Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Go to article

Bibliography

  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Go to article

Authors and Affiliations

Pimprapa Chaijak
1
ORCID: ORCID
Phachirarat Sola
2

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand

This page uses 'cookies'. Learn more