Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A model of bacterial filtration on fibrous filter media is developed. The single fibre efficiency as well as the efficiency of the whole filter - at the onset of the process and the evolution of those quantities - are analysed. The differences between the numerical modelling of colloidal particles and bacteria are stressed in detail. The main differences are the active motion ability of bacteria and biofilm formation. The parameters of the model were identified based on the literature data.

Go to article

Authors and Affiliations

Jakub M. Gac
Leon Gradoń
Download PDF Download RIS Download Bibtex

Abstract

Filtration through biologically active carbon (BAC) filters is an effective method of organic matter removal during drinking water treatment. In this study, the microbial community in the initial period of filters’ operation, as well as its role in the organic matter removal were investigated. Research was carried out in a pilot scale on two BAC filters (Filter 1 and Filter 2) which were distinguished by the type of inflowing water. It was observed that the number of heterotrophic plate count bacteria and total microbial activity were significantly higher in water samples collected from Filter 2, which received an additional load of organic matter and microorganisms. Despite the differences in the values of chemical and microbiological parameters of inflowing water, the composition of the microbiome in both filters was similar. The predominant taxon was a bacterium related to Spongiibacter sp. (Gammaproteobacteria) (>50% of relative abundance). In both filters, the efficiency of organic matter removal was at the same level, and the composition and relative frequency of predicted functional pathways related to metabolism determined using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Software) at level 3 of KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology – were also similar. The study demonstrated that a 40-day period of filter operation after filling with virgin granular activated carbon, was sufficient to initiate biofilm development. It was proved, that during the initial stage of filter operation, microorganisms capable of biodegradation of various organic compounds, including xenobiotics like nitrotoluene, colonized the filters
Go to article

Bibliography

  1. APHA (2017). Standard Methods for the Examination of Water and Wastewater, (23st ed.) American Public Health Association, Washington DC.
  2. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J. & Rådström, P. (2019). Bacterial release from pipe biofilm in a full-scale drinking water distribution system, NPJ Biofilms Microbiomes, 5, 9. DOI:10.1038/s41522-019-0082-9
  3. Choi, Y.C., Li, X., Raskin, L. & Morgenroth, E. (2008). Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors, Water Research, 42, pp. 3425–3434. DOI:10.1016/j.watres.2008.05.004
  4. Dong, S., Liu, L., Zhang, Y. & Jiang, F. (2019). Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment, International Journal of Environmental Research and Public Health, 16, 3112. DOI:10.3390/ijerph16173112
  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C. & Langille, M.G.I. (2020). PICRUSt2 for prediction of metagenome functions, Nature Biotechnology, 38, pp. 685–688. DOI:10.1038/s41587-020-0548-6
  6. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 10, pp. 996–998. DOI:10.1038/nmeth.2604
  7. Garrity, G.M. (Ed.) 2005. Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C, The Alpha- Beta-, Delta- and Epsilonproteobacteria, Springer, New York, pp. 1-1388. DOI:10.1007/0-387-29298-5
  8. Guo, X., Xie, C., Wang, L., Li, Q. & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp., Environmental Science and Pollution Research, 26, pp. 8429–8443. DOI:10.1007/s11356-019-04358-0
  9. Hayward, C., Ross, K.E., Brown, M.H., Bentham, R. & Whiley, H. (2022) The presence of opportunistic premise plumbing pathogens in residential buildings: a literature review, Water, 14, 1129. DOI:10.3390/w14071129
  10. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, 16, 169. DOI:10.1186/s12859-015-0611-3
  11. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski, Z. (2016). Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms, Annual Set The Environment Protection, 18, pp. 235–246 (in Polish), available on: http://ros.edu.pl/images/roczniki/2016/No2/17_ROS_N2_V18_R2016.pdf
  12. Holc, D., Mądrecka-Witkowska, B., Komorowska-Kaufman, M., Szeląg-Wasielewska, E., Pruss, A. & Cybulski, Z. (2021). The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Archives of Environmental Protection, 47, 3, pp. 37-49. DOI:10.24425/aep.2021.138462
  13. Holc, D., Pruss, A., Komorowska-Kaufman, M., Mądrecka, B. & Cybulski, Z. (2019). The sorption of organic compounds from water during technological start-up of carbon filters, E3S Web Conferences, 100, 00027. DOI:10.1051/e3sconf/201910000027
  14. IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Some chemicals present in industrial and consumer products, Food And Drinking-Water, 101, 9-549.
  15. Jean, W.D., Yeh, Y.T., Huang, S.P., Chen, J.S. & Shieh, W.Y. (2016). Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 4094–4098. DOI:10.1099/ijsem.0.001316
  16. Jin, L., Ko, S.R., Ahn, C.Y., Lee, H.G. & Oh, H.M. (2016). Rhizobacter profundi sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 1926-1931. DOI:10.1099/ijsem.0.000962
  17. Kaarela, O.E., Harkki, H.A., Palmroth, M.R.T. & Tuhkanen, T.A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, pp. 681-692. DOI:10.1080/09593330.2014.958542
  18. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms, Nucleic Acids Research, 49, D545–D551. DOI:10.1093/nar/gkaa970
  19. Kennedy, A.M., Reinert, A.M., Knappe, D.R.U., Ferrer, I. & Summers R.S. (2015). Full- and pilot-scale GAC adsorption of organic micropollutants, Water Research, 68, pp. 238-248. DOI:10.1016/j.watres.2014.10.010
  20. Khan M.F., Jamal A., Rosy P. J., Alguno A.C., Ismail M., Khan I., Ismail, A. & Zahid, M. (2022). Eco-friendly elimination of organic pollutants from water using graphene oxide assimilated magnetic nanoparticles adsorbent, Inorganic Chemistry Communications, 139, 109422. DOI:10.1016/j.inoche.2022.109422
  21. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138. DOI:10.1016/j.chemosphere.2016.09.097
  22. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nature Biotechnology, 31, pp. 814–821. DOI:10.1038/nbt.2676
  23. LaPara, T.M., Hope Wilkinson, K., Strait, J.M., Hozalski, R.M., Sadowksy, M.J &, Hamilton, M.J. (2015). The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms, Applied and Environmental Microbiology, 81, pp. 6864-6872. DOI:10.1128/AEM.01692-15
  24. Li, C., Ling, F., Zhang, M., Liu, W.T., Li, Y. & Liu, W. (2017). Characterization of bacterial community dynamics in a full-scale drinking water treatment plant, Journal of Environmental Sciences, 51, pp. 21-30. DOI:10.1016/j.jes.2016.05.042
  25. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012). Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886. DOI:10.1007/s12257-012-0127-x
  26. Liao, X., Chen, C., Wang, Z., Chang, C.-H., Zhang, X. & Xie, S. (2015). Bacterial community change through drinking water treatment processes, International Journal of Environmental Science and Technology, 12, pp. 1867-1874. DOI:10.1007/s13762-014-0540-0
  27. Liao, X., Chen, C., Wang, Z., Wan, R., Chang, C.-H. & Zhang, X. (2013). Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochemistry, 48, pp. 312-316. DOI:10.1016/j.procbio.2012.12.016
  28. Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., Liu, W., van der Meer, W. & Medema, G. (2018). Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints, Water Research, 138, pp. 86-96. DOI:10.1016/j.watres.2018.03.043
  29. Ma, B., LaPara, T.M. & Hozalski, R.M. (2020). Microbiome of Drinking Water Biofilters is Influenced by Environmental Factors and Engineering Decisions but has Little Influence on the Microbiome of the Filtrate, Environmental Science & Technology, 54, pp. 11526-11535. DOI:10.1021/acs.est.0c01730
  30. Makowska, N., Philips, A., Dabert, A., Nowis, K., Trzebny, A., Koczura, R. & Mokracka, J. (2020). Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome, Water Research, 170, 115277. DOI:10.1016/j.watres.2019.115277
  31. Matilainen, A., Vieno N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32, pp. 324-331. DOI:10.1016/j.envint.2005.06.003
  32. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc, D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds, in: Water Supply and Wastewater Disposal, Sobczuk, H. & Kowalska, B. (Eds.), Lublin University of Technology, Lublin, pp.163-177
  33. Magic-Knezev, A., Wullings, B. & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment, Journal of Applied Microbiology, 107, pp. 1457-1467. DOI:10.1111/j.1365-2672.2009.04337.x
  34. Matsis, V. M. & Grigoropoulou, H.P. (2008). Kinetics and equilibrium of dissolved oxygen adsorption on activated carbon, Chemical Engineering Science, 63, pp. 609-621. DOI:10.1016/j.ces.2007.10.005
  35. Oh, S., Hammes, F. & Liu, W.T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant, Water Research, 128, pp. 278-285. DOI:10.1016/j.watres.2017.10.054
  36. Papciak, D., Kaleta, J., Puszkarewicz, A. & Tchorzewska-Cieślak, B. (2016). The use of biofiltration process to remove organic matter from groundwater, Journal of Ecological Engineering, 17, pp. 119-124. DOI:10.12911/22998993/63481
  37. PN-C-04578-02:1985 Water and wastewater - Testing of oxygen demand and organic carbon content - Determination of chemical oxygen demand (COD) by the permanganate method. (in Polish)
  38. Qi, W., Li, W., Zhang, J. & Zhang, W. (2019). Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community, Frontiers of Environmental Science & Engineering, 13, 15. DOI:10.1007/s11783-019-1100-0
  39. Rosenberg, E., DeLong E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), (2014). The Prokaryotes. Alphaproteobacteria and Betaproteobacteria. (4rd ed.), Springer, Berlin, Heidelberg. pp. 3-1012. DOI:10.1007/978-3-642-30197-1
  40. Dos Santos, P.R. & Daniel, L.A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, International Journal of Environmental Science and Technology, 17, pp. 591-606. DOI:10.1007/s13762-019-02567-1
  41. Selbes, M., Brown, J., Lauderdale, C. & Karanfil, T. (2017). Removal of Selected C‐ and N‐DBP Precursors in Biologically Active Filters, Journal ‐ American Water Works Association, 109: E73-E84. DOI:10.5942/jawwa.2017.109.0014
  42. Servais, P., Billen, G. & Bouillot, P. (1994). Biological colonization of granular activated carbon filters in drinking-water treatment, Journal of Environmental Engineering, 120, 4, pp. 888-899. DOI:10.1061/(ASCE)0733-9372(1994)120:4(888)
  43. Shirey, T.B., Thacker, R.W. & Olson, J.B. (2012). Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility, Journal of Water and Health, 10, pp. 244–255. DOI:10.2166/wh.2012.092
  44. Simpson, D.R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, pp. 2839-2848. DOI:10.1016/j.watres.2008.02.025
  45. Su, H.-C., Liu, Y.-S., Pan C.-G., Chen, J., He, L.-Y. & Ying, G.-G. (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water, Science of the Total Environment, 616–617, pp. 453-461. DOI:10.1016/j.scitotenv.2017.10.318
  46. Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H.U. & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter, Water Research 45, pp. 6347-6354. DOI:10.1016/j.watres.2011.09.017
  47. Vignola, M., Werner,D., Wade, M.J., Meynet, P. & Davenport, R.J. (2018). Medium shapes the microbial community of water filters with implications for effluent quality, Water Research, 129, pp. 499-508. DOI:10.1016/j.watres.2017.09.042.
  48. Waak, M.B., Hozalski, R.M., Hallé, C. & LaPara, T.M. (2019). Comparison of the microbiomes of two drinking water distribution systems - with and without residual chloramine disinfection, Microbiome, 7, 87. DOI:10.1186/s40168-019-0707-5
  49. White, C.P., Debry, R.W. & Lytle, D.A. (2012). Microbial survey of a full-scale, biologically active filter for treatment of drinking water, Applied and Environmental Microbiology, 78, pp. 6390-6394. DOI:10.1128/AEM.00308-12
  50. Yapsakli, K. & Çeçen, F. (2010). Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochemistry, 45, pp. 355-362. DOI:10.1016/j.procbio.2009.10.005
Go to article

Authors and Affiliations

Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Alina Pruss
1
ORCID: ORCID
Dorota Holc
1
ORCID: ORCID
Artur Trzebny
2
ORCID: ORCID
Miroslawa Dabert
2
ORCID: ORCID

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poznań, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Poznań, Poland

This page uses 'cookies'. Learn more