Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The global biofuel industry is characterized by a wide range of legislative and regulatory measures for the development of bioenergy. In order to stimulate the production of biofuels, a set of measures has been developed, including legislative regulation, indicative planning of production volumes, preferential taxation and budget support. Ukraine is among the top ten largest consuming countries of energy resources. Weak and inconsistent state policy in the sphere of biofuels as well as inconsistent legislative provisions regulating activities in the field of production, circulation and use of biofuels, impede the effective development of the biofuel market in Ukraine. The purpose of this article is to determine the components of the system of state regulation of bioenergy and to identify effective mechanisms with regard to improving the legal regulation of the biofuel market in Ukraine. The management processes discussed in this article are provided by several methods, which particularly relate to the functioning of power structures and the end results or goals of the public administration system. Currently, there are significant inconsistencies in the formation and further functioning of the regulatory framework with the legislation of the European Union on the rational use of fuel and energy resources, the limitations of which increase due to inconsistencies between centralized and regional distribution. Therefore, further processes of effective economic development of Ukraine will largely depend on solving the problem of the sustainable provision of available renewable energy resources. Future development of the biofuels market in Ukraine will strongly depend on the institutional and legal conditions in the field of production, circulation and use of biofuels.
Go to article

Authors and Affiliations

Grygorii Kaletnik
1
ORCID: ORCID
Natalia Pryshliak
1
ORCID: ORCID
Michael Khvesyk
2
ORCID: ORCID
Julia Khvesyk
3
ORCID: ORCID

  1. Vinnytsia National Agrarian University, Vinnytsia, Ukraine
  2. National Academy of Sciences in Ukraine, Kiev, Ukraine
  3. Taras Shevchenko National University of Kyiv, Kiev, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The development of the modern economic system is becoming increasingly dependent on the sufficient provision of quality energy resources due to the intensification and transformation of the mechanization and automation of all industries. The growth of the energy needs of society is parallel to the awareness of the need to ensure the environmentally friendly development of society. There are a number of reasons for the search for new energy sources, including the limited reserves of traditional sources, dependence on oil-exporting countries, the greenhouse effect due to the entry of carbon dioxide into the atmosphere and air pollution by harmful gases. The biofuel sector offers the potential for both the development of national agriculture and for increasing its energy independence. Global trends in the rapid development of bioenergy in combination with the systemic crisis of the energy sector in Ukraine have necessitated a detailed study on the possibility of increasing the yield of biofuels from crops. The economic and mathematical modeling of the possibility of increasing the yield of bioethanol and vegetable oil from agricultural crops has been carried out. An economic optimization model has been formed, which made it possible to study an increase in the yield of bioethanol from sugar-containing and starch-containing crops and vegetable oil from oil crops from 1 ton per 1 hectare of area. Also, an assessment of the lost yield for the investigated crops has been carried out using the method of analysis of the functioning environment (Farrell’s method).
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Andrii Sakhno
1
ORCID: ORCID
Dina Tokarchuk
1
ORCID: ORCID
Hanna Shevchuk
1
ORCID: ORCID

  1. Vinnytsia National Agrarian University, Vinnytsia, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Pollution continues to experience a rapid increase so cities in the world have required the use of renewable energy. One of the keys that can prevent climate change with a sustainable system is renewable energy. Renewable energy production, especially for hybrid systems from biomass and wind, is the objective of the analysis in this work. The potential of feedstock for different biofuels such as bio-diesel, bio-ethanol, bio-methane, bio-hydrogen, and biomass is also discussed in this paper. The sustainability of the energy system for the long term is the main focus of work in this investigation. The configuration of the hybrid system between biomass energy and wind energy as well as some problems from various design factors are also presented. Based on the findings, this alternative energy utilization through biomass-based hybrids can save costs and improve environmental conditions, especially for the electrification of off-grid rural areas. This paper will provide important information to policymakers, academics, and investors, especially in carrying out the development and factors related to the utilization of wind-biomass-based hybrid energy systems.
Go to article

Bibliography

  1. Aguilar-Rivera, N., Michel-Cuello, C., Cervantes-Niño, J.J, Gómez-Merino, F.C. Olvera, & Vargas, L.A. (2021). 12 - Effects of public policies on the sustainability of the biofuels value chain. In: Ray RCBT-SB (ed) Applied Biotechnology Reviews. Academic Press, pp 345–379
  2. Al-Ghussain, L., Darwish, Ahmad, A., Abubaker, A. M. & Mohamed, M. A. (2021). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain Energy Technol Assessments, 46:101273. DOI:10.1016/j.seta.2021.101273
  3. Alagumalai, A., Mathimani, T., Pugazhendhi, A., Atabani, A.E., Brindhadevi, K. & Canh, N.D. (2020). Experimental insight into co-combustion characteristics of oxygenated biofuels in modified DICI engine. Fuel, 278:118303. DOI:10.1016/j.fuel.2020.118303
  4. Amjith, L.R. & Bavanish, B. (2021a). Design and analysis of 5 MW horizontal axis wind turbine. Mater Today Proc. 37, pp. 3338–3342.
  5. Amjith, L.R. & Bavanish, B. (2021b). Optimization of horizontal axis wind turbine blade using FEA. Mater Today Proc. 37, pp. 3367–3371. DOI:10.1016/j.matpr.2020.09.215
  6. Arias, D.M., Ortíz-Sánchez, E., Okoye, P.U., Rodríguez-Rangel, H., Ortega, A.B., Longoria, A., Domínguez-Espíndola, R. & Sebastian, P.J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ. 794:148636. DOI:10.1016/j.scitotenv.2021.148636
  7. Arteaga-López, E. & Angeles-Camacho, C. (2021). Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy, 220:119701. DOI:10.1016/j.energy.2020.119701
  8. Arumugam, P., Ramalingam, V. & Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain Energy Technol Assessments, 44:101019. DOI:10.1016/j.seta.2021.101019
  9. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Arch Environ Prot. 48, pp. 3–17. DOI:10.24425/aep.2022.140541
  10. Chen, H., Xia, A., Zhu, X., Huang, Y., Zhu, X. & Liao, Q. (2022). Hydrothermal hydrolysis of algal biomass for biofuels production: A review. Bioresour Technol. 344:126213. DOI:10.1016/j.biortech.2021.126213
  11. Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B. & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. J Hazard Mater, 404:124125. DOI:10.1016/j.jhazmat.2020.124125
  12. Chilakamarry, C.R., Mimi Sakinah, A.M., Zularisam, A.W., Pandey, A. & Dai-Viet, N. Vo. (2021). Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environ Technol Innov. 24:101902. DOI:10.1016/j.eti.2021.101902
  13. Chmielniak, T. (2019). Wind and solar energy technologies of hydrogen production – a review of issues. Polityka Energ - Energy Policy J. 22, pp.5–20.
  14. Chowdhury, H., Loganathan, B., Mustary, I., Alam, F. & Mobil, S.M.A. (2019). Chapter 12 - Algae for biofuels: The third generation of feedstock. [In:] Basile, A., Dalena, F.B.T-S. and TG, F. (eds). Elsevier, pp 323–344
  15. Chudy, R., Szulecki, K., Siry, J. & Grala, R. (2021). Woody Biomass for Energy Production. Acad - Mag Polish Acad Sci. 62–65. DOI:10.24425/academiaPAS.2021.138414
  16. Council GWE (2021) GWEC global wind report 2021. Glob Wind Energy Counc Brussels, Belgium
  17. Das, P.V.P. C., Mathimani, T. & Pugazhendhi, A. (2021a). A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci Total Environ. 766:144213. DOI:10.1016/j.scitotenv.2020.144213
  18. Das, P.V.P.C., Mathimani, T. & Pugazhendhi, A. (2021b). Recent advances in thermochemical methods for the conversion of algal biomass to energy. Sci Total Environ. 766:144608. DOI:10.1016/j.scitotenv.2020.144608
  19. Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A. & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod. 253:119770. DOI:10.1016/j.jclepro.2019.119770
  20. Erdiwansyah, E., Mahidin, M., Husin, H., Nasaruddin, N., Khairil, K., Zaki, M. & Jamaluddin, J. (2020). Investigation of availability, demand, targets, economic growth and development of RE 2017-2050: Case study in Indonesia. International Journal of Coal Science & Technology, 8, pp. 483–499. DOI:10.1007/s40789-020-00391-4
  21. Erdiwansyah, E., Gani, A. M.H.N., Mamat, R. & Sarjono, R.E. (2022). Policies and laws in the application of renewable energy Indonesia: A reviews. AIMS Energy, 10, pp. 23–44. DOI:10.3934/energy.2022002
  22. Erdiwansyah, E., Mahidin, H. H., Nasaruddin, S., Zaki, M. & Muhibbddin. (2021). A critical review of the integration of renewable energy sources with various technologies. Prot Control Mod Power Syst. 6:3. DOI:10.1186/s41601-021-00181-3
  23. Erdiwansyah, E., Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A. & Sardjono, R.E. (2019a). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports, 5, pp.467–479. DOI:10.1016/j.egyr.2019.04.009
  24. Erdiwansyah,E., Mamat, R., Sani, M.S.M. & Sudhakar, K. (2019b). Renewable energy in Southeast Asia: Policies and recommendations. Sci Total Environ. DOI:10.1016/j.scitotenv.2019.03.273
  25. Ergal, İ., Fuchs, W., Hasibar, B., Thallinger, B., Bochmann, G. & Rittmann, S.K-M.R. (2018). The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 36, pp. 2165–2186. DOI:10.1016/j.biotechadv.2018.10.005
  26. Farina, A. & Anctil, A. (2022). Material consumption and environmental impact of wind turbines in the USA and globally. Resour Conserv Recycl. 176:105938. DOI:10.1016/j.resconrec.2021.105938
  27. Ferreira Mota, G., Germano de Sousa, I., Luiz Barros de Oliveira, A., Cavalcante, A.L.G., Moreira, K.S., Cavalcante, F.T.T., Erick da Silva Souza, J., Rafael de Aguiar Falcão, I., Rocha, T.G., Valério, R.B.R., Cristina Freitas de Carvalho, S., Neto, F.S., Serpa, J.F., Karolinny Chaves de Lima, R., Cristiane Martins de Souza, M. & José C.S. dos Santos. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res. 62:102616. DOI:10.1016/j.algal.2021.102616
  28. Gambelli, D., Alberti, F., Solfanelli, F., Vairo, D. & Zanoli, R. (2017). Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy, 103, pp. 165–178. DOI:10.1016/j.enpol.2017.01.013
  29. Gaonkar, R.U. & Hegde, R.N. (2022). An investigation on the performance and viability of a hybrid twisted blade profile for a horizontal axis micro wind turbine. Mater Today Proc. 49, pp. 1200–1209. DOI:10.1016/j.matpr.2021.06.288
  30. Ge, S., Manigandan, S., Mathimani, T., Basha, S., Xia, C., Brindhadevi, K., Unpaprom, Y., Whangchai, K. & Pugazhendhi, A. (2022). An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Sci Total Environ. 813:152418
  31. Ge, S., Yek, P.N.Y., Cheng, Y.W., Xia, C., Mahari, W.A.W., Liew, R.K., Peng, W., Yuan, T.Q., Tabatabaei, M., Aghbashlo, M., Sonne, C. & Lam S.S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew Sustain Energy Rev. 135:110148. DOI:10.1016/j.rser.2020.110148
  32. Ghosh, M., Ghosh, A. & Roy, A. (2020). Renewable and Sustainable Materials in Automotive Industry. [In:] Hashmi, S., Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 162–179
  33. Glivin, G., Edwin, M. & Sekhar, S.J. (2018). Techno‐economic studies on the influences of nonuniform feeding in the biogas plants of educational institutions. Environ Prog Sustain Energy, 37, pp. 2156–2164
  34. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P.C. & Sekhar, J. (2021a). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302:121153. DOI:10.1016/j.fuel.2021.121153
  35. Glivin, G. & Sekhar, J. (2020a). Simulation of anaerobic digesters for the non-uniform loading of biowaste generated from an educational institution. Lat Am Appl Res Int J. 50, pp. 33–40.
  36. Glivin, G. & Sekhar, S.J. (2020b). Waste potential, barriers and economic benefits of implementing different models of biogas plants in a few Indian educational institutions. BioEnergy Res. 13, pp. 668–682.
  37. Glivin, G., Vairavan, M., Manickam, P. & Santhappan, J.S. (2021b). Techno Economic Studies on the Effective Utilization of Non-Uniform Biowaste Generation for Biogas Production. Anaerob Dig Built Environ. 81.
  38. Goh, Y., Yap, S.P. & Tong, T.Y. (2020). Bamboo: The Emerging Renewable Material for Sustainable Construction. [In:] Hashmi S, Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 365–376
  39. Guo, T., Guo, X., Gao, Z., Li, S., Zheng, X., Gao, X., Li, R., Wang, T., Li, Y. & Li, D. (2021). Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine. Appl Energy, 303:117590. DOI:10.1016/j.apenergy.2021.117590
  40. Gururani, P., Bhatnagar, P., Bisht, B., Jaiswal, K.K., Kumar, V., Kumar, S., Vlaskin, M.S., Grigorenko, A.V. & Rindin, K.G. (2022). Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel, 316:123351. DOI:10.1016/j.fuel.2022.123351
  41. GWEC (2021). GWEC forecasts 817 GW of wind power in 2021. https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-2021/#:~:text=The global cumulative installed wind,153.5 GW in 2017-2021.
  42. Heffron, R.J., Körner, M-F., Sumarno, T., Wagner, J., Weibelzahl, M. & Fridgen, G. (2022). How different electricity pricing systems affect the energy trilemma: Assessing Indonesia’s electricity market transition. Energy Econ, 107:105663. DOI:10.1016/j.eneco.2021.105663
  43. Hien, P.D. (2019) Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries. Energy Policy, 130, pp. 409–417. DOI:10.1016/j.enpol.2019.04.025
  44. Indonesia C (2021) RI Targets Renewable Energy to Reach 50% by 2050
  45. International Energy Agency IEA, Bank W (2014) Sustainable Energy for All 2013-2014: Global Tracking Framework Report. The World Bank
  46. Jurasz, J. & Mikulik, J. (2017) Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective. Bull. Polish Acad. Sci. Tech. Sci. 65, pp. 859–869
  47. Kalinichenko, A. & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Arch Environ Prot. 45, pp. 68–83. DOI:10.24425/aep.2019.126423
  48. Kandasamy, S., Bhuvanendran, N., Narayanan, M. & He, Z. (2022). Chapter 13 - Thermochemical conversion of algal biomass. [In:] El-Sheekh, M., Abomohra AE-FBT-H of AB (eds). Elsevier, pp. 281–302
  49. Kandasamy, S., Devarayan, K., Bhuvanendran, N., Zhang, B., He, Z., Narayanan, M., Mathimani, T., Ravichandran, S. & Pugazhendhi, A. (2021). Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J Environ Chem Eng. 9:105321. DOI:10.1016/j.jece.2021.105321
  50. Karpagam, R., Jawaharraj, K. & Gnanam, R. (2021). Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 766:144236. DOI:10.1016/j.scitotenv.2020.144236
  51. Kim, B., Heo, H.Y., Son, J., Yang, J., Chang, Y.K., Lee, J.H. & Lee, J.W. (2019). Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Res. 41:101557. DOI:10.1016/j.algal.2019.101557
  52. Klaimi, R., Alnouri, S.Y. & Stijepović, M. (2021). Design and thermo-economic evaluation of an integrated concentrated solar power – Desalination tri-generation system. Energy Convers Manag. 249:114865. DOI:10.1016/j.enconman.2021.114865
  53. Kulyal, L. & Jalal, P. (2022). Bioenergy, a finer alternative for India: Scope, barriers, socio-economic benefits and identified solution. Bioresour Technol Reports, 17:100947. DOI:10.1016/j.biteb.2022.100947
  54. Kumar, G., Cho, S-K., Sivagurunathan, P., Anburajan, P., Mahapatra, D.M., Park, J.H., Pugazhendhi, A. (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrogen Energy, 43: pp. 19885–19901. DOI:10.1016/j.ijhydene.2018.09.040
  55. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S.K., Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Sci Total Environ. 722:137795. DOI:10.1016/j.scitotenv.2020.137795
  56. Kumar Sharma, A., Kumar Ghodke, P., Manna, S. & Chen, W-H. (2021). Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresour Technol. 342:126057. DOI:10.1016/j.biortech.2021.126057
  57. Lagdani, O., Tarfaoui, M., Nachtane, M., Trihi, M. & Laaouidi, H. (2021). Modal analysis of an iced offshore composite wind turbine blade. Wind Eng. 0309524X211011685
  58. Lin, C-Y. & Lu, C. (2021). Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew Sustain Energy Rev. 136:110445. DOI:10.1016/j.rser.2020.110445
  59. Liu, H., Li, Y., Duan, Z. & Chen, C. (2020). A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. 224:113324. DOI:10.1016/j.enconman.2020.113324
  60. Malik, P., Awasthi, M. & Sinha, S. (2022). A techno-economic investigation of grid integrated hybrid renewable energy systems. Sustain Energy Technol Assessments, 51:101976. DOI:10.1016/j.seta.2022.101976
  61. Mathimani, T. & Mallick, N. (2019). A review on the hydrothermal processing of microalgal biomass to bio-oil - Knowledge gaps and recent advances. J Clean Prod. 217, pp. 69–84. DOI:10.1016/j.jclepro.2019.01.129
  62. Mathimani, T., Sekar, M., Shanmugam, S., Sabir, J.S.M., Chi, N.T.L. & Pugazhendhi, A. (2021). Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ. 771:144700. DOI:10.1016/j.scitotenv.2020.144700
  63. Micallef, D. & Rezaeiha, A. (2021). Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew Sustain Energy Rev. 152:111696. DOI:10.1016/j.rser.2021.111696
  64. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019) Ammonia emission from livestock productionin Poland and its regional diversity in the years 2005–2017. Arch Environ Prot. 45, pp. 114–121. DOI:10.24425/aep.2019.130247
  65. Mori, A. (2021) 2 Struggles for energy transition in the electricity system in Asian countries. China’s Carbon-Energy Policy Asia’s Energy Transit Carbon Leakage, Relocat Halos 23
  66. Moshood, T.D., Nawanir, G. & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges, 5:100207. DOI:10.1016/j.envc.2021.100207
  67. Musharavati, F., Khanmohammadi, S. & Pakseresht, A. (2021). A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization. Energy Convers Manag. 230:113829. DOI:10.1016/j.enconman.2021.113829
  68. Narwane, V.S., Yadav, V.S., Raut, R.D., Narkhede, B.E. & Gardas, B.B. (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. Renew Energy 164, pp. 298–309. DOI:10.1016/j.renene.2020.09.077
  69. Neupane, D., Kafle, S., Karki, K.R., Kim, D.H. & Pradhan, P. (2022). Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renew Energy, 181, pp. 278–291. DOI:10.1016/j.renene.2021.09.027
  70. Oliveira, C.Y.B., D’Alessandro, E.B., Antoniosi Filho, N.R., Lopes, R.G. & Derner, R.B. (2021). Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci Total Environ. 759:143476. DOI:10.1016/j.scitotenv.2020.143476
  71. Olsztyńska, I. (2019). Biomass in the fuel mix of the Polish energy and heating sector. Polityka Energ - Energy Policy J. 22, pp. 99–118
  72. Ong, E.S., Rabbani, A.H., Habashy, M.M., Abdeldayem, O.M., Al-Sakkari, E.G. & Rene, E.R. (2021). Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Environ Pollut. 291:118160. DOI:10.1016/j.envpol.2021.118160
  73. Openshaw, K. (2010). Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass and Bioenergy, 34, pp. 365–378. DOI:10.1016/j.biombioe.2009.11.008
  74. Ortolani, A., Persico, G., Drofelnik, J., Jackson, A. & Campobasso, M.S. (2020). Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency-domain Navier-Stokes CFD and blade element momentum theory. Journal of Physics: Conference Series. IOP Publishing, p 52016
  75. Outlook IIET. (2021). Tracking Progress of Energy Transition in Indonesia. Jakarta Inst Essent Serv Reform
  76. Pichika, S.V.V.S.N., Yadav, R., Geetha Rajasekharan, S., Praveen, H.M. & Inturi, V. (2022). Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme. Appl Acoust. 187:108505. DOI:10.1016/j.apacoust.2021.108505
  77. Pitchia Krishnan, B., Mathanbabu, M., Sathyamoorthy, G., Gokulnath, K. & Kumar, L.G.S. (2021). Performance estimation and redesign of horizontal axis wind turbine (HAWT) blade. Mater Today Proc. 46, pp. 8025–8031. DOI:10.1016/j.matpr.2021.02.777
  78. Pourrajabian, A., Dehghan, M. & Rahgozar, S. (2021). Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustain Energy Technol Assessments, 44:101022. DOI:10.1016/j.seta.2021.101022
  79. Reilly, L.A. (2020). Exploration of Model-Resolution Dependence of Forecasted Wind Hazards for Small Unmanned Aircraft System Operations. The University of North Dakota ProQuest Dissertations Publishing,   2020. 28085974.
  80. Saha, R., Bhattacharya, D. & Mukhopadhyay, M. (2022). Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers Manag. X 13:100153. DOI:10.1016/j.ecmx.2021.100153
  81. Sameeroddin, M., Deshmukh, M.K.G., Viswa, G. & Sattar, M.A. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Mater Today Proc. DOI:10.1016/j.matpr.2021.01.746
  82. Sangeetha, T., Rajneesh, C.P. & Yan, W-M. (2020). 15 - Integration of microbial electrolysis cells with anaerobic digestion to treat beer industry wastewater. [In:] Abbassi, R., Yadav, A.K., Khan, F. & Garaniya, VBT-IMFC for WT (eds). Butterworth-Heinemann, pp. 313–346
  83. Saravanan, A.P., Pugazhendhi, A. & Mathimani, T. (2020). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel 272:117635. DOI:10.1016/j.fuel.2020.117635
  84. Sellevold, E., May, T., Gangi, S., Kulakowski, J., McDonnell, I., Hill, D. & Grabowski, M. (2020). Asset tracking, condition visibility and sustainability using unmanned aerial systems in global logistics. Transp Res Interdiscip Perspect. 8:100234. DOI:10.1016/j.trip.2020.100234
  85. Shakya, S. (2020). Performance analysis of wind turbine monitoring mechanism using integrated classification and optimization techniques. J Artif Intell. 2, pp. 31–41.
  86. Shanmugam, S., Mathimani, T., Rene, E.R., Geo, V.E., Arun, A., Brindhadevi, K. & Pugazhendhi, A. (2021a). Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects. Int J Hydrogen Energy, 46, pp. 11201–11216. DOI:10.1016/j.ijhydene.2020.10.132
  87. Shanmugam, S., Sekar, M., Sivaramakrishnan, R., Raj, T., Ong, E.S., Rabbani, A.H., Rene, E.R., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2021b). Pretreatment of second and third generation feedstock for enhanced biohythane production: Challenges, recent trends and perspectives. Int J Hydrogen Energy, 46, pp. 11252–11268. DOI:10.1016/j.ijhydene.2020.12.083
  88. Sharma, M., Singh, J., Baskar, C. & Kumar, A. (2019). A comprehensive review of renewable energy production from biomass-derived bio-oil. Biotechnol J Biotechnol Comput Biol Bionanotechnol, 100:
  89. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C. & Pugazhendhi, A. (2022). Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci Total Environ, 808:151969. DOI:10.1016/j.scitotenv.2021.151969
  90. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Arch Environ Prot. 45, pp. 126–135. DOI:10.24425/aep.2019.126427
  91. Solomin, E. V., Terekhin, A.A., Martyanov, A.S., Shishkov, A.N., Kovalyov, A.A., Ismagilov, D.R. & Ryavkin, G.N. (2022). Horizontal axis wind turbine yaw differential error reduction approach. Energy Convers Manag. 254:115255. DOI:10.1016/j.enconman.2022.115255
  92. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N. & Aminabhavi, T.M. (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut. 276:116731. DOI:10.1016/j.envpol.2021.116731
  93. Sudhakar, M.P., Kumar, B.R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod. 228, pp. 1320–1333. DOI:10.1016/j.jclepro.2019.04.287
  94. Sutherland, D.L., McCauley, J., Labeeuw, L., Ray, P., Kuzhiumparambil, U., Hall, C., Doblin, M. & Nguyen, L.N. (2021). How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr Res Environ Sustain. 3:100050. DOI:10.1016/j.crsust.2021.100050
  95. Ta, D-T., Lin, C-Y., Ta, T-M-N. & Chu, C-Y. (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresour Techno.l 317:123986. DOI:10.1016/j.biortech.2020.123986
  96. Tarique, J., Sapuan, S.M., Khalina, A., Sherwani, S.F.K., Yusuf, J. & Ilyas, R.A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J Mater Res Technol. 13, pp. 1191–1219. DOI:10.1016/j.jmrt.2021.05.047
  97. Thanarasu, A., Periyasamy, K. & Subramanian, S. (2022). An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere, 287:131886. DOI:10.1016/j.chemosphere.2021.131886
  98. Thanigaivel, S., Priya, A.K., Dutta, K., Rajendran, S. & Vasseghian, Y. (2022) Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel, 312:122827. DOI:10.1016/j.fuel.2021.122827
  99. Tuan Hoang, A. & Viet Pham, V. (2021). 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew Sustain Energy Rev. 148:111265. DOI:10.1016/j.rser.2021.111265
  100. Update AM (2017) Global wind report. Glob Wind Energy Council.
  101. Velusamy, K., Devanand, J., Senthil Kumar, P., Soundarajan, K., Sivasubramanian, V., Sindhu, J. & Vo, D.V.N. (2021). A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 306:121632. DOI:10.1016/j.fuel.2021.121632
  102. Wang, L., Liu, X. & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew Sustain Energy Rev. 64, pp. 195–210. DOI:10.1016/j.rser.2016.06.007
  103. Whangchai, K., Mathimani, T., Sekar, M., Shanmugam, S., Brindhadevi, K., Hung, T.V., Chinnathambi, A., Alharbi, S.A. & Pugazhendhi, A. (2021). Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng. 9:105482. DOI:10.1016/j.jece.2021.105482
  104. Wicker, R.J., Kumar, G., Khan, E. & Bhatnagar, A. (2021). Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J. 415:128932. DOI:10.1016/j.cej.2021.128932
  105. Wijayasekera, S.C., Hewage, K., Siddiqui, O., Hettiaratchi, P. & Sadiq, R. (2022). Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability. Int J Hydrogen Energy, 47, pp. 5842–5870. DOI:10.1016/j.ijhydene.2021.11.226
  106. Wójcik, M. & Stachowicz, F. (2019). Influence of sewage sludge conditioning with use of biomass ash on its rheological characteristics. Arch Environ Prot. 45, pp. 92–102. DOI:10.24425/aep.2019.126425
  107. Wu, L., Wei, W., Song, L., Woźniak-Karczewska, M., Chrzanowski, L. & Ni, B.J. (2021). Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renew Sustain Energy Rev. 150:111448. DOI:10.1016/j.rser.2021.111448
  108. Xu, L., Zhang, Q. & Shi, X. (2019). Stakeholders strategies in poverty alleviation and clean energy access: A case study of China’s PV poverty alleviation program. Energy Policy, 135:111011. DOI:10.1016/j.enpol.2019.111011
  109. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C. & Li, Bin. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol. 301:122804. DOI:10.1016/j.biortech.2020.122804
  110. Zhang, L., Wang, J., Niu, X. & Liu, Z. (2021). Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection. Appl Energy, 301:117449. DOI:10.1016/j.apenergy.2021.117449
  111. Zhao, S., Yao, L., He, H., Yiping, Z., Lei, H., Yujia, Z., Yajing, Y. & Jianli, J. (2019). Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag. Arch Environ Prot. 45, pp. 84–90. DOI:10.24425/aep.2019.127983
  112. Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C. & Lu, C. (2021). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresour Technol. 126595. DOI:10.1016/j.biortech.2021.126595
  113. Zhuang, X., Liu, J., Wang, C., Zhang, Q. & Ma, L. (2022). A review on the stepwise processes of hydrothermal liquefaction (HTL): Recovery of nitrogen sources and upgrading of biocrude. Fuel, 313:122671. DOI:10.1016/j.fuel.2021.122671
Go to article

Authors and Affiliations

E. Erdiwansyah
ORCID: ORCID
Asri Gani
1 5
ORCID: ORCID
Rizalman Mamat
2
M. Mahidin
ORCID: ORCID
K. Sudhakar
3
ORCID: ORCID
S.M. Rosdi
4
Husni Husin
1
ORCID: ORCID

  1. Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  2. College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
  3. Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India
  4. Politeknik Sultan Mizan Zainal Abidin, Terengganu
  5. Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The production of biofuels using wastewater as a microalgae culture medium is a little explored technology, but with potential for success. In order to contribute to the knowledge of these technologies and their technical feasibility for microalgae growth, in this work the Chlorella sp. strain was cultivated in two types of effluents generated in an experimental farm located in eastern Colombia, before and after a biological treatment process. The consumption of the main nutrients that regulate growth and lipid production was evaluated, in order to extract, quantify, characterize and convert them into biodiesel. The results showed that Chlorella sp. growth and lipid production is more favourable in R2 medium of treated water than in R1 medium of raw water, mainly due to phosphorus limitation and higher N-NO3 concentration in R2 compared to R1. In the R2 medium culture, a percentage of 42.54% of long-chain fatty acids was found, which is necessary to obtain a high quality biodiesel. Finally, the best transesterification experiment allowed reaching a fatty acid methyl esters (FAME) percentage of 90.1 ± 2.7%. In general, the results demonstrated the potential viability of using the wastewater generated in the San Pablo farm to produce biomass with lipid content to obtain biodiesel, finding that where the concentration of nutrients, mainly nitrogen, has a great influence on the microalgal metabolism for lipid accumulation.
Go to article

Authors and Affiliations

Nestor Andres Urbina-Suarez
1
ORCID: ORCID
Andres Fernando Barajas-Solano
1
ORCID: ORCID
Janet Bibiana Garcia-Martinez
1
ORCID: ORCID
German Luciano Lopez-Barrera
1
ORCID: ORCID
Angel Dario Gonzalez-Delgado
2
ORCID: ORCID

  1. Francisco de Paula Santander University, Cúcuta, Colombia
  2. University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.
Go to article

Authors and Affiliations

Jarosław Milewski
Wojciech Bujalski
Janusz Lewandowski
Download PDF Download RIS Download Bibtex

Abstract

The energy strategy of Ukraine until 2035 forecasts that 12% of energy production will be from biomass. Currently, the share of biomass energy in the total structure of energy supplies in Ukraine is only 2%. After the Russian invasion of Ukraine, the diversification of the energy sector became extremely important. Rising fuels prices, problems with the fuel supply and the availability of agricultural biomass make biofuels an attractive alternative to fossil fuels. Ukraine has the potential to develop the production and use of all types of biofuels: solid, liquid and gaseous. Currently, the existing capacity and feedstock potential of biofuel production in Ukraine have not been fully realized. The experience of leading countries in the field of biofuel production shows that at the basis of the governments’ growing commitment to developing the biofuel sector is a desire to diversify the energy supply, create new jobs, improve energy security and reduce carbon dioxide emissions and other gases that contribute to global warming. The aim of the study is to construct the theoretical and practical principles of the implementation of the strategy for biofuel production from agrobiomass in Ukraine. We came to the conclusion that the trigger for the development of the bioenergy industry is the adoption at the state level of the strategy for the production of biofuels from agrobiomass. The implementation of the strategy for biofuel production will help to increase the production and use of biofuels that will strengthen Ukraine’s energy sector, help to stabilize fuel prices and will have a positive impact on the economic development of the country.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Lyudmila Pronko
1
Kateryna Mazur
1
Yana Palamarenko
2
ORCID: ORCID

  1. Management and Law, Vinnytsia National Agrarian University, Ukraine
  2. Economy and Business, Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the first stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the effectiveness of the process than the type of straw used.
Go to article

Authors and Affiliations

Małgorzata Hawrot-Paw
1
Adam Koniuszy
1
Grzegorz Zając
2
Joanna Szyszlak-Bargłowicz
2
Julia Jaklewicz
1

  1. West Pomeranian University of Technology, Department of Renewable Energy Engineering, Poland
  2. University Of Life Sciences in Lublin, Department of Power Engineering and Transportation, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper focused on the co-production of high-value-added product thermostable C-phycocyanin (C-PC) and biomass, further utilized in pyrolysis. The photobiosynthesis of CPC was carried out by the thermophilic cyanobacteria Synechococcus PCC6715 cultivated in the helical and flat panel photobioreactors (PBR). Despite the application of different inorganic carbon sources, both PBRs were characterized by the same growth efficiency and similar C-PC concentration in biomass. To release the intracellular C-PC the biomass was concentrated and disintegrated by the freeze-thaw method. The crude C-PC was then further purified by foam fractionation (FF), aqueous two-phase extraction (ATPE), membrane techniques (UF) and fast protein liquid chromatography (FPLC). Each of the tested methods can be used separately; however, from a practical and economic point of view, a three-stage purification system (FF, FPLC and UF) was proposed. The purity ratio of the final C-PC was about 3.9, which allows it to be classified as a reactive grade. To improve the profitability of 3G biorefinery, the solid biomass residue was used as a substrate to pyrolysis process, which leads to production of additional chemicals in the form of oils, gas (containing e.g. H 2) and biochar.
Go to article

Authors and Affiliations

Stanisław Ledakowicz
1
ORCID: ORCID
Anna Antecka
1
ORCID: ORCID
Pawel Gluszcz
1
ORCID: ORCID
Anna Klepacz-Smolka
1
ORCID: ORCID
Damian Pietrzyk
1
Rafal Szelag
1
Radoslaw Slezak
1
ORCID: ORCID
Maurycy Daroch
2
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
  2. School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Download PDF Download RIS Download Bibtex

Abstract

Ukraine’s commitments under the international framework agreements to reduce CO 2 emissions and the Global Climate Change Initiative provide the basis for the implementation of bioeconomy mechanisms in the country’s Energy Development Strategy until 2035. One of the goals of this strategy is to reduce the consumption of fossil fuels and switch to alternative fuels. The agriculture of Ukraine is assigned the leading role in ensuring the replacement of fossil fuels with biomass of plant origin. The bioenergy potential of the agro-industrial sector of the economy requires extensive research in order to determine and integrate it into the country’s energy sector. The essential characteristics of energy efficiency in the context of the cluster model of organizing the activities of enterprises for the production of biofuel as stable interactions of geographically concentrated economic entities are investigated in this article. Peculiarities of introduction of bioenergy clusters as stable interactions of geographically concentrated business entities (enterprises, suppliers and organizations, including scientific institutions, etc.) have been determined according to a pre-defined and agreed development strategy for all participants without exception at the stage of formation of which the competitive environment is supported taking into account the energy, ecological and socio-economic parameters of the sustainable development of territories. A model of a territorial bioenergy cluster for the production of biofuels from crops and waste was formed and the advantages of creating bioenergy clusters were analyzed. Furthermore, a matrix of a PEST analysis of the formation of bioenergy clusters in Ukraine was formed.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Valerii Bondarenko
2
ORCID: ORCID
Serhii Sokoliuk
3
ORCID: ORCID
Oleksandr Brovarets
4
ORCID: ORCID

  1. Vinnytsia National Agrarian University, Vinnytsia, Ukraine
  2. Department of Marketing and International Trade, National University of Life and Environmental Sciences of Ukraine, Ukraine
  3. Uman National University of Horticulture, Uman, Ukraine
  4. Kyiv Institute of Business and Law, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In 2008, the European Union adopted the climate and energy package. It foresees the three most important goals to achieve by 2020 in the field of energy: 20% reduction in greenhouse gas emissions, 20% share of energy from renewable sources in total energy consumption in the EU, 20% increase in EU energy efficiency. Therefore, individual countries were obliged to move away from fossil fuels for renewable energy production. Depending on the capabilities of each country and the development of renewable energy, various goals have been set for individual countries. For Poland, the share of RES energy in total energy consumption has been set at 15% (Directive 2009). The Polish energy policy until 2030 includes state strategies in the field of implementation of tasks and objectives in the area of energy resulting from the need to build national security and EU regulation. The challenges of the current national energy industry include increasing demand for energy and implementation of international commitments in the area of environmental and climate protection (Policy 2009). Contemporary domestic energy is characterized by a high share of fossil fuels, mainly coal, in the production of electricity and heat, and the different share of RES energy in individual technologies and energy sectors. Poland has significant natural resources, which are a source of biomass for energy purposes. Large energy units dominate in the national consumption of biomass while the share of heating plants is still insignificant (Olsztyńska 2018). The aim of the article is to analyze, based on available data and own observations of the author, the share of biomass in the national energy and heat, as well as defining factors affecting the level of biomass use in the area of Polish power industry.

Go to article

Authors and Affiliations

Ilona Olsztyńska
Download PDF Download RIS Download Bibtex

Abstract

This paper considers modern production technologies of solid biofuels from the point of view of compliance with labor protection and environmental safety measures. The relevance of the study lies in the fact that environmental safety, in our opinion, supported by the results of the analysis of literature sources and their research, covers almost all residential areas of the community. The purpose of this scientific research is to develop theoretical foundations and practical management solutions to ensure environmental safety when producing solid biofuels. Thematic works of domestic and foreign specialists form the theoretical and methodological basis of the research. The following methods of scientific research were used as objective methods: logical analysis of knowledge, scientific generalization, deduction and analogies. The practical significance of the obtained results lies in the application of established models and emergency situations as well as environmental safety in practice. An environmental safety system was developed that regulates the state in its natural conditions based on established production control models for solid biofuels. The article presents recommendations for students of higher educational institutions (technical areas) to study materials on labor protection and the environmental safety of our time.
Go to article

Authors and Affiliations

Larysa E. Piskunova
1
ORCID: ORCID
Oleksandr I. Yeremenko
1
ORCID: ORCID
Tetiana O. Zubok
1
ORCID: ORCID
Hanna A. Serbeniuk
1
ORCID: ORCID
Zoia V. Korzh
1
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The beginning of the XXI century was marked by a transitional period in the formation of the world energy system. The issue of energy saving is characterized by significant diversity and is a necessary strategic direction for the efficient use of production capacity with optimal energy costs. Intensive economic development and the use of non-renewable natural resources are currently of concern due to the danger of disturbing the ecological balance in the environment due to the burning of huge amounts of fossil fuels and emissions of various harmful substances. Biofuel production is becoming an alternative to traditional energy and can be a guarantee of solving problems of energy efficient and environmentally friendly development of rural areas. This work is a continuation of research work on the efficiency of biofuels production from energy crops and waste. The aim of the research is to assess the importance of biofuels production from the energy, economic and social aspects for sustainable development of rural areas of the world and Ukraine in particular. The conducted SWOT-analysis made it possible to determine the strategic directions of world biofuels production development. The results showed that biofuels production has a significant potential to decarbonize the economy, reduce reliance on crude oil, improve the environment by reducing emissions, create new “green” jobs in rural areas. The combination of social, economic and energy benefits will have a synergistic effect.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Dina Tokarchuk
1
ORCID: ORCID
Hanna Shevchuk
1
ORCID: ORCID

  1. Management and Law, Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Today, ensuring energy security is becoming increasingly important. It has been proven that agricultural crops are currently the dominant feedstock for the production of biofuels and first-generation biofuels dominate both in Ukraine and around the world and can potentially pose a threat to food security. The research aims to analyze the state of food security in Ukraine in order to estimate the economic basis for the use of surplus food crops for biofuel production for substantiating the required areas for growing energy crops in the volumes that could ensure balance between the food and energy use of crops. An analysis of food security of Ukraine showed that the agricultural sector provides the population with most of the necessary food products, but it is advisable to modernize the food supply standards. It has been proven that crops that can be used for the production of first-generation biofuels in Ukraine are produced in sufficient quantities to ensure food security, and they are exported without compromising the food security of the state and export potential.
As calculated, Ukraine can use about 11–12 million hectares of arable land for growing energy crops with their subsequent processing into biofuels. It has been proven that in the future in Ukraine, it is recommended to develop the production of biofuels (biogas and solid biofuels) from crop and livestock waste, as well as organic waste from processing enterprises. This would not pose a threat to food security and would address a number of environmental issues related to waste disposal. Today, under the condition of war in Ukraine, food security and energy independence are priority issues and energy diversity, including the production and consumption of biofuels, is a top factor for further development.
Go to article

Authors and Affiliations

Dina Tokarchuk
1
ORCID: ORCID
Natalia Pryshliak
1
ORCID: ORCID
Sergiy Berezyuk
1
Andrii Shynkovych
1
ORCID: ORCID

  1. Vinnytsia National Agrarian University, Vunnytsia, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The specificities of the sowing and harvesting campaign of 2022–2023 in Ukraine and its impact on the world energy and food market in the conditions of the full-scale invasion of Ukraine by the Russian Federation are analyzed in this paper. The purpose of the study is to determine the role of Ukraine in ensuring energy and global food security, to analyse the situation regarding the possibility of conducting a sowing and harvesting campaign in Ukraine in the conditions of hostilities and to provide recommendations on preserving the potential of Ukraine in meeting the energy and food needs of Ukraine and other countries. The provided analysis of data of the Food and Agriculture Organization (FAO), the State Customs Service and the State Statistics Service of Ukraine has confirmed the role of Ukraine in ensuring energy and food safety of many countries in the Middle East and North Africa, which are the main importers of agricultural products from Ukraine. It has been found that the 2022–2023 sowing and harvesting campaign in Ukraine is facing a number of problems, including: military operations over a large area, which makes it impossible to conduct agrotechnical activities in a timely manner; a lack of seed material due to its systematic destruction by the Russian military; problems with the supply of fuel and lubricants (systematic shelling and destruction of oil bases throughout Ukraine); problems with the supply of fertilizers; bombing wheat fields and food warehouses; blocking Ukrainian sea ports; mobilization of a significant part of the population in the ranks of the Armed Forces of Ukraine; logistics problems. The study proposes recommendations to preserve the potential for meeting energy and food needs in Ukraine and for countries importing agricultural products from Ukraine.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Vitalii Dankevych
2
ORCID: ORCID
Dina Tokarchuk
1
ORCID: ORCID
Oleksandr Shpykuliak
3
ORCID: ORCID

  1. Department of Administrative Management and Alternative Energy Sources, Vinnytsia National Agrarian University, Vunnytsia, Ukraine
  2. Faculty of Law Public Administration and National Security, Polissya National University, Ukraine
  3. National Scientific Center “Institute of Agrarian Economics”, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In these times of the climate crisis surrounding us, the improvement of technologies responsible for the emission of the largest amounts of greenhouse gases is necessary and increasingly required by top-down regulations. As the sector responsible to a large extent for global logistics and supply chains, the fuel sector is one of the most studied in terms of reducing its harmful impact. The development of the next generations of fuels and biofuels, produced by companies using increasingly modern, cleaner and sustainable technologies, is able to significantly reduce the amount of greenhouse gases released into the atmosphere. In this case, the most effective solution seems to be the use of closed loops. Due to their low, often zero emission balance and the possibility of using waste to produce materials that can be reused, a circular economy is used in many sectors of the economy, while ensuring the emission purity of technological processes. One of the innovative solutions proposed in recent years is the installation created as part of the BioRen project, implemented under the Horizon 2020 program. The cooperation of European institutes with companies from the SME sector has resulted in the creation of an experimental cycle of modern technologies for the production of second-generation biofuels. The project involves the processing of municipal solid waste into second-generation drop-in biofuels. The entire process scheme assumes, in addition to the production of biofuels, the processing of inorganic fractions, the production of carbon material for the production of thermal energy, and the simultaneous treatment of wastewater.
Go to article

Authors and Affiliations

Piotr Jan Plata
1
ORCID: ORCID
Agnieszka Nowaczek
2
ORCID: ORCID

  1. Chemistry Department, Warsaw University of Technology, Warsaw, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the environmental impacts of the organic fraction of municipal solid waste (OFMSW) treatment and its conversion in anaerobic digestion to glycerol tertiary butyl ether (GTBE) were assessed. The production process is a part of the innovative project of a municipal waste treatment plant. The BioRen project is funded by the EU’s research and innovation program H2020. A consortium has been set up to implement the project and to undertake specific activities to achieve the expected results. The project develops the production of GTBE which is a promising fuel additive for both diesel and gasoline. It improves engine performance and reduces harmful exhaust emissions. At the same time, the project focuses on using non-recyclable residual organic waste to produce this ether additive.

The aim of this paper is the evaluation through Life Cycle Assessment of the environmental impact GTBE production in comparison with a production of other fuels. To quantify the environmental impacts of GTBE production, the ILCD 2011 Midpoint+ v.1.10 method was considered. The study models the production of GTBE, including the sorting and separation of municipal solid waste (MSW), pre-treatment of organic content, anaerobic fermentation, distillation, catalytic dehydration of isobutanol to isobutene, etherification of GTBE with isobutene and hydrothermal carbonization (HTC).

The results indicate that unit processes: sorting and hydrothermal carbonization mostly affect the environment. Moreover, GTBE production resulted in higher environmental impact than the production of conventional fuels.

Go to article

Authors and Affiliations

Magdalena Muradin
Download PDF Download RIS Download Bibtex

Abstract

Energy production from renewable sources is one of the main ways to fight against global warming. Anaerobic digestion process can be used to produce biogas containing methane. In the light of the growing demand for substrates, a variety of raw materials are required. These substrates should be suitable for anaerobic digestion, and processing them need to provide the desired amount of energy.
This paper aims to discuss the agricultural biogas market in Poland, its current state, and the possibility of development during energy transformation, in particular in terms of using waste as a substrate for energy production. In February 2022, there were 130 agricultural biogas plants registered in Poland. On the other hand, in 2020, 4,409,054.898 Mg of raw materials were used to produce agricultural biogas in Poland. Among all the substrates used, waste played a special role.
With the right amount of raw materials and proper management of a biogas plant, it is possible to produce electricity and provide stable and predictable heat supply. Bearing in mind the development of the Polish and European biogas markets, attention should be paid to ensure access to raw materials from which chemical energy in the form of biogas can be generated. Due to limited access to farmland and the increasing demand for food production, one should expect that waste will be increasingly often used for biogas production, especially that with high energy potential, such as waste related to animal production and the meat industry.
Go to article

Authors and Affiliations

Wojciech Czekała
1
ORCID: ORCID
Jakub Pulka
1
ORCID: ORCID
Tomasz Jasiński
2
Piotr Szewczyk
3
Wiktor Bojarski
1
Jan Jasiński
1

  1. Poznań University of Life Sciences, Faculty of Environmental and Mechanical Engineering, Department of Biosystems Engineering, 50 Wojska Polskiego St, 60-627 Poznań, Poland
  2. WP2 Investments Sp. z o.o., Kąty Wrocławskie, Poland
  3. The Municipal Association “Clean Town, Clean Municipality”, Kalisz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article describes the results of combustion of a mixture of PCOME (purified cooking oil esters) and bioethanol in the compression ignition Perkins 1104C-44 engine. The engine was prepared for use with the classic type of fuel – diesel oil, not biofuels. That is why bioethanol was added to ester in tests so that the basic physicochemical properties of the obtained mixture were as close as possible to diesel fuel. Thanks to this, the use of such fuel in the future would not require reworking or adjusting the settings of selected elements of the engine power supply system. During this case study, the engine performance and heat release rate were analyzed. For comparison, tests were carried out while powering the engine with ester fuel, 10 and 20 per cent mixtures of bioethanol and PCOME. The speed and load characteristics for each fuel were determined. This article presents selected characteristics where the biggest differences were noticed.

Go to article

Authors and Affiliations

M. Bednarski
P. Orliński
M. Wojs
M. Gis

This page uses 'cookies'. Learn more