Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effect of monoterpenoid 1,8-cineol on the toxicity and physiology of elm leaf beetle, Xanthogaleruca luteola Müller under laboratory conditions (26 ± 1°C, 65 ± 10% RH and 16L : 8D h) was investigated. Initially, LC30 and LC50 values of the constituent were estimated to be 23.5 ppm and 31.9 ppm for the last instar larvae after 48 h, respectively. Significant changes were observed in the values of relative growth rate (RGR), efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), approximate digestibility (AD) and consumption index (CI) between control and treated larvae with 1,8-cineol. The amounts of protein, glucose and urea decreased in the treated larvae in comparison with control. Similar findings were observed in the activities of alkaline phosphatase and lactate dehydrogenase while the activities of glutathione S-transferase and esterase significantly increased in the treated larvae using CDNB and α-naphtyl acetates as the substrates. Morphological and histological changes brought about by 1,8-cineol in the present study are indicative of growth inhibition targeting specific organs such as those of reproduction. We believe that 1,8-cineol can be considered as a safe and environmentally friendly compound.

Go to article

Authors and Affiliations

Gilda Adibmoradi
Jalal Jalali Sendi
Siavosh Tirgari
Sohrab Imani
Avid Razavi-Nematolahi
Download PDF Download RIS Download Bibtex

Abstract

Selenium deficiency is a common nutritional disorder in dairy cattle globally. However, sele- nium supplementation can lead to selenium toxicity. This study evaluated a novel, low-toxicity selenium supplement, selenitetriglycerides, to determine its efficacy and safety in dairy cows. The study was conducted on 12 Holstein Friesian cows divided in two equal groups (control group without supplementation of selenium and experimental group with supplementation of selenitetriglycerides). Experimental cows (n=6) were orally administered 300 mg/cow/day of selenitetriglycerides for 14 days (days 1-14) and then monitored for a further 14 days (days 15-28). Blood from both groups of cows was sampled for determination of selenium concentra- tions, activity of aspartate aminotransferase, creatine kinase, lactate dehydrogenase, gamma-glutamyl transferase, concentrations of triglycerides, cholesterol, non-esterified fatty acids, glucose, total protein, urea, creatinine and hematological parameters. Serum selenium concentra- tions in the experimental group increased significantly on day 2 (from 64.92±6.89 μg/L to 127.95±13.75 μg/L), peaked on day 7 (266.22±14.21 μg/L) and remained significantly above the initial baseline values (day 1) for 28 days. Serum selenium concentrations in the control group did not change significantly during the 28 day period (65.22 μg/L on 1st day and 64,35 μg/L on 28th day) and were significantly lower than those in the experimental group from day 2 to day 28. The results of clinical examinations, analyses of hematological parameters, and liver and kidney function tests showed that selenitetriglycerides had no adverse effect on the health or on the metabolic or haematological statuses of the cows. These findings indicate that sele- nitetriglycerides are safe and effective selenium supplements for cattle.

Go to article

Authors and Affiliations

K. Żarczyńska
P. Sobiech
J. Mee
J. Illek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the current trial was to evaluate the effect of organically chelated zinc – methionin (Zn-Met) supplementation (30 mg Zn /kg DM TMR) on hematological, biochemical, and mineral profile of dairy cows in early lactation (1 - 90 d p.p.). Twenty dairy cows were randomly allocated to one of two dietary treatments in a randomized design. Animals in group C were treated as control (no zinc supplementation); whereas animals in group S were supplemented with organic Zn.
Zn-Met supplementation had a significant effect on hematological parameters. White blood cell (WBC) counts 60 days p.p. and red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit level (HCT) and platelet count (PLT) on calving day, 30th- and 60th- day p.p were significantly higher in cows fed Zn than in the control group. In calves from supplemented mothers, there was a significant increase in RBC (p≤0.001), HCT (p≤0.01) and MCV (p≤0.05).
There was no difference in other parameters among the groups, except of the highly significant difference in Zn concentration in blood serum of the S-group during the entire experimental time. The results obtained confirm the beneficial effect on serum zinc level and hematological parameters with no negative effects of 30mg Zn/kg TMR addition on mineral and biochemical parameters.
Go to article

Bibliography

1. Alhussien MN, Tiwari S, Panda BSK, Pandey Y, Lathwal SS, Dang AK (2021) Supplementation of antioxidant micronutrients reduces stress and improves immune function/ response in periparturient dairy cows and their calves. J Trace Elem Med Biol 65: 126718.
2. Ambooken B, Binitha MP, Sarita S (2013) Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichology 5: 40-42.
3. Ballantine HT, Socha MT, Tomlinson DJ, Johnson AB, Fielding AS, Shearer JK, Van Amstel SR (2002) Effect of feeding complexed to zinc, manganese, copper and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction and lactation performance. Prof Anim Sci 18: 211-218.
4. Brown ED, Chan W, Smith JC Jr. (1978) Bone Mineralization During a Developing Zinc Deficiency. Proc Soc Exp Biol Med 157: 211-214.
5. Byrne L, Murphy RA (2022) Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals (Basel) 12: 1981.
6. Caldera E, Weigel B, Kucharczyk VN, Sellins KS, Archibeque SL, Wagner JJ, Han H, Spears JW, Engle TE (2019) Trace mineral source influences ruminal distribution of copper and zinc and their binding strength to ruminal digesta. J Anim Sci 97: 1852-1864.
7. Cao J, Henry PR, Guo R, Holwerda RA, Toth JP, Littell RC, Miles RD, Ammerman CB (2000) Chemical characteristics and relative bi-oavailability of supplemental organic zinc sources for poultry and ruminants. J Anim Sci 78: 2039-2054.
8. Cebulska K, Sobiech P, Tobolski D, Wysocka D, Janiszewski P, Zalewski D, Gugolek A, Illek, J (2021) Comparison of the content of selected heavy metals in the liver tissue of the wild boar (Sus scrofa), red fox (Vulpes vulpes) and red deer (Cervus elaphus), living in north-eastern Poland. Pol J Vet Sci 24: 425-432.
9. Chen F, Li Y, Shen Y, Guo Y, Zhao X, Li Q, Cao Y, Zhang X, Li Y, Wang Z, Gao Y, Li J (2020) Effects of prepartum zinc-methionine supplementation on feed digestibility, rumen fermentation patterns, immunity status, and passive transfer of immunity in dairy cows. J Dairy Sci 103: 8976-8985.
10. Chen SM, Kuo CD, Ho LT, Liao JF (2005) Effect of hypothyroidism on intestinal zinc absorption and renal zinc disposal in five-sixths nephrectomized rats. Jpn J Physiol 55: 211-219.
11. Chesters JK (1997) Zinc. In: O’Dell BS, Sunde RA (eds), Handbook of Nutritionally Essential 260 Mineral Elements. Marcel Dekker, New York, p 185.
12. Choi JW, Kim SK (2005) Relationships of lead, copper, zinc, and cadmium levels versus hematopoiesis and iron parameters in healthy adolescents. Ann Clin Lab Sci 35 (4): 428-434
13. Dash S, Brewer GJ, Oelshlegel FJ Jr (1974) Effect of zinc on heamoglobin binding by red blood cell membranes. Nature 250: 251-252.
14. Dirksen G, Gründer H D, Stöber M; Baumgartner W, Braun U, Doll K, Fürll M, Giese W, Haas L, Hoffmann W, Klee W, Köstlin R, Kümper H, Laiblin CH, Martig J, Moenning V, Mülling CH, Pohlenz J, Rademacher G, Renner E, Scholz H, Stanek CH, Staufenbiel R, Steiner A, Stöber M, Straub OCh, Trautwein G (2006) Internal medicine and surgery of cattle (in German). 5. ed. Parey Verlag, Thieme Verlagsgruppe, Berlin.
15. Dresler S, Illek J, Zeman L (2016) Effects of organic zinc supplementation in weaned calves. Acta Vet Brno 85: 049-054.
16. El-Maghraby MM, Mahmoud AE (2021) Clinical, hematological, and biochemical studies on hypozincemia in neonatal calves in Egypt. Vet World 14: 314-318.
17. Freake HC, Govoni KE, Guda K, Huang C, Zinn SA (2001) Actions and interactions of thyroid hormone and zinc status in growing rats. J Nutr 131: 1135-1141.
18. Giugliano R, Millward DJ (1984) Growth and zinc homeostasis in the severely Zn-deficient rat. Br J Nutr 52: 545-560.
19. Griffiths LM, Loefler SH, Socha MT, Tomlinson DJ, Johnson AB (2007) Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Anim Feed Sci Technol 137: 69-83.
20. Gude D (2011) Tracing elements in hair. Int J Trichology 3: 132-133.
21. Hamilton RP, Fox MRS, Fry BE Jr, Jones AOL, Jacobs RM (1979) Zinc interference with copper, iron and manganese in young japa-nese quail. J Food Sci 44: 738-741.
22. Horst EA, Mayorga EJ, Al-Qaisi M, Abeyta MA, Goetz BM, Ramirez Ramirez HA, Kleinschmit DH, Baumgard LH (2019) Effects of dietary zinc source on the metabolic and immunological response to lipopolysaccharide in lactating Holstein dairy cows. J Dairy Sci 102: 11681-11700.
23. Hussein AN (2018) The effect of zinc and copper deficiency on hematological parameters, oxidative stress, and antioxidants levels in the sheep. Bas J Vet Res 16(2): 344-355.
24. Illek J (1987) The incidence and diagnosis, therapy and prevention of cobalt, manganese, copper, and zinc deficiency (in Czech). Doctoral thesis, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic, p 330.
25. Jagoš P, Bouda J, Hejlíček K, Hojovec J, Kozumplík J, Kudláč E, Roztočil V, Veselý Z (1985) Diagnosis, therapy and prevention of cat-tle diseases (in Czech). 1st ed., State Agriculture Publishing House, Prague, Czech Republic. p 472.
26. Jones GM, Wildman EE, Troutt HF Jr, Lesch TN, Wagner PE, Boman RL, Lanning NM (1982) Metabolic profiles in Virginia dairy herds of different milk yields. J Dairy Sci 65: 683-688.
27. Kalaeva E, Kalaev V, Chernitskiy A, Alhamed M, Safonov V (2020) Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Vet World 13: 987-995.
28. Kardaya D, Dihansih E, Sudrajat D (2020) Flushing diets influence on blood mineral and haematological profile of late-pregnant cows under extensive grazing. Adv Anim Vet Sci 8: 1310-1317.
29. Kellogg DW, Tomlinson DJ, Socha MT, Johnson AB (2004) Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. Prof Anim Sci 20: 295-301.
30. Kinal S, Twardoń J, Bednarski M, Preś J, Bodarski R, Słupczyńska M, Ochota M, Dejneka GJ (2011) The influence of administration of biotin and zinc chelate (Zn-methionine) to cows in the first and second trimester of lactation on their health and productivity. Pol J Vet Sci 14: 103-110.
31. Kincaid RL, Socha MT (2004) Inorganic versus complexed trace mineral supplements on performance of dairy cows. Prof Anim Sci 20: 66-73.
32. Kleczkowski M, Klucinski W, Sikora J, Sitarska E, Winnicka A, Ładysz R, Ziekan P, Wojewoda J, Skowronski M (1995) The effect of the low concentration of copper, zinc, molybdenum, selenum, sulphur in the fodder on selected hematological parameters and glutathione peroxidase activity in calves and cows. Mengen-und Spurenelemente. 15, Arbeitstagung: 400-407.
33. Kovačević V, Cincović MR, Belić B, Đoković R, Lakić I, Radinović M, Potkonjak A (2021) Biological variations of hematologic and biochemical parameters in cows during early lactation. Pol J Vet Sci 24: 119-125.
34. Machado VS, Bicalho MLS, Pereira RV, Caixeta LS, Knauer WA, Oikonomou G, Gilbert RO, Bicalho RC (2013) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet J 197: 451-456.
35. Malcom-Callis KJ, Duff GC, Gunter SA, Kegley EB, Vermeire DA (2000) Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. J Anim Sci 78: 2801-2808.
36. Mattioli GA, Rosa DE, Turic E, Testa JA, Lizarraga RM, Fazzio LE (2019) Effect of Injectable Copper and Zinc Supplementation on Weight, Hematological Parameters, and Immune Response in Pre-weaning Beef Calves. Biol Trace Elem Res 189: 456-462.
37. Milne DB, Ralston NV and Wallwork JC (1985) Zinc content of cellular components of blood: methods for cell separation and analysis evaluated. Clin Chem 31: 65-69.
38. Miyamoto T, Sakurai A, DeGroot LJ (1991) Effects of zinc and other divalent metals on deoxyribonucleic acid binding and hor-mone-binding activity of human alpha 1 thyroid hormone receptor expressed in Escherichia coli. Endocrinology 129: 3027-3033.
39. Mohajeri G, Norouzian MA, Mohseni M, Afzalzadeh A (2014) Changes of blood metals, hematology and hepatic enzyme activities in lactating cows reared in the vicincity of a lead-zinc smelter. Bull Environ Contam Toxicol 92: 693-697.
40. Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of Metabolism. Physiol Rev 94: 355-382.
41. Nagalakshmi D, Dhanalakshmi K, Himabindu D (2009) Effect of dose and source of supplemental zinc on immune response and oxida-tive enzymes in lambs. Vet Res Commun 33: 631-644.
42. Neathery MW, Miller WJ, Blackmon DM, Gentry RP (1973) Performance and milk zinc from low-zinc intake in Holstein cows. J Dairy Sci 56: 212-217.
43. Nocek JE, Socha MT, Tomlinson DJ (2006) The effect of trace mineral fortification level and source on performance of dairy cattle. J Dairy Sci 89: 2679-2693.
44. NRC (2001) Nutrient requirements of domestic animals, nutrient requirements of dairy cattle. 7th Edition rev. Ed. National Academies Press, Washington DC, p 408.
45. Osorio JS, Trevisi E, Li C, Drackley JK, Socha MT, Loor JJ (2016) Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. J Dairy Sci 99: 1868-1883.
46. Payne JM, Hibbitt KG, Sansom BF (1973) Production disease in farm animals. The Whitefriars Press Ltd., London and Tonbridge, UK, p 253.
47. Siciliano-Jones JL, Socha MT, Tomlinson DJ, De Frain JM (2008) Effect of Trace Mineral Source on Lactation Performance, Claw In-tegrity, and Fertility of Dairy Cattle. J Dairy Sci 91: 1985-1995.
48. Sobhanirad S, Naserian AA (2012) Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Anim Feed Sci Tech 177: 242-246.
49. Spain J (1993) Tissue integrity: a key defense against mastitis infection: the role of zinc proteinates and a theory for mode of action. In: Lyons TP (ed), Biotechnology in the Feed Industry, Proceedings of the 9th Annual Symposium. Alltech Technical Publication, Nicho-lasville, KY, USA, pp 53-58.
50. Spears JW (1989) Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. J Anim Sci 67: 835-843.
51. Spears JW (1996) Organic trace minerals in ruminant nutrition. Anim Feed Sci Technol 58: 151-163.
52. Spears JW, Kegley EB (2002) Effect of zinc source (zinc oxide vs. zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J Anim Sci 80: 2747-2752.
53. Šoch M, Broucek J, Vydrova P, Travnicek J, Raabova M, Uhrincat M (2010) Effect of enviromental and management factors on hema-tological and trace blood elements of cows. Slovak J Anim Sci 43(4): 195-204.
54. Šrejberová P, Šoch M, Brouček J (2008) Relationship between copper and zinc on selected hematological parameters in beef and dairy cattle. Slovak J Anim Sci 41: 42-45.
55. Triggiani V, Tafaro E, Giagulli VA, Sabbà C, Resta F, Licchelli B, Guastamacchia E (2009) Role of iodine, selenium and other micronu-trients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 9: 277-294.
56. Underwood EJ and Suttle NF (1999) Mineral Nutrition of Livestock. 3rd ed., CAB Imternational, Wallingford, p 614.
57. Wedekind KJ, Hortin AE, Baker DH (1992) Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J Anim Sci 70: 178-187.
58. Yokus B, Cakir UD (2006) Seasonal and physiological variations in serum chemistry and mineral concentrations in cattle. Biol Trace Elem Res 109: 255-266.
59. Żarczyńska K, Sobiech P, Tobolski D, Mee JF, Illek J (2021) Effect of a single, oral administration of selenitetriglycerides, at two dose rates, on blood selenium status and haematological and biochemical parameters in Holstein-Friesian calves. Ir Vet J 74: 2-11.
Go to article

Authors and Affiliations

S. Dresler
1
J. Illek
2
K. Cebulska
3
M. Šoch
1

  1. Department of Animal Husbandry Sciences, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
  2. Faculty of Veterinary Medicine, Large Animal Clinical Laboratory, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
  3. Department of Internal Disease, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Orientating investigations were carried out in order to test the influence of oil extracts of lycopene (20, 40 and 60 mg/kg feed) and astaxanthin (10, 20 and 30 mg/kg feed) as feed additives on the metabolic parameters (glucose, creatinine, cholesterol) and enzyme activities (alanine aminotransferase, ALT; aspartate transaminase, AST) of laying hens. Eggs from these hens were stored at refrigerator temperatures of 4°C and 12°C for up to 30 days and analyzed for vitamin A, carotenoid and yolk color. 45 laying hens (Hy-Line W36 cross, 23 weeks of age) were divided in three groups of 15 birds each (control, lycopene fed group, astaxanthin fed group). Blood samples were taken from the hens and laid eggs were collected on days 31, 61, and 91 of the study. The eggs were stored for 30 days in refrigerators. Both lycopene and astaxanthin increased the content of glucose in serum (Р<0.05). The content of creatinine and cholesterol, and the activity of ALT, AST and alkaline phosphatase varied dose-dependently. With the exception of cholesterol, metabolite concentrations in the serum of laying hens fed different lycopene and astaxanthin doses did not exceed clinically accepted physiological levels. The carotenoid content and color of the egg yolks from laying hens fed astaxanthin was significantly higher (Р<0.05) compared to lycopene fed birds. Refrigerator storage of the eggs did not affect carotenoid content and egg yolk color compared to freshly laid eggs. Both feed additives showed a favorable effect on the metabolism of laying hens and the enrichment of egg yolks with carotenoids, astaxanthin significantly more (Р<0.05) than lycopene.
Go to article

Bibliography


Amaya DB (2004) Harvestplus handbook for carotenoids analysis. International Food Policy Research Institute and International Center for Tropical Agriculture, USA.

An BK, Choo WD, Kang CW, Lee J, Lee KW (2019) Effects of dietary lycopene or tomato paste on laying performance and serum lipids in laying hens and on malondialdehyde content in egg yolk upon storage. J Poult Sci 56: 52-57.

Barbosa VC, Gaspar A, Calixto L, Agostinho TS (2011) Stability of the pigmentation of egg yolks enriched with omega-3 and carophyll stored at room temperature and under refrigeration. Rev Bras Zootec 40: 1540-1544.

Basmacioglu H, Ergul M (2005) Research on the factor affecting cholesterol content and some other characteristics of eggs in laying hens. Turk J Vet Anim Sci 29: 157-164.

Camera E, Mastrofrancesco A, Fabbri C, Daubrawa F, Picardo M, Sies H, Stahl W (2009) Astaxanthin, canthaxanthin and beta-carotene differently affect UVA-induced oxidative damage and expression of oxidative stress-responsive enzymes. Exp Dermatol 18: 222-231.

Damaziak K, Marzec A, Riedel J, Szeliga J, Koczywas E, Cisneros F, Michalczuk M, Lukasiewicz M, Gozdowski D, Siennicka A, Kowalska H, Niemiec J, Lenart A (2018) Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poult Sci 97: 4008-4019.

Gawecki K, Potkanmski A, Lipinska H (1977) Effect of carophyll yellow and carophyll red added to comercial feeds for laying hens on yolk colour and its stability during short-term refrigeration. Rocz Akad Rol w Pozn 94: 85-93.

Gervasi T, Pellizzeri V, Benameur Q, Gervasi C, Santini A, Cicero N, Dugo G (2017) Valorization of raw materials from agricultural industry for astaxanthin and beta-carotene production by Xanthophyllomyces dendrorhous. Nat Prod Res 32: 1554-1561.

Harada F, Morikawa T, Lennikov A, Mukwaya A, Schaupper M, Uehara O, Takai R, Yoshida K, Sato J, Horie Y, Sakaguchi H, Wu CZ, Abiko Y, Lagali N, Kitaichi N (2017) Protective effects of oral astaxanthin nanopowder against ultraviolet-induced photokeratitis in mice. Oxid Med Cell Longev 2017: 1956104.

Heflin LE, Malheiros R, Anderson KE, Johnson LK, Raatz SK (2018) Mineral content of eggs differs with hen strain, age, and rearing envi-ronment. Poult Sci 97: 1605-1613.

Honda M, Kawashima Y, Hirasawa K, Uemura T, Jinkun S, Hayashi Y (2020) Possibility of using astaxanthin-rich dried cell powder from Paracoccus carotinifaciens to improve egg yolk pigmentation of laying hens. Symmetry 12: 923.

Hrabčáková P, Voslářová E, Bedáňová I, Pištěková V, Chloupek J, Večerek V (2014) Haematological and biochemical parameters during the laying period in common pheasant hens housed in enhanced cages Sci World J 2014: 364602.

Hwang Y, Kim KJ, Kim SJ, Mun SK, Hong SG, Son YJ, Yee ST (2018) Suppression effect of astaxanthin on osteoclast formation in vitro and bone loss in vivo. Int J Mol Sci 19: 912.

Inoue Y, Shimazawa M, Nagano R, Kuse Y, Takahashi K, Tsuruma K, Hayashi M, Ishibashi T, Maoka T, Hara H (2017) Astaxanthin ana-logs, adonixanthin and lycopene, activate Nrf2 to prevent light-induced photoreceptor degeneration. J Pharmacol Sci 134: 147-157.
Jiang H, Wang Z, Ma Y, Qu Y, Lu X, Luo H (2015) Effects of dietary lycopene supplementation on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot Bamei lamb. Asian-Australas J Anim Sci 28: 958-965.

Kobori M, Takahashi Y, Sakurai M, Ni Y, Chen G, Nagashimada M, Kaneko S, Ota T (2017) Hepatic transcriptome profiles of mice with diet-induced nonalcoholic steatohepatitis treated with astaxanthin and vitamin E. Int J Mol Sci 18: 593.

Komatsu T, Sasaki S, Manabe Y, Hirata T, Sugawara T (2017) Preventive effect of dietary astaxanthin on UVA-induced skin photoaging in hairless mice. PLoS One 12: e0171178.

Koppel K, Suwonsichon S, Chitra U, Lee J, Chambers IV E (2014) Eggs and poultry purchase, storage, and preparation practices of consum-ers in selected Asian countries. Foods 3: 110-127.

Koppel K, Timberg L, Shalimov R, Vazquez-Araujo L, Carbonell-Barrachina AA, Donfrancesco BD, Chambers E (2015) Purchase, storage, and preparation of eggs and poultry in selected European countries: a preliminary study. Br Food J 117: 749-765.
Lu Y, Wang X, Feng J, Xie T, Si P, Wang W (2019) Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull 148: 63-69.

Mapelli-Brahm P, Corte-Real J, Melendez-Martinez AJ, Bohn T (2017) Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chem 229: 304-311.

Marounek M, Pebriansyah A (2018) Use of carotenoids in feed mixtures for poultry: a review. Agri Trop Subtrop 51: 107-111.

Mashhadi NS, Zakerkish M, Mohammadiasl J, Zarei M, Mohammadshahi M, Haghighizadeh MH (2018) Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac J Clin Nutr 27: 341-346.

Mezbani A, Kavan BP, Kiani A, Masouri B (2020) Effect of dietary lycopene supplementation on growth performance, blood parameters and antioxidant enzymes status in broiler chickens. Livest Res Rural Dev 31: 12.

Miranda JM, Anton X, Redondo-Valbuena C, Roca-Saavedra P, Rodriguez JA, Lamas A, Franco CM, Cepeda A (2015) Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients 7: 706-729.

Nimalaratne C, Schieber A, Wu J (2016) Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chem 194: 111-116.

Nishigaki I, Rajendran P, Venugopal R, Ekambaram G, Sakthisekaran D, Nishigaki Y (2010) Cytoprotective role of astaxanthin against gly-cated protein/iron chelate-induced toxicity in human umbilical vein endothelial cells. Phytother Res 24: 54-59.

Nolan JM, Meagher KA, Howard AN, Moran R, Thurnham DI, Beatty S (2016) Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. J Nutr Sci 5: e1.

Nys Y (2000) Dietary carotenoids and egg yolk coloration – a review. Arch Geflügelkd 64: 45-54.

Olson JB, Ward NE, Koutsos EA (2008) Lycopene incorporation into egg yolk and effects on laying hen immune function. Poult Sci 87: 2573-2580.

Omri B, Alloui N, Durazzo A, Lucarini M, Aiello A, Romano R, Santini A, Abdouli H (2019) Egg yolk antioxidants profiles: effect of diet supplementation with linseeds and tomato-red pepper mixture before and after storage. Foods (Basel, Switzerland) 8: 320.

Reboul E (2013) Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients. 5: 3563-3581.

Reboul E, Richelle M, Perrot E, Desmoulins-Malezet C, Pirisi V, Borel P (2006) Bioaccessibility of carotenoids and vitamin e from their main dietary sources. J Agric Food Chem 54: 8749-8755.

Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT (2002) Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med (May-wood) 227: 900-907.

Ruhl R (2013) Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development. Int Arch Allergy Immunol 161: 99-115.

Sahin K, Onderci M, Sahin N, Gursu MF, Khachik F, Kucuk O (2006) Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. J Therm Biol 31: 307-312.

Sahin N, Sahin K, Onderci M, Karatepe M, Smith MO, Kucuk O (2006) Effects of dietary lycopene and vitamin E on egg production, antiox-idant status and cholesterol levels in Japanese quail. Asian Australas J Anim Sci 19: 224-230.

Sila A, Ghlissi Z, Kamoun Z, Makni M, Nasri M, Bougatef A, Sahnoun Z (2015) Astaxanthin from shrimp by-products ameliorates nephrop-athy in diabetic rats. Eur J Nutr 54: 301-307.

Skibsted LH (2012) Carotenoids in antioxidant networks. Colorants or radical scavengers. J Agric Food Chem 60: 2409-2417.

Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 1: 189-210.

Sun B, Ma J, Zhang J, Su L, Xie Q, Bi Y (2014) Lycopene regulates production performance, antioxidant capacity, and biochemical parame-ters in breeding hens. Czech J Anim Sci 59: 471-479.

Sun B, Ma J, Zhang J, Su L, Xie Q, Gao Y, Zhu J, Shu D, Bi Y (2014) Lycopene reduces the negative effects induced by lipopolysaccharide in breeding hens. Br Poult Sci 55: 628-634.

Sztretye M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, Szentesi P, Keller-Pintér A (2019) Astaxanthin: a potential mitochondri-al-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev 2019: 3849692.

Vuilleumier JP (1969) The Roche Yolk Colour Fan: an instrument for measuring yolk colour. Poult Sci 48:767-779.

Yang YX, Kim YJ, Jin Z, Lohakare JD, Kim CH, Ohh SH, Lee SH, Choi JY, Chae BJ (2006) Effects of dietary supplementation of astaxan-thin on production performance, egg quality in layers and meat quality in finishing pigs. Asian-Aust J Anim Sci 19: 1019-1025.

Yoo H, Bamdad F, Gujral N, Suh JW, Sunwoo H (2017) High hydrostatic pressure-assisted enzymatic treatment improves antioxidant and anti-inflammatory properties of phosvitin. Curr Pharm Biotechnol 18: 158-167.

Zdrojewicz Z, Herman M, Starostecka E (2016) Hen’s egg as a source of valuable biologically active substances. Postępy Hig Med Doświ-adczalnej 70: 751-759.
Go to article

Authors and Affiliations

L.V. Shevchenko
1
O.M. Iakubchak
1
V.A. Davydovych
1
V.V. Honchar
1
M. Ciorga
2
J. Hartung
3
R. Kołacz
2

  1. Department of Veterinary Hygiene, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony St, 15, Kiev, Ukraine
  2. Department of Public Health Protection and Animal Welfare, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina 7, Toruń, Poland
  3. University of Veterinary Medicine Hannover, Bünteweg 9, Hannover, Germany
Download PDF Download RIS Download Bibtex

Abstract

The normotensive (Wistar) and spontaneously hypertensive (SHR) rats were examined to assess the response of the organism to selenium (Se) overdose. Moreover, the effect of zinc (Zn) and vitamin E, i.e. dietary components interacting in many biochemical processes with Se, on the Se uptake was evaluated. The control group was fed an untreated diet, and the diets of two other groups were overdosed with Se in the form of sodium selenite (9 mg/kg) and supplemented with Zn (13 mg/kg). Two experimental groups were fed a diet supplemented with Zn (13 mg/kg) and Se at an adequate level (0.009 mg/kg); a half of the animals was supplemented with vitamin

E. The results showed significant differences in the Se contents between the rat strains in case of Se-overdosed groups, where in the liver and kidney tissue Se contents of SHR rats exceeded 3- and 7-fold the normotensive ones. The Se uptake was altered by the vitamin E; no effect of Zn was observed. Activities of antioxidant enzymes were determined in the animal tissues indicating different patterns according to rat strain, tissue analysed, and administered Se dose. Thus, Se overdose, for instance, via an incorrectly prepared dietary supplement, can result in serious imbalances of the biochemical status of the animals.

Go to article

Authors and Affiliations

M. Melčová
J. Száková
P. Mlejnek
A. Fučíková2 L. Praus2 J. Zídková1 O. Mestek4 A. Kaňa4 K. Mikulík5 P. Tlustoš2 V. Zídek3

This page uses 'cookies'. Learn more