Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present work was to estimate the effectiveness of grapefruit extract and Pythium oligandrum in protection of common bean, runner bean and pea from soil-borne pathogenic fungi. The investigated preparations were used for seed dressing and spraying plants at the beginning of anthesis. The results pointed out that the applied products considerably improved emergence, healthiness and yielding of the examined plant species. Besides, Biosept 33 SL showed a better effect than Polyversum. Independently on the species, the fewest plants, with the greatest proportion of infected ones and the smallest yield of seeds were obtained from the untreated control. Alternaria alternata, Fusarium spp., Pythium irregulare, Rhizoctonia solani and Sclerotinia sclerotiorum were frequently isolated from infected roots and stem bases as well as from seeds of bean and pea. Fusarium oxysporum tuned out to be dominant. The proportion of the above listed fungi in the treatments with Biosept 33 SL or Polyversum was smaller than in the control. At the same time, the role of those fungi in infecting the plants of common bean, runner bean and pea treated with Biosept 33 SL was only a little smaller than after using Polyversum.

Go to article

Authors and Affiliations

Elżbieta Patkowska
Download PDF Download RIS Download Bibtex

Abstract

Characterization of angular leaf spot (ALS) disease of beans caused by Pseudocercospora griseola (Sacc.) Crous & Braun along with its occurrence was investigated using 118 isolates obtained from beans grown in greenhouses in the western Black Sea region of Turkey. Incidences of ALS disease ranged between 77–100% and 82–100% for summer and autumn sown bean cultivations while the disease severity was in the ranges of 66–82% and 74–86% for the same periods, respectively. All of the 118 isolates of P. griseola yielded 500–560 bp PCR products from ITS1 and ITS4 primers, while 45 isolates yielded 200–250 bp products from actin genes primer and 5 isolates yielded 300–350 bp from calmodulin primer. The form of the Turkish isolates of P. griseola was determined as f. griseola since ITS sequences of 118 isolates of P. griseola showed between 98–100% similarity to the isolates of P. griseola f. griseola deposited in GenBank and our isolates took place on the same branch on the phylogenetic tree formed by the representative isolates in GenBank. The actin sequences did not give a clear differentiation for the forms of P. griseola. The phylogenetic trees generated by ITS1, ITS2 and actin genes formed similar branches. Each had two main clade and similar sub clades.
Go to article

Bibliography

1. Abadio A.K.R., Lima S.S., Santana M.F., Salamao T.M.F., Sartorato A., Mizubuti E.S.G., Araujo E.F., Queiroz de M.V. 2012. Genetic diversity analysis of isolates of the fungal bean pathogen Pseudocercospora griseola from central and southern Brazil. Genetics and Molecular Research 11 (2): 1272–1279. DOI: 10.4238/2012.May.14.1
2. Bora T., Karaca İ. 1970. Kültür Bitkilerinde Hastalığın ve Zararın Olçülmesi. [Measurement of Disease and Damage in Cultivated Plants]. Ege University, Faculty of Agriculture Auxiliary Textbook, No. 167. (in Turkish).
3. Canpolat S., Maden S. 2017. Determination of the inoculum sources of angular leaf spot disease caused by Pseudocercospora griseola, on common beans. Plant Protection Bulletin 57 (1): 39–47 (in Turkish with English abstract). DOI: 10.16955/bitkorb.299016, ISSN 0406-3597
4. Canpolat S., Maden S. 2020. Reactions of some common bean cultivars grown in Turkey against some isolates of angular leaf spot disease, caused by Pseudocercospora griseola. Plant Protection Bulletin 60 (2): 45–54. (in Turkish with English abstract). DOI: 10.16955/bitkorb.630968
5. Chilagane L.A., Nchimbi-Msolla S., Kusolwa P.M., Porch T.G., Diaz L.M.S., Tryphone G.M. 2016. Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania. African Journal of Plant Science 10 (11): 238–245. DOI: https://doi.org/10.5897/AJPS2016.1427
6. Crous P.W., Lienbenberg M.M., Braun U., Groenewald J.Z. 2006. Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Studies in Mycology 55 (1): 163–173. DOI: 10.3114/sim.55.1.163
7. Ddamulira G., Mukankusi C.M., Ochwo-Ssemakula M., Edema R., Sseruwagi P., Gepts P.L. 2014. Distribution and variability of Pseudocercospora griseola in Uganda. Journal of Agricultural Science 6 (6): 16–29. DOI: 10.5539/jas.v6n6p16
8. Nay M.M., Souza T.L.P.O., Gonçalves-Vidigal M.C., Raatz B., Mukankusi C.M., Gonçalves-Vidigal M.C., Abreu A.F.B., Melo L.C., Pastor-Corrales M.A. 2019. A review of angular leaf spot resistance in common bean. Crop Science 59: 1376–1391. DOI: 10.2135/cropsci2018.09.0596
9. Sartorato A. 2004. Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the State of Goias, Brazil. Journal of Phytopathology 152: 385–390.
10. Schoonhoven A., Pastor-Corrales M.A. 1987. Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, CIAT Apartado Areo 6713 Cali, Colombia, p.56.
11. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725.
12. Townsend G.K., Heuberger J.W. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report 27: 340–343.
13. Viguiliouk E., Mejia S.B., Kendall C.W., Sievenpiper J.L. 2017. Can pulses play a role in improving cardiometabolic health. Evidence from systematic reviews and meta‐analyses. Annuals of the New York Academy of Sciences 1392 (1): 43.
Go to article

Authors and Affiliations

Sirel Canpolat
1
Salih Maden
2

  1. Department of Phytopathology, Ankara Plant Protection Central Research Institute, Ankara, Turkey
  2. Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Snap bean production in Kenya is constrained by many pests and diseases, including the bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV). The occurrence of the dominant I gene in many snap bean cultivars has provided a measure of control over BCMV but the BCMNV overcomes this resistance. The current study aimed to screen a collection of locally grown snap bean commercial cultivars, landraces, breeding lines, and dry bean cultivars for the expression of resistance against BCMNV under both field and greenhouse conditions. The results showed that the evaluated snap bean cultivars were susceptible to BCMNV. The reactions of the genotypes to BCMNV varied from top, vein and local necrosis, mosaics, mottling, deformed leaves to stunted growth. Positive infection was confirmed through enzyme linked immunosorbent assays. The dry bean cultivars, which were used as resistant checks can be explored as sources of resistance to BCMNV in future breeding programs. Molecular analysis showed that the SW13 and elF4E markers were reliable in confirming the presence or absence of the dominant I gene and the recessive bc-3 gene, respectively. These molecular markers are useful in markerassisted breeding programs.
Go to article

Authors and Affiliations

Grace Wambui Watare
1
ORCID: ORCID
Bernard Mukiri Gichimu
1
ORCID: ORCID
Edith Esther Arunga
1
ORCID: ORCID

  1. Water and Agricultural Resource Management, University of Embu, Embu, Kenya
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate qualitative and quantitative chemical compounds of plant water extract (PWE), and the reduction potential of Corum herbicide (bentazone and imazamox) doses using PWE for weed control in faba bean fields. Chemical analysis revealed the presence of diverse allelochemicals including polyphenols, flavonoids, and terpenoids. The field experiment results showed clear differences between the measured traits in response to the applied treatments. The application of Corum at 1.5 l · ha –1, at 0.75 l · ha –1, and at 0.75 l · ha –1 + PWE significantly reduced weed density and biomass, with a weed control efficiency of 75.5–78.4, 57.4–53.3 and 68.2–56.9 % during the first-second cropping seasons, respectively. Meanwhile, Corum at 1.5 l · ha –1 and at 0.75 l · ha –1 + PWE treatments guaranteed approximately the same yield components and improved the faba bean yield (Q · ha –1) by 65 and 40% in 2018–2019 and by 91 and 85% in 2019–2020, respectively. Therefore, the results suggest that PWE in combination with a lower herbicide dose (up to 50%) could be used as a potential weed management strategy in faba bean. Further research is required to understand the phytotoxic mechanisms of the studied extract-herbicide mixtures and their modes of action.
Go to article

Authors and Affiliations

Boutagayout Abdellatif
1
ORCID: ORCID
Bouiamrine El Houssine
2 1
Adiba Atman
3
Yahbi Mohammed
4
Nassiri Laila
1
Belmalha Saadia
2

  1. The Environment and Soil Microbiology Unit, Faculty of Sciences-Moulay Ismail University, B.P.11201 Zitoune, Meknes, Morocco
  2. Department of Plant and Environment Protection, National School of Agriculture, Ecole Nationale d’Agriculture de Meknès, Route Haj Kaddour, Meknes, Morocco
  3. Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
  4. Department of Biology, Faculty of Science-Moulay Ismail University, Meknes, Morocco
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to evaluate the bioherbicidal effect of aqueous fresh extracts of leaves and roots of the Aloe vera plant on the broad leaf weed growth of Sonchus oleraceus associated faba bean plants. During the winters of 2020/2021 and 2021/2022, two pot experiments were carried out in the greenhouse of the National Research Center. Leaf and root aqueous extracts of Aloe vera were applied as soil and/or spray treatments at different concentrations. The results showed that there was significant inhibition in the fresh and dry biomass of S. oleraceus and was maximum with application of soil treatment (10%) of the leaf extract sequenced by spraying leaf extract at 20%. Furthermore, the inhibition of the weed growth was accompanied by an increase in the growth and yield of faba bean. The results indicated that phenols, flavonoids, alkaloids, tannins and saponins were present in the leaf extract, and there were smaller amounts of tannins and saponins in the root extract than in the leaf extract. Total phenols, flavonoids, alkaloids in the leaf extract was more than three times that of the root extract. The results also revealed that the presence of higher concentrations of natural substances in the leaf extract than in the root extracts gave it its efficiency in inhibiting the growth of S. oleraceus weeds.
Go to article

Authors and Affiliations

Kowthar Gad El-Rokiek
1
Abeer Nasr Shehata
2
Samia Ameen Saad El-Din
1
Shahira Ali Tarraf
1

  1. Botany Department, National Research Centre, Giza, Egypt
  2. Department of Biochemistry, National Research Centre, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The experiments were carried out on red beet (cv. Czerwona Kula) from 1997 to 2000. Four combinations differing in ground coverage by weeds were analyzed. During the whole observation period, the greatest numbers of aphids were noticed on the plots kept weed free, while the lowest numbers of aphids were found on the plots where the weeds were not removed and exceptionally, in 1997, on the plots weeded twice. Over the years of observations, the greatest numbers of larvae and adult of Coccinellidae were found on the plots kept weed free, where the bean aphids were the most numerous. Among the four species of adult coccinellid beetles found in the colonies of black bean aphids, the most dominant was Coccinella septempunctata L.
Go to article

Authors and Affiliations

Maria Pobożniak
Andrzej Wnuk
Download PDF Download RIS Download Bibtex

Abstract

The influence of bean seed surface lipids on infestation of seeds by Acanthoscelides obtectus Say was investigated. The experiments were performed in dual-choice bioassays on three bean varieties: Blanka, Bor and Longina. The collected data for natural and solvent washed seeds concerned the number of ovipositions, embryo mortality, lack of seed-boring activity, dead larvae inside seeds and developed insects. The results clearly indicated that bean seed surface lipids are involved in all infestation stages, and could be used to distinguish resistant and non-resistant varieties of been. Chemical analyses revealed the following groups of surface lipids: wax esters, long chain primary alcohols, n-alkanes, sterols, fatty acids, squalene, aldehydes, monoacylglycerols, ketones and fatty acid esters. Quantitative composition of surface lipids was analysed using selected chemometric procedures to determine correlation with bioactivity. Cluster analysis of surface lipid composition enabled to distinguish resistant and non-resistant varieties. Fatty acids and monoacylglycerols were found to deter bean weevil infestation, while alkan-1-ols acted as attractants.

Go to article

Authors and Affiliations

Mariusz Nietupski
Beata Szafranek
Dolores Ciepielewska
Elżbieta Synak
Łucja Fornal
Janusz Szafranek
Download PDF Download RIS Download Bibtex

Abstract

Essential oils from four plants , i.e. geranium, rosa, lemon and mint were tested for their activity in vitro and in vivo against Rhizoctonia solani and Fusarium oxysporum f. sp. phaseoli, the cause of root rot and wilt of beans. In vitro, they were found to have an inhibitory effect against the mycelial growth of R. solani and F. oxysporum f. sp. phaseoli. Complete inhibition in fungal growth was observed at a concentration of 4% of each essential oil and Topsin M at 400 ppm as well. In greenhouse the four essential oils were tested as seed coating and/or foliar spray. Results of seed coating at a concentration of 1% clearly demonstrate a good protection of emerged bean seeds against invasion of R. solani and F. oxysporum f. sp. phaseoli compared with the fungicide treatment. A similar trend was observed in a lower extent when the essential oils were applied as bean seeds coating followed by seedlings foliar spray under field conditions. Obvious yield increase as bean green pods, in all treatments, was significantly higher than in the control.

Go to article

Authors and Affiliations

Nehal S. El-Mougy
Nadia G. El-Gamal
Mokhtar M. Abdel-Kader
Download PDF Download RIS Download Bibtex

Abstract

Leguminous plant products have great nutritional and economic importance in the European Union, which is reflected by its protein policy. These harvested yields are risked by stored product pests, such as Acanthoscelides obtectus Say, which can cause up to 50–60% loss in stored bean items. The bean weevil causes both quantitative and qualitative damage to seeds. We aimed to map the qualitative damage of this devastating pest, which deteriorates the nutritional content of bean kernels. Furthermore, our purpose was to determine accurately the decrease in the volume and density alteration in beans caused by this important stored product pest using CT-assisted imaging analysis. Our results showed that the nutritional arrangement in damaged beans was caused by A. obtectus. The measured nutrient content increment in damaged samples can be explained by the presence of extraneous organic material which originates from perished specimens of the bruchin pest. This is a negative phenomenon in bean items used as forage, because of the loss of valuable proteins and rancidity in herbal oils. Weight loss triggered by developing larvae was 49.42% in examined bean items. The use of 3D technologies has greatly improved and facilitated the detailed investigation of injured seeds. The density (75,834 HU; 41.93%) and the volume (296.162 mm3; 26.21%) values measured by CT of the examined samples were significantly decreased. The decreasing of tissue density in damaged beans can be accounted for by the consumption of starch present at a high ratio and that of the dense reserve components in the cotyledons.
Go to article

Authors and Affiliations

Sandor Keszthelyi
Egri Helga Bosnyakne
David Horvath
Adam Csoka
Gyorgy Kovacs
Donko Tamas
Download PDF Download RIS Download Bibtex

Abstract

Clethodim herbicide (Cle) and three Trichoderma strains (Tri) were applied either alone or in combination (Cle + Tri) for controlling weeds, root knot nematodes (Meloidogyne arenaria) and Rhizoctonia root rot disease (Rhizoctonia solani) as well as for evaluating their effects on total microbial count in the rhizosphere and the number of Rhizobium nodules on roots in two faba bean cultivars cultivated in naturally heavily infested fields. The evaluated characters were very similar for the two tested cultivars (Nubariya 1 and Sakha 3). Treatment with Cle alone highly reduced the fresh and dry matter of tested weeds (Amaranthus viridis, Cynodon dactylon and Cenchrus ciliaris), followed by Cle + Tri and Tri alone. Cle + Tri highly reduced nematode parameters viz. numbers of J2 in soil or roots, females, eggs, galls and egg-masses when compared with each treatment alone. Tri alone caused a great decrease in Rhizoctonia root rot infection, followed by Cle + Tri and Cle alone. Total microbial count and Rhizobium nodules were affected only with Cle treatment. Plant growth parameters (shoot length, shoot fresh and dry weight and numbers of branches and leaves) and yield parameters (fresh pod and dry weight, seed number per pod, seed weight and ash pod weight of plant) were greatly improved for Cle + Tri treatments when compared with either Tri or Cle alone.

Go to article

Authors and Affiliations

Mahmoud A.T. El-Dabaa
Hassan Abd-El-Khair
ORCID: ORCID
Wafaa M.A. El-Nagdi
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted to determine crop water stress index (CWSI) values and irrigation timing in the case of Derinkuyu dry bean ( Phaseolus vulgaris L.). In 2017, dry beans were grown as the main crop according to the field design consisting of plots divided into randomised blocks. Irrigation treatment comprised full irrigation (I100) and irrigation issues with three different levels of water stress (I66, I33, I0). This study applied 602 mm of water under the I100 irrigation. The yield of Derinkuyu dry beans was equal to 3576.6 kg∙ha –1 in I100 irrigation. The lower limit (LL) value, which is not necessary for the determination of CWSI, was obtained as the canopy–air temperature difference ( TcTa) versus the air vapour pressure deficit ( VPD). The upper limit (UL) value, at which the dry beans were wholly exposed to water stress, was obtained at a constant temperature. The threshold CWSI value at which the grain yield of dry beans started to decrease was determined as 0.33 from the measurements made with an infrared thermometer before irrigation in I66 irrigation treatment. As a result, it can be suggested that irrigation should be applied when the CWSI value is 0.33 in dry beans. Furthermore, the correlation analysis revealed a negative correlation between grain yield and crop water stress index and a positive correlation between yield and chlorophyll content. According to variance analysis, significant relationships were found between the analysed parameters at p ≤ 0.01 and p ≤ 0.05.
Go to article

Authors and Affiliations

Ali B. Uçak
1
ORCID: ORCID
Atılgan Atılgan
2
ORCID: ORCID
Mariusz Korytowski
3
ORCID: ORCID
Joanna Kocięcka
3
ORCID: ORCID
Daniel Liberacki
3
ORCID: ORCID
Piotr Stachowski
3
ORCID: ORCID
Burak Saltuk
2
ORCID: ORCID
Roman Rolbiecki
4
ORCID: ORCID

  1. Siirt University, Faculty of Agriculture, Department of Biosystems Engineering, Siirt, Turkey
  2. Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Biosystems Engineering, Antalya, Turkey
  3. Poznań University of Life Sciences, Faculty of Environmental Engineering and Mechanical Engineering, Department of Land Improvement, Environmental Development and Spatial Management, ul. Wojska Polskiego 28, 60-637, Poznań, Poland
  4. Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz, Poland

This page uses 'cookies'. Learn more