting of 14 raised marine beaches in northern Hornsund Region was presented. Their age is approximated by radiocarbon and thermoluminescence datings of sediments. The latter indicated that the four highest but mostly questionable marine beaches (220—230,200—205,180—190 and 100—120 m a.s.l.) should be referred to the Wedel Jarlsberg Land (Saalian) Glaciation. The four lower beaches (80—95, 70—75, 50—60 and 40—46 m a.s.1.) are connected with the Bogstranda (Eemian) Interglacial and the pre-maximum part of the Sorkapp Land (Vistulian) Glaciation. The post-maximum part of this glaciation, including Lisbetdalen Stage (50—40 ka) and Slaklidalen Stage (30—20 ka), was the time when the three still lower marine beaches (32—35, 22—25,16—18 m a.s.l.) were formed. Three lowermost marine beaches (8—12,4.5—6,2 m a.s.l.) are of the Holocene age.

Go to article

Authors and Affiliations

Leszek Lindner
Leszek Marks
Waldemar Roszczynko
Julia Semil
Download PDF Download RIS Download Bibtex

Abstract

Złomowanie statków morskich ma historię sięgającą połowy XIX w. W ostatnich 20 latach stocznie złomowe z Azji Południowej zdominowały światowy rynek recyklingu statków wykorzystując tanią siłę roboczą i nie zawsze stosując się do obowiązującego prawa międzynarodowego. Międzynarodowa Organizacja Morska (IMO) doprowadziła do uchwalenia Konwencji z Hongkongu w 2009 r., która w kompleksowy sposób reguluje niemal wszystkie kwestie związane z bezpiecznym dla środowiska i dla ludzi recyklingiem statków. Unia Europejska wprowadziła własne regulacje, oparte na postanowieniach konwencji z Hongkongu, które odnoszą się głównie do statków zarejestrowanych w państwach unijnych, ale stwarzają pewne trudności w uznaniu stoczni złomowych znajdujących się w państwach trzecich, w tym państwach azjatyckich, do prowadzenia recyklingu statków podnoszących banderę państwa unijnego. Armatorzy statków, które mają być oddane na złom, stają przed dylematem czy poddać je drogiemu recyklingowi w zakładzie recyklingu wskazanym w europejskim wykazie zakładów, prowadzonym przez Komisję Europejską, czy zmienić banderę statku i wysłać je do stoczni w Azji, obchodząc przepisy unijne dotyczące recyklingu statków. Problemy tego rodzaju rozwiążą się same po wyjściu w życie Konwencji z Hongkongu, ale jak dotąd tylko 15 państw przystąpiło do konwencji, jednak z niewystarczającym tonażem, aby spełnić wszystkie warunki postawione przez konwencję do tego, aby weszła ona w życie. W artykule omówiono zagrożenia związane ze złomowaniem, umowę sprzedaży statku na złom, w tym używane na rynku formularze umów przygotowanych przez BIMCO, metody przekazywania statku stoczni złomowej oraz proces recyklingu stosowany przez stocznie zgodny z wymaganiami konwencji z Hongkongu. W tekście pokazanych zostało także kilka kopii dokumentów używanych w procesie recyklingu statku w praktyce obrotu.
Go to article

Authors and Affiliations

Cezary Łuczywek
1
ORCID: ORCID

  1. doktor nauk prawnych. Deputy Managing Director w przedsiębiorstwie zarządzającym statkami Green Management Gdynia
Download PDF Download RIS Download Bibtex

Abstract

The study objective was to analyse the number of tourists present in the shore zone and bathing areas of lakes with regard to their tourist carrying capacity and the amount of biogenic substances potentially entering the ecosystem from the beach and bathing areas. The procedures from project between the EU and Poland, in the module “Development of the sanitary supervision of water quality” were used in three categories: physiological substances – sweat and urine; water-soluble and insoluble organic compounds; and biogenic elements – nitrogen and phosphorus. The research was conducted in two model mesotrophic lakes, Piaseczno and Zagłębocze, located in the Łęczna- Włodawa Lakeland (eastern Poland). The data were analysed in reference to biological trophic status indices defining the limnological status of lakes in the summer of 2014 and 2016. Analyses of gross primary production of phytoplankton using the light and dark bottles method and the analysis of chlorophyll a concentration were applied using the laboratory spectrophotometric method. The relatively small number of tourists recorded in the shore zone of both lakes did not exceed their tourist carrying capacity, and their potential contribution of biogenic substances to the lake ecosystems was small. Biological trophic indices for both lakes indicated that they had been continually late- mesotrophic for decades. The amount of biogenic substances directly linked to beach tourism usually has a minor effect on the limnological status of mesotrophic lakes. Due to the specific character of lake ecosystems, however, even small amounts of these substances can contribute to the destabilisation of the biocenotic system.
Go to article

Authors and Affiliations

Artur Serafin
1
ORCID: ORCID
Antoni Grzywna
1
ORCID: ORCID
Renata Augustyniak
2
ORCID: ORCID
Urszula Bronowicka-Mielniczuk
3
ORCID: ORCID

  1. University of Life Sciences in Lublin, Department of Environmental Engineering and Geodesy, Lublin, Poland
  2. University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Olsztyn, Poland
  3. University of Life Sciences in Lublin, Department of Applied Mathematics and Computer, Głęboka 28, 20-612 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article summarises results of studies on litter concentrations on the Polish sea shore. Origin, mechanism of transport and source of litter are discussed. The main part of the data has been based on litter quality and quantity investigation in post-storm marine sediments. Data were collected in surface sediments since 2001 and in fossil washover fans dated 1988–2000 in different locations on the coast. Litter has been divided according to the material, use, size and origin. Analysis of litter quantity on beaches after storm surges showed an annual increase. The heavier surge, the more debris and mixed litter appear on the coast. A large increase in the amount of litter has been observed after the storm in 2009. The average amount of litter per 1 m2 has increased from 1.5 in 2001 to 17.5 in 2020. Among litter there is still a similar share of fishery and ship waste. The biggest growth was observed in waste of consumable origin. Plastic litter, including anthropogenic waste left on beaches, has increased to 80% in recent years. Most waste occurred on the coast adjacent to the Vistula River mouth.
Go to article

Bibliography

Alkalay, R., Pasternak, G., Zask, A., 2007. Clean-coast index – a new approach for beach cleanliness assessment. Ocean & Coastal Management 50, 352–362.

Anfuso, G., Lynch, K., Williams, A.T., Perales, J.A., Pereira da Silva, C., Nogueira Mendes, R., Maanan, M., Pretti, C., Pranzini, E., Winter, C., Verdejo, E., Ferreira, M., Veiga, J., 2015. Comments on marine litter in oceans, seas and beaches: characteristics and impacts. Annals of Marine Biology Research 2(1), 1008.

Arcangeli, A., Campana, I., Angeletti, D., Atzori, F., Azzolin, M., Carosso1, L., Di Miccolil, V., Giacoletti, A., Gregorietti, M., Luperini, C., Paraboschi, M., Pellegrino, G., Ramazio, M., Sarà, G., Crosti, R., 2017. Amount, composition, and spatial distribution of floating macro litter along fixed trans-border transects in the Mediterranean basin. Marine Pollution Bulletin 129, 545–554.

Aydın, C., Güven, O., Salihoğlu, B., Kıdeyş, A.E., 2016. The Influence of land use on coastal litter: An approach to identify abundance and sources in the coastal area of Cilician Basin, Turkey, Turkish Journal of Fisheries and Aquatic Sciences 16, 29–39.

Balčiūnas, A., Blažauskas, N., 2014. Scale, origin and spatial distribution of marine litter pollution in the Lithuanian coastal zone of the Baltic Sea. Baltica 27, 39–44

Bergmann, M., Gutow, L., Klages, M. (Eds), 2015. Marine anthropogenic litter. Springer International Publishing, Switzerland. 447 pp.

Browne, M.A., Galloway, T.S., Thompson, R.C., 2010. Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology 44, 3404–3409.

EA/NALG, 2000. Assessment of aesthetic quality of coastal and bathing beaches. Monitoring protocol and classification scheme. Environment Agency and The National Aquatic Litter Group, London.

Cheshire, A.C., Adler, E., Barbičre, J., Cohen, Y., Evans, S., Jarayabhand, S., Jeftic, L., Jung, R.T., Kinsey, S., Kusui, E.T., Lavine, I., Manyara, P., Oosterbaan, L., Pereira, M.A., Sheavly, S., Tkalin, A., Varadarajan, S.,Wenneker, B., Westphalen, G., 2009. UNEP/ IOC Guidelines on Survey and Monitoring of Marine Litter. UNEP Regional Seas Reports and Studies, No. 186, IOC Technical Serious No. 83.

Corcoran, P.L., Biesinger, M.C., Grifi, M., 2009. Plastics and beaches: A degrading relationship. Marine Pollution Bulletin 58 (1), 80–85.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin 44, 842–852.

Fernandino, G., Elliff, C.I., Silva, I.R., de Souza Brito, T., da Silva Pinto Bittencourt, A.C., 2016. Plastic fragments as a major component of marine litter: a case study in Salvador, Bahia, Brazil, Revista de Gestão Costeira Integrada. Journal of Integrated Coastal Zone Management 16(3), 281–287.

Gabrielides, G.P., Golik, A., Loizides, L., Marino, M.G., Bingel, F., Torregrossa, M.V., 1991. Man-made garbage pollution on the Mediterranean coastline. Marine Pollution Bulletin 23, 437–441.

Galgani, F., Hanke, G., Werner, S., De Vrees, L., 2013. Marine litter within the European marine strategy framework directive. ICES. Journal of Marine Science 70 (6), 1055–1064.

HELCOM, 2009. Marine Litter in the Baltic Sea Region: Assessment and priorities for response. Helsinki, Finland, 1–20.

HELCOM, 2014. Marine Litter in the Baltic Sea: sources, monitoring approaches, possible common indicators and first lines of thinking on measures. Monitoring and Assessment Group (MONAS) Oslo, Norway, 1–51.

Hasler, M., Schernewski, G., Balciunas, A., Sabaliauskaite, V., 2018. Monitoring methods for large micro- and meso-litter and applications at Baltic beaches. Journal of Coastal Conservation 22, 27–50.

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L., 2015. Plastic waste inputs from land into the ocean. Science 347 (6223), 768–771.

Jóźwiak, T., 2010. Parametryzacja stanu sozologicznego wybrzeża południowego Bałtyku w świetle idei rozwoju zrównoważonego. Wydawnictwo Uniwersytetu Gdańskiego, 248 (in Polish)

Laglbauer, B.J.L., Franco-Santos, R.M., Andreu-Cazenave, M., Brunelli, L., Papadatou, M., Palatinus, A., Grego, M., Deprez, T., 2014. Macrodebris and microplastics from beaches in Slovenia. Marine Pollution Bulletin 89, 356–366.

Łabuz, T.A., 2002. Eamples of anthropopresion on the coastal dunes of Swina Gate Sandbar. In: Szwarczewski, P., Smolska, E. (Eds), Zapis działalności człowieka w środowisku przyrodniczym, 77–84, UW, Warszawa, (in Polish with English summary).

Łabuz, T.A., Olechnowicz, P., 2004. Reconstruction of the accumulative dune coast relief on the basis of sedimentological structures – case study from the Świna Gate Sandbar. In: Błaszkiewicz, M., Gierszewski, P. (Eds), Rekonstrukcja i prognoza zmian środowiska przyrodniczego w badaniach geograficznych, 237–248, Prace Geograficzne 200, IGiPZ PAN, Warszawa (in Polish with English summary).

Łabuz, T.A., 2007. A record of contemporary anthropogenic pollutants in sediments and surface relief of the Świna Gate Sandbar. In: Smolska, E., Szwarczewski, P. (Eds), Zapis działalności człowieka w środowisku przyrodniczym, 89–98, Wydawnictwo Szkoły Wyższej Przymierza Rodzin, Warszawa (in Polish with English summary).

Łabuz, T.A., 2009. Distal washover fans on Świna Gate Sandbar. Oceanological and Hydrobiological Studies 38 (Supplement 1), 79–95.

Łabuz, T.A., 2015. Coastal dunes: Changes of their perception and environmental management. In: Finkl, Ch.W., Makowski, Ch. (Eds), Environmental management and governance. Advances in coastal and marine resources series, 323–410, Coastal Research Library 8, Springer.

Łabuz, T.A., 2018. Erosion of sandbar dunes of Koszalin Bay resulting from extreme storm events Barbara and Axel from the turn of 2016 and 2017. Przegląd Geograficzny 90 (3), 435–477, (in Polish with English summary).

MARLIN, 2013. Final report of the Baltic marine litter project MARLIN. Litter Monitoring and raising awareness 2011‐2013, http://www.projectmarlin.eu/sa/node.asp?node=3005.

Moore, C.J., Lattin, G.L., Zellers, A.F., 2011. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Jorunal of Integrated Coastal Zone Management 11 (1), 65–73.

Munari, C., Corbau, C., Simeoni, U., Mistri, M., 2016. Marine litter on Mediterranean shores: analysis of composition, spatial distribution and sources in north-western Adriatic beaches. Waste Management 49, 483–490.

Oigan-Pszczol, S.S., Creed, J.C., 2007. Quantification and classification of marine litter on beaches along Armacao dos Buzios, Rio de Janeiro, Brazil. Journal of Coastal Research 23 (2), 421–428.

OSPAR, 2010. Guideline for Monitoring Marine litter on the Beaches in OSPAR Maritime area. OSPAR Commission, 1–84.

Portman, M.E., Brennan, E., 2017. Marine litter from beach-based sources: Case study of an Eastern Mediterranean coastal town. Waste Management 69, 535–544.

Pruter, AT., 1987. Sources, quantities and distribution of persistent plastics in the marine environment. Review. Marine Pollution Bulletin 18 (6), Suppl. l8, 305–310.

Ryan, P.G., 2015. A brief history of marine litter research. In: Bergmann, M., Gutow, L., Klages, M. (Eds), Marine anthropogenic litter, 1–25, Springer International Publishing, Switzerland.

Rosevelt, C., Los Huertos, M.W., Garza, C., Nevins, H., 2013. Marine debris in central California: Quantifying type and abundance of beach litter in Monterey Bay, CA. Marine Pollution Bulletin 71 (1–2), 299–306.

Silva-Iñiguez, L., Fisher, D.W., 2003. Quantification and classification of marine litter on the municipal beaches of Ensenada, Baja California. Marine Pollution Bulletin 46 (1), 132–138.

Sheavly, S.B., Register, K.M., 2007. Marine debris and plastics: environmental concerns, sources, impacts and solutions. Journal of Polymers and the Environment 15, 301–305.

Strand, J., Tairova, Z., Metcalfe, R. d’A., 2016. Status on beach litter monitoring in Denmark 2015. Amounts and composition of marine litter on Danish reference beaches. DCE – Danish Centre for Environment and Energy, 42 pp. Scientific Report from DCE – Danish Centre for Environment and Energy 177. Aarhus University, p 42.

Taffs, K.H., Cullen, M.C., 2005. The distribution and abundance of beach debris on isolated beaches of northern New South Wales, Australia. Australian Journal of Environmental Managing 12, 244–250.

Thiel, M., Hinojosa, L.A., Miranda, L., Pantoja, J.F., Rivadeneira, M.M., Vasquez, N., 2013. Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local shores. Marine Pollution Bulletin 71, 307–316.

Tudor, D.T., Williams, A.T., Philips, M.R., Thomas, M C., 2002. Qualitative and quantitative comparisons of some indices suitable for litter analysis. In: The changing coast. Littoral 2002.

EUROCOAST/ EUCC, Porto, Portugal, 367–373.

Urban-Malinga, B., Zalewski, M., Jakubowska, A., Wodzinowski, T., Malinga, M., Pałys, B., Dąbrowska, A., 2020. Microplastics on sandy beaches of the southern Baltic Sea. Marine Pollution Bulletin 155, 111170.

Williams, A., Pond, K., Ergin, A., Cullis, M.J., 2013. The hazards of beach litter. In: Finkl, Ch.W. (Ed.), Coastal Hazards. Springer, Dordrecht, 753–780.

Watts, A.J.R., Porter, A., Hembrow, N., Sharpe, J., Galloway, T.S., Lewis, C., 2017. Through the sands of time: beach litter trends from nine cleaned North Cornish beaches. Environmental Pollution 228, 416–424.

Vanninen, P., Östin, A., Bełdowski, J., Pedersen, E.A., Söderström, M., Szubska, M., Grabowski, M., Siedlewicz, G., Czub, M., Popiel, S., Nawała, J., Dziedzic, D., Jakacki, J., Pączek, B., 2020. Exposure status of sea-dumped chemical warfare agents in the Baltic Sea. Marine Environmental Research 161, 105112, p. 10.

Zalewska, T., Maciak, J., Grajewska A., 2021. Spatial and seasonal variability of beach litter along the southern coast of the Baltic Sea in 2015–2019 – Recommendations for the environmental status assessment and measures. Science of the Total Environment 774, 145716, doi: 10.1016/j.scitotenv.2021.145716.

Zhou, Ch., Liu, X., Wang, Z., Yag, T., Shi, L., Wang, L., You, S., Li M., Zhang, C., 2016. Assessment of marine debris in beaches or seawaters around the China Seas and coastal provinces. Waste Management 48, 652–660.
Go to article

Authors and Affiliations

Tomasz Arkadiusz Łabuz
1

  1. Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza St. 16, PL-70383 Szczecin, Poland

This page uses 'cookies'. Learn more