Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 117
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to a fuel flexibility, fluidized bed boilers are considered as appropriate for biomass combustion as cofiring. But the burning of fuels such as forest and agricultural biomass raises a number of operational problems. Most important of these problems are bed agglomeration and deposition. Deposition appears when biomass contains significant amounts of alkali elements, such as sodium and potassium. The purpose of the work is to select a fuel additive to overcome these operational problems. Investigations were conducted in two stages at a pilot scale 0.1 MWth laboratory circulating fluidized bed reactor. As the fuel, the mixture of biomass contained forest residues, sunflower husks, straw and wood pellets from mixed woods was selected. In the first stage biomass was burnt without any additives, while in the second one the fuel was enriched with some additive. The additive (liquid mixture of chemicals) was added to the fuel in amounts of 1 dm3 per 5-10 Mg of fuel. The following operational parameters were examined: temperature profiles along the height of the circulating fluidised bed column, pressure profiles, emissions. After the tests, the laboratory reactor was inspected inside. Its results enables expression of the following conclusions: there was no agglomeration during fuel additive testing, and the deposition was reduced as well. Moreover, the parts (heating surfaces, separator) of the laboratory reactor were coated with a protective layer. The layer covered microcracks and protected the parts from deposition for a long period after the operation.

Go to article

Authors and Affiliations

Wojciech Nowak
Łukasz Dunajski
Wojciech Kruk
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare and analyze the gasification process of beech wood. The experimental investigation was conducted inside a gasifier, which can be operated in downdraft and updraft gasification system. The most important operating parameter studied in this paper was the influence of the amount of supply air on the temperature distribution, biomass consumption and syngas calorific value. The results show that the amount of air significantly influences the temperature in the combustion zone for the downdraft gasification process, where temperature differences reached more than 150 ◦C.The increased amount of air supplied to the gasifier caused an increase in fuel consumption for both experimental setups. Experimental results regarding equivalence ratio show that for value below 0.2, the updraft gasification is characterized by a higher calorific value of producer gas, while for about 0.22 a similar calorific value (6.5 MJ/Nm3) for both gasification configurations was obtained. Above this value, an increase in equivalence ratio causes a decrease in the calorific value of gas for downdraft and updraft gasifiers.

Go to article

Authors and Affiliations

Jacek Kluska
Mateusz Ochnio
Paweł Kazimierski
Dariusz Kardaś
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is a comparative study of co-firing high shares of wooden and agro-biomass with hard coal under oxy-fuel and air conditions in the laboratory scale reactor for pulverised fuels. The investigations of co-combustion behaviour NOx and SO2 emission and burnout were carried out for selected blends. Detailed investigations were concentrated on determining the effect of dosing oxygen method into the burner on NOx emission. The paper presents the results of co-firing blends with 20 and 50% share of biomass by mass in air and oxy-combustion condition. Biomass oxy-cofiring integrated with CCS (CO2 capture) technology could be a carbon negative technology. The reduction of NOx emissions in the conditions of oxy-co-firing is dependent on the concentration of oxygen in the primary stream of oxidiser. A significant reduction of NOx was achieved in the case of low oxygen concentration in the primary stream for each investigated blends. Co-firing of biomass with coal in an oxygen enriched atmosphere enhances combustion behaviour, lowers fuel burnout and as a result increases of the boiler efficiency.

Go to article

Authors and Affiliations

Halina Pawlak-Kruczek
Michał Ostrycharczyk
Marcin Baranowski
Michał Czerep
Jacek Zgóra
Download PDF Download RIS Download Bibtex

Abstract

Efficiency, functionality and performance of the grain grinding process are significantly influenced by phenomena that are difficult to describe and occur in the working area of the grinder. In a machine-based, multi-disc grinding of grain biomaterials, the design of the quasi-cutting unit, volumes, sections of transport/grinding holes, their motion and the design features of the discs (the grinding unit) must facilitate the functions of grinding in the inter-hole space (with minimum energy-consumption of the process and maximum efficiency) and minimising undesirable phenomena related to mixing and transport. The pre-requisite for optimisation of the quasi-cutting unit design is a mathematical model. Among many aspects of the problem, this study describes a sample procedure resulting in a filling model for a biomass grain quasi-cutting unit including an initial verification of the same under conditions of the evaluation of maize and triticale grain grinding efficiency, using an innovative multi-hole 5-disc and 7-disc grinder.

Go to article

Authors and Affiliations

Andrzej Tomporowski
Download PDF Download RIS Download Bibtex

Abstract

One of the elements of the Polish Energy Policy program is the development of renewable energy, including energy from biomass combustion. In Poland, the Green Block was built at the Połaniec Power Station fired with 100% biomass fuel. This solution is conducive not only to obtaining energy but also to improving environmental protection. During the combustion of biomass in a fluidized bed boiler, about 50 thousand tons of fly ash per year being a source of nutrients for plants, for example potassium salts, phosphorus, calcium, boron compounds, etc. was derived. The subject of the research were three types of ashes from biomass combustion containing 80% dendromass and 20% agromass. Agromas was made of straw, dried material or sliced palm nuts. The physical characteristics and chemical composition of three basic fly ash samples are presented. Due to the high fineness and thus dusting during spreading, it was found that there is no possibility of the direct use of fly ash from biomass combustion as an alkalizing agent for acidic soils. The lowest bulk density was demonstrated by samples of fly ash originating from the combustion of biomass containing 20% straw as agromass, while the poorest in potassium and phosphorus were ash samples obtained from the combustion of biomass containing 20% agromass in the form of palm kernel slate. As additional components, mineral acids as well as inorganic compounds, including industrial waste, were used to correct the chemical composition and to mineral fertilizer granulation. The number of introduced components was related to the postulated composition of the produced fertilizer. Examples of mineral fertilizers obtained, both simple and multicomponent fertilizers, are presented.

Go to article

Authors and Affiliations

Sylwester Eugeniusz Żelazny
Andrzej Jarosiński
Download PDF Download RIS Download Bibtex

Abstract

Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature in the range of 800-1150ºC. The obtained slag samples were analysed on: chlorine and potassium content, sintering tendency and crystalline components. Among the examined coals lignite from Turów mine and bituminous coal from Bolesław Śmiały mine appeared to be the most effective in potassium retention in aluminosilicate and chlorine release from slag. Possibly the major factor of these coals which reduced ash sintering was relatively high content of kaolinite

Go to article

Authors and Affiliations

Włodzimierz K. Kordylewski
Krzysztof J. Mościcki
Karol J. Witkowski
Download PDF Download RIS Download Bibtex

Abstract

One of the methods of obtaining energy from renewable sources is the technology of indirect cofiring of biomass. It consists in the gasification of secondary fuel and combustion of the generated gas in the boiler together with its primary fuel. The paper presents a thermodynamic analysis of the use of the boiler flue gases as the converting medium in the process of indirect co-firing - a technology which is being developed at the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology. The basis of the analysis are the data resulting from variant calculations conducted with the use of the Gaseq program. The calculations were made for various compositions of gasified fuel and the converting medium, variable fuel/oxidiser ratios and variable gasification temperatures. As a result, the equilibrium composition and the calorific value of the generated gas were obtained. The main optimisation objective adopted here was the nondimensional efficiency coefficient, which is the ratio of the chemical energy of products to the chemical energy of the process reactants.

Go to article

Authors and Affiliations

Rafał Litka
Sylwester Kalisz
Download PDF Download RIS Download Bibtex

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Download PDF Download RIS Download Bibtex

Abstract

The material discussed in this paper was collected in the Drake Passage and Bransfield Strait (Antarctica) within the framework of the BIOMASS-SIBEX programme. Samples were collected by hauling Nansen nets verticaly through the 100 — 0, 300—100 and 500 — 300 m layers in December 1983 and January 1984. Of the six species recorded — Metaconchoecia isocheira, Alacia hettacra, Alacia belgicae, Metaconchoecia skogsbergi, Boroecia antipoda and Discoconchoecia off. elegans — the first three, endemic to Antarctic waters — were predominant (92.9%). Ostracoda were found most abundantly in the eastern part of the study area — between Elephant Island and South Orkney Islands, and in the south-western part of Bransfield Strait. Their vertical distribution depended on the hydrological conditions. Ostracoda were most numerous in the 500—300 m and 300 — 100 m layers; very few were recorded in the 100—0 m surface layer.

Go to article

Authors and Affiliations

Katarzyna Błachowiak-Samołyk
Maria I. Żmijewska
Download PDF Download RIS Download Bibtex

Abstract

The chlorophyll a content was measured at 62 oceanographic stations. At each station samples were collected from eight standard depths between the water surface and 150 m. Integrated values (chlorophyll α mg/m2) are used in the presentation of the results and discussion. The recorded quantities of chlorophyll α were rather high, amounting to as much as 634 mg/m2. The areas with high chlorophyll a content (> 200 mg/m2) were located in the region of the Anvers Island and Brabant Island, on the shelf around Joinville Island and opposite the Antarctic Sound, close to Clarence Island and beyond the regions recommended in the BIOMASS-SIBEX programme to the east and south of the South Orkney Islands. In the acetonie extracts of photosynthetizing pigments large quantities of phytoxanthin were found using the TLC method, what precludes the use of the Lorenzen method for determination of chlorophyll α and its degradation products.

Go to article

Authors and Affiliations

Maciej Lipski
Download PDF Download RIS Download Bibtex

Abstract

During the BIOMASS-SIBEX Antarctic expedition the distribution of Copepoda in three water layers (0—100, 100—300 and 300—500 m) in the Bransfield Strait and southern Drake Passage was studied. Altogether 46 taxa were recorded (Tabs. 1 and 2); the number of taxa increased with depth. Faunistic differences between the Drake Passage and the Bransfield Strait were observed. In some species the age-related splitting of the populations was registered (Figs. 2, 3 and 4). Young generations occupied usually the upper water layers.

Go to article

Authors and Affiliations

Maria Iwona Żmijewska
Download PDF Download RIS Download Bibtex

Abstract

24 species of 8 fish families were found to occur on the shelf of Elephant Island during austral spring and summer of 1986/87 season. Notothenia gibberifrons was a predominant species (78—83% per catch). The presence of Champsocephalus gunnari and Chaenocephalus aceratus (15—20% per catch) almost completed fish composition profile. A pronounced decrease of Notothenia rossi (0.03—0.04% per catch) was noticed. Some specimens of Champsocephalus gunnari were characterized by a spawning-time shifted by almost half a year comparing to the remaining part of its population.

Go to article

Authors and Affiliations

Krzysztof E. Skóra
Download PDF Download RIS Download Bibtex

Abstract

On the basis of acoustically registered cross-sections of krill aggregations, regular, irregular and layer forms were distinguished. Regular forms are most frequently observed during spring and in the day time, while irregular forms are most frequent during summer and night hours. The density histograms made for two hour intervals clearly show the day-night difference, but the seasonal (spring, summer) difference is less pronounced. Mean density of swarm is lowest during the night and reaches a maximum in early morning hours. The mean volume backscattering strength values (Sv) for spring and summer are nearly identical. We suggest that regular forms correspond to foraging swarms and irregular forms to feeding swarms as described by Hamner (1984).

Go to article

Authors and Affiliations

Małgorzata Godlewska
Zygmunt Klusek
Download PDF Download RIS Download Bibtex

Abstract

Due to the significant role of macrophytes in the functioning of lake ecosystems studies have been undertaken to examine whether mutual dependence is present within emergent, floating-leaved, and submerged aquatic macrophytes. The study included 5 small lakes from Polesie Lubelskie region. The research included: qualitative analysis of macrophytes (area occupied by macrophytes, composition, range of individual plant groups of occurrence), quantitative analysis of macrophytes (biomass of macrophytes inhabiting the lake), analysis of distribution as well as characteristics diversity of shoreline and surrounding land use. Because of differences in the environmental conditions, mostly light availability, usage of buffer zone, among the three macrophyte groups, changes in biomass were analyzed in this work suggests that complementarity not competition drive the community. This phenomenon seems to occur only in macrophyte lakes where all three groups are present and the surrounding buffer zones remain natural. In lakes where one of the three groups of macrophytes were missing, it is likely that the ecological roles are fulfilled by other plant groups, such as phytoplankton. The studied lakes represent both phytoplanton and macrophyte type of lakes.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Joanna Sender
Marcin Kolejko
Download PDF Download RIS Download Bibtex

Abstract

The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.
Go to article

Authors and Affiliations

Andrzej Kacprzak
Rafał Kobyłecki
Zbigniew Bis
Download PDF Download RIS Download Bibtex

Abstract

Soils that have been exposed to flood waters can be heavily polluted by inorganic and organic compounds. They are mainly compounds which appear in dissolved or suspended form flowing together with heavily laden floodwater, as well as compounds created as a result of reactions in the soil profile, mostly due to anaerobic transformation of organic matter. Heavy metals brought with flood waters are absorbed by the soil and also washed out from flood sediments by precipitation when the flood recedes. This paper presents the results of research on the effects of fertilization with ash from incineration or pyrolysis of biomass on the migration process of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd, Mn) in the arable layer of soil. It has been shown that the metals in the flood sediment migrate actively in the soil profile what leads to the enrichment of the soils, also in the case of the soil fertilization with biomass ash.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
Tomasz Ciesielczuk
Katarzyna Kochanowska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the conducted research was to determine the possibilities of using the biomass of macroalgae obtained from Puck Bay during May-September season in biogas production process. Model respirometry chambers were used to determine the amount of produced biogas and examine its quality composition. Depending on the month in which the algal biomass was obtained, the experiments were divided into five stages. In each stage, the effectiveness of the biogas production process was tested for the applied loads in model fermentation chambers in the range from 1.0 kg DOM/m3 · d to 3.0 kg DOM/m3 · d. During the experiments it was found that the efficiency of biogas production varied from 205 dm3/kg DOM to 407 dm3/kg DOM depending on the month of the vegetation season and the applied organic matter load in the chamber. Methane content was very high and ranged from 63% to 74%.

Go to article

Authors and Affiliations

Marcin Dębowski
Anna Grala
Marcin Zieliński
Magda Dudek
Download PDF Download RIS Download Bibtex

Abstract

Sewage and solid waste can be a valuable source of materials used directly or indirectly in manufacturing of usable products. These processes are associated with elimination of pollutants from liquid and

solid wastes. The best-known methods of waste management are production of biogas and composting. This

paper focuses on the possibility of obtaining biomass as a source of protein feed (whose value, in terms of the

composition of aminoacids and microelements, is comparable with conventional feed, e.g. soymeal, bonemeal

or fishmeal). Sewage components for bacterial, fungal, algal and vascular plants’ culture are characterized as

a source of protein feed. Methods of industrial scale production of enzymes, mainly proteases and lipases that

have broad applications in various industries, are discussed. Development perspectives of inexpensive methods

of usable products from waste production are showed. Interdisciplinary nature of presented issues, which requires cooperation of specialists in biology, chemistry and technology, is emphasized.

Go to article

Authors and Affiliations

M. Łebkowska
M. Załęska-Radziwiłł
Download PDF Download RIS Download Bibtex

Abstract

Two field experimental trials were carried out in central Italy, in 2005 and 2006, on biomass sorghum [Sorghum bicolor (L.) Moench] in order to assess weed control efficacy and selectivity to the crop of some pre- and post-emergence herbicides applied at different doses and in different mixtures. All herbicides showed good selectivity to the crop, although postemergence treatments showed higher transitory phytotoxicity effects than pre-emergence treatments, especially when high temperatures occurred after treatments, decreasing the selectivity of leaf herbicides (i.e. MCPA, 2,4-D, bromoxynil and dicamba). Considering pre-emergence applications, terbuthylazine alone against broadleaves or in mixtures at low doses with s-metolachlor against mixed infestations (grasses + broadleaves), seemed to be the best options to obtain a good selectivity to the sorghum and a high weed control level. Aclonifen showed some limits in terms of weed spectrum and could be recommended only against simplified broadleaf weed infestations without the presence of less susceptible weeds, like Amaranthus retroflexus, Portulaca oleracea and Solanum nigrum. Propachlor seemed not to be advisable due to the low efficacy against all the major broadleaf warmseason weed species in the Mediterranean areas. Considering post-emergence applications, all treatments gave quite similar results in terms of weed control, although, the mixture of terbuthylazine + bromoxynil seemed to be the best option due to bromoxinil’s higher efficacy than other foliar herbicides, such as MCPA, 2,4-D and dicamba, which can increase the efficacy of terbuthylazine alone especially under dry weather conditions. There were no significant differences in sorghum biomass between herbicide treatments, although, the more selective pre-emergence treatments showed, on average, a higher biomass yield value than the less selective post-emergence treatments. For these reasons, biomass values seemed to be more related to herbicide selectivity than to herbicide efficacy, especially in cases of scarce competitiveness of weed flora.

Go to article

Authors and Affiliations

Euro Pannacci
Simone Bartolini
Download PDF Download RIS Download Bibtex

Abstract

This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.

Go to article

Authors and Affiliations

Aneta Magdziarz
Małgorzata Wilk
Monika Zajemska
Download PDF Download RIS Download Bibtex

Abstract

The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB) during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2) were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.

Go to article

Authors and Affiliations

Wojciech Nowak
Jarosław Krzywański
Rafał Rajczyk
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic equilibrium-based models of gasification process are relatively simple and widely used to predict producer gas characteristics in performance studies of energy conversion plants. However, if an unconstrained calculation of equilibrium is performed, the estimations of product gas yield and heating value are too optimistic. Therefore, reasonable assumptions have to be made in order to correct the results. This paper proposes a model of the process that can be used in case of deficiency of information and unavailability of experimental data. The model is based on free energy minimization, material and energy balances of a single zone reactor. The constraint quasi-equilibrium calculations are made using approximated amounts of non-equilibrium products, i.e. solid char, tar, CH4 and C2H4. The yields of these products are attributed to fuel characteristics and estimated using experimental results published in the literature. A genetic algorithm optimization technique is applied to find unknown parameters of the model that lead to the best match between modelled and experimental characteristics of the product gas. Finally, generic correlations are proposed and quality of modelling results is assessed in the aspect of its usefulness for performance studies of power generation plants.

Go to article

Authors and Affiliations

Jacek Kalina
Download PDF Download RIS Download Bibtex

Abstract

Results of the study examining carbon monoxide and nitric oxide concentrations while burning different types of agricultural biomass: coffee husk pellets alone or in combination with wheat straw pellets and cherry stones, sewage sludge pellets, corn stover briquettes and a mixture of rye straw briquettes and miscanthus briquettes were presented. The combustion was performed in a 50 kW boiler type Biowarmer with a cast-iron moving step grate. The temperature in the combustion chamber did not exceed 800 ◦C. For all biomass types, only brittle slag was generated in the furnace, which was easily broken by a reciprocating movement of the grate. Carbon monoxide concentration in the flue gas except for the case of sewage sludge pellet firing did not exceed the permitted value of 3000 mg/m3 and nitric oxide concentration 515 mg/m3, both presented for 10% O2 concentration in the flue gas based in dry gas. Hydrocarbon concentrations for all test runs were close to zero.
Go to article

Authors and Affiliations

Katarzyna Pałaszyńska
Marek Juszczak

This page uses 'cookies'. Learn more