Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the technical and economic feasibility of using microalgae and cyanobacteria has been explored for the removal and exploitation of domestic, agricultural and industrial residual effluents with high C, N and P compounds content. To contribute to the understanding of the process and its technical viability for microalgae growth, the article discusses monitoring, flow determination, and physicochemical characteristics of two types of effluents generated in an experimental farm located in the east of Colombia, before (R1) and after biological treatment (R2). In general, the results showed the reduction of different parameters, such as total dissolved solids (TDS), hardness, salinity and phosphates after treatment with activated sludge. However, the conductivity value obtained in R1 and R2 showed the presence of a pollutant load. These findings can be attributed to the highest concentration of fats and oils in the water during early hours of the day. Finally, although the concentration of nitrates increased from 46.63 to 225.21 mg∙dm–3 and phosphate decreased slightly from 9.65 to 6.21 mg∙dm–3, no inhibition was generated in the microalgae, as evidenced in the growth of the microalgal biomass in effluents after nitrate and phosphate removal above 80%.
Go to article

Authors and Affiliations

Nestor Andres Urbina-Suarez
1
ORCID: ORCID
Andres Fernando Barajas-Solano
1
ORCID: ORCID
Janet Bibiana Garcia-Martinez
1
ORCID: ORCID
German Luciano Lopez-Barrera
1
ORCID: ORCID
Angel Dario González-Delgado
2
ORCID: ORCID

  1. Universidad Francisco de Paula Santander, Faculty of Agricultural and Environmental Sciences, San José de Cúcuta, Colombia
  2. University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, 130001, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was to assess the impact of industrial wastewater on the concentration of methanol in the considered section of the Ob River basin, present proposals for the implementation of a new treatment system and analyse the implementation results. On the basis of the results of the analysis of the known methods for reducing the concentration of methanol in water, a new technological scheme for post-treatment of effluents using biological treatment with methylotrophic Methylomonas methanica Dg bacteria was proposed. The calculation of the dilution of treated wastewater using the “NDS Ecolog” program was carried out on the basis of the detailed calculation method of Karaushev, the results of which showed a decrease in the concentration of methanol in the control section to 0.0954 mg∙dm –3 (permissible concentration is 0.1 mg∙dm –3). During the period of the flood of the Glukhaya channel, it ceases to be a separate water body and, in fact, becomes part of the flood channel of the Ob River. Certain parts of the flooded areas, due to elevation changes, communicate with the channel only during a short period of time when the water level rises, i.e. 3–5 weeks during the flood period, and in fact remain isolated reservoirs for the rest of the time, potentially acting as zones of accumulation and concentration of pollutants.
Go to article

Authors and Affiliations

Andrey Ivanov
1
ORCID: ORCID
Alexey Strizhenok
1
ORCID: ORCID
Gabriel Borowski
2
ORCID: ORCID

  1. Saint-Petersburg Mining University, Faculty of Mining Engineering, 21st Line of Vasilyevsky island, 2, 199106, Saint-Petersburg, Russia
  2. Lublin University of Technology, Faculty of Environmental Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the major tasks of municipal waste management in European Union countries is the systematic reduction of waste that is removed and transported to landfills. This refers particularly to biodegradable waste. One of the methods employed to decrease waste amount is Mechanical-Biological Treatment (MBT) of the waste, before it is stored.

The article presents characteristics of MSW and biologically pre-treated municipal solid waste, organic carbon loads emitted in biogas and leachate during waste deposition in a landfill. Its decomposition rate constants were determined on the basis of modified Zacharof and Butler’s stochastic model. The values of decomposition rate constants determined for MSW had similar change trends to those presented in the literature: the hydrolysis constant had the lowest value (2.6 × 10-5 d-1), the highest acid phase constant (4.1 × 10-4 d-1), while the methane phase constant - 2.2 × 10-4 d-1. The PMSW decomposition rate constants in each anaerobic waste degradation phase had similar change trends, though their values were higher, by 21, 11 and 19%, respectively.

Go to article

Authors and Affiliations

Monika Suchowska-Kisielewicz
Sylwia Myszograj
Andrzej Jędrczak

This page uses 'cookies'. Learn more