Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Rachiplusia nu (Lepidoptera: Noctuidae) is the main soybean plague in Argentina. The main strategy employed to control this pest is chemical control, applying different chemical groups regardless of their harmful effects on the environment and human health. Different biological products using entomopathogenic fungi have been developed and are commercially available to control different insect pests worldwide. The objective of this work was to develop and apply, under field conditions, different fungal formulations using entomopathogenic fungi to control R. nu larvae. The mortality percentages in bioassays of R. nu larvae treated with different colonies of fungal entomopathogens ranged between 86.6 ± 8.4% for Beauveria bassiana (LPSc 1098) and 56.6 ± 4.2% for Metarhizium anisopliae (LPSc 907). Under laboratory conditions using fungal formulations of B. bassiana, the formulation 4 (LPSc 1086) exhibited the highest mortality percentage (100%), followed by formulation 5 (LPSc 1098), 97 ± 1.3%. Under field conditions, larval mortalities were 82.4 ± 5.56% for formulation F4 and 61.8 ± 7.5% for formulation F5. The results obtained in this work indicate that although a greater number of tests under field conditions with the fungal formulation F4 are necessary, the results obtained in this work allow speculating that it is possible to use this fungal formulation under field conditions to control R. nu.
Go to article

Authors and Affiliations

Matías Abalo
1
ORCID: ORCID
Ana Clara Scorsetti
1
ORCID: ORCID
María Florencia Vianna
1
ORCID: ORCID
María Leticia Russo
1
ORCID: ORCID
Juan Manuel De Abajo
1
ORCID: ORCID
Sebastián Alberto Pelizza
1
ORCID: ORCID

  1. Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
Download PDF Download RIS Download Bibtex

Abstract

The trials conducted with selected chemical and biological insecticides in 1998-2000 showed the highest effectiveness of Karate Zeon 100 CS (lambda-cyhalotrine) in European corn borer (ECB) larvae control in sweet corn. The efficacy of biological insecticides containing Bacillus thuringiensis ssp. kurstaki: Biobit 3.2 WP and Lepinox WDG was very variable between the years. Reasons for insufficient efficacy of these products are discussed. The most appropriate time for the application of a chemical insecticide against ECB larvae are plant developmental stages since the beginning of pollen shedding to full blooming (63–67 BBCH scale). The efficacy of treatment was the highest at that time.

Go to article

Authors and Affiliations

Janusz Mazurek
Michał Hurej
Jacek Jackowski
Download PDF Download RIS Download Bibtex

Abstract

Highly active antagonistic actinomycete Streptomyces griseoviridis and entomopathogenic fungus Beauveria bassiana were applied to the soil separately and together (in association) in the laboratory experiments. We assessed survival rate, insecticidal and fungistatic activity of these strains. We also tested the influence of synthetic insecticide Regent 25® (fipronil 25g/l) on investigated parameters. Additionally, insecticidal activity of both strains was compared with insecticidal activity of Regent. It was shown that both strains, especially S. griseoviridis, good survived in soil. Population density of S. griseoviridis in the association with B. bassiana increased 2–3 times compared to initial density. Regent considerably reduced population density of S. griseoviridis and B. bassiana. Insecticidal efficiency of S. griseoviridis was comparable with the effect of synthetic incecticide Regent and reached 89.2% and 86.8% respectively. Fungistatic activity towards Fusarium oxysporum showed only S. griseoviridis and it was observed that this activity decreased in time course.

Go to article

Authors and Affiliations

Anna Augustyniuk-Kram
Marina N. Mandrik
Tatyana V. Romanovskaya
Emily I. Kolomiets
Vladislav N. Kuptsov

This page uses 'cookies'. Learn more