Search results

Filters

  • Journals
  • Authors
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 88
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The species diversity, density and similarity of Gastrotrich fauna of bottom sediments to epiphytic fauna in three farm ponds were investigated. In the studied habitats 31 species of Gas-trotricha belonging to the family of Chaetonotidae were found altogether. In bottom sediments of the ponds there were 29 and on plants 17 species of Gastrotricha. Three species (Heterolepido-derma gracile Rmane, 1927, Chaetonotus disjunctus Greuter, 1917 and Ch. oculifer Kisielewski, 1981) were found to be dominants in bottom sediments with the dominance over 10.0%. H. gracile and Ch. oculifer also occur on vegetation, but their dominance is significantly lower. In turn three species (H. macrops Kisielewski, 1981, H. ocellatum (Mečnikow, 1865) and Lepidodermella squamata (Dujardin, 1841) proved to be dominant on water vegetation, with the dominance over 10.0% in all studied ponds. The value of species diversity index H’ including the number of spe-cies and uniformity of their dominance is from 2.76 to 2.93 for bottom sediments and from 2.60 to 2.72 for plants. The total density of gastrotrich fauna in bottom sediments fluctuated from 350.0 to 920.0 103 indiv. m-2 and on elodeids from 520 to 1110 103 indiv. m-2. The density of gastrotrich fauna of elodeids was higher than in bottom sediments in all the studied ponds. In each of the ponds examined, the differences are statistically significant. The similarity between bottom sediment fauna and epiphytic fauna in each of the studied ponds, cal-culated according to the homogeneity index, was very low and ranged from 44% to 48%.
Go to article

Authors and Affiliations

Teresa Nesteruk
Download PDF Download RIS Download Bibtex

Abstract

To investigate and assess the effects of land use and its changes on concentrations of heavy metals (Pb, Zn, Cd, Cu, Mn, Ni, Fe) in the tributary of drinking water reservoir catchment, soils of different land use types (forest, arable land, meadows and pastures, residential areas), suspended sediment and bottom sediment were collected. Heavy metals were analyzed using atomic absorption spectrophotometry (AAS). The metal distribution pattern was observed, where Zn and Cd could be considered as main metal contaminants. The variation in the concentration level of Zn and Cd in studied soils showed the impact of pollution from anthropogenic activities. Also some seasonal variations were visible among the suspended sediment and bottom sediment samples which could be associated with land agricultural practices or meteorological conditions. The sediment fingerprints approach used for determining sources of the suspension in the catchment showed (Kruskal-Wallis H test, p<0.05), that only Mn and Ni were not able to be distinguished among the potential sediment sources. A multiple linear regression model described the relationship between suspended sediment and 4 types of soil samples. The results related suspended composition mostly to the samples from the residential land use. Considering the contemporary trend of observed changes in land use resulting in conversion of agricultural areas into residential and service structures these changes can be essential for the contamination of aquatic environment. This situation is a warning sign due to the rapid industrialization, urbanization and intensive agriculture in this region what can significantly affect the drinking water quality.

Go to article

Authors and Affiliations

Gabriela Zemełka
Małgorzata Kryłów
Ewa Szalińska van Overdijk
Download PDF Download RIS Download Bibtex

Abstract

Article deals with a fractional and chemical composition of sediments from the sediment reservoir in Ilyash village, Ferghana region, Uzbekistan (Syr Darya river basin) and analyses their feasibility. As a key factor in the study of this process was considered the fractional and agrochemical composition of sediments moving with water in the sediment reservoir, and the change of their share in the water along the length of the reservoir. The main composition of the sediments in reservoir consists of fractions >0.25 and 0.25–0.01 mm, with the average fraction of 69% in the inlet and 60% in the outlet. The river sediments are rich in minerals important for the irrigated cropland. Based on the results we conclude that it is possible to regulate the number of chemical compounds in the water by controlling the exploitation regime of reservoir and the sedimentation process in it.
Go to article

Bibliography


ARIFJANOV A.M., FATXULLOEV A., KALETOVA T. 2019a. Movement of the suspended flow in the open irrigation channels. Acta Horticulturae et Regiotecturae. Vol. 22(2) p. 81–84. DOI 10.2478/ahr-2019-0015.
ARIFJANOV A., OTAXONOV M., SAMIEV L., AKMALOV S. 2019b. Hydraulic calculation of horizontal open drainages. E3S Web of Conferences, XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). Vol. 97. DOI 10.1051/e3sconf/20199705039.
ARIFJANOV A., SAMIEV L., AKMALOV S. 2019c. Dependence of fractional structure of river sediments on chemical composition. Interna- tional Journal of Innovative Technology and Exploring Engineering. Vol. 9(1) p. 2646–2649. DOI 10.35940/ijitee.l2944.119119.
ARIFJANOV A.M., APAKXOJAEVA T.U., HUSKA D. 2018. Sediment move- ment mode in rivers of Uzbekistan – environmental aspects. Acta Horticulturae et Regiotecturae. Vol. 21(1) p. 10–12. DOI 10.2478/ahr-2018-0003.
ARINUSHKINA Y.V. 1979. Rukovodstvo po khimicheskomu analizu pochvy [Manual on chemical analysis of soil]. Moscow, Russia. Moscow University Press pp. 478.
BARAN A., TARNAWSKI M., URBANIAK M. 2019. An assessment of bottom sediment as a source of plant nutrients and an agent for improving soil properties. Environmental Engineering and Management Journal. Vol. 18(8) p. 1647–1656. DOI 10.30638/eemj.2019.155.
GAŁKA B., WIATKOWSKI M. 2010. Charakterystyka osadów dennych zbiornika zaporowego Młyny oraz możliwość rolniczego ich wykorzystania [Characteristics of bottom sediments of retention reservoir Młyny and a possibility of their agricultural use]. Woda-Środowisko-Obszary Wiejskie. T. 10. Z. 4(32) p. 53–63.
Google undated a. Uzbekistan [online]. [Access 31.01.2020]. Available at: https://www.google.sk/maps/place/Uzbekistan/@41.2937922,60.0826241,6z/data=!3m1!4b1!4m5!3m4!1s0x38ae8-b20a5d676b1:0xca0a6dad7e841e20!8m2!3d41.377491!4d64.58526
Google undated b. Uzbekistan. [online]. [Access 31.01.2020]. Available at: https://www.google.sk/maps/@40.4718462,70.9227705,2403m/ data=!3m1!1e3
IMRAN J. 2008. Sediment transport. In: Open-channel flow. Springer, Boston, MA. DOI 10.1007/978-0-387-68648-6_16.
JOSIMOV-DUNDJERSKI J., SAVIC R., BELIC A., SALVAI A., GRABIC J. 2015 Sustainability of the constructed wetland based on the character- istics in effluent. Soil and Water Research. Vol. 10 p. 114–120.
JULIEN P. 2018. River mechanics. Cambridge. Cambridge University Press. ISBN 9781316107072 pp. 526.
JURIK L., ZELENAKOVA M., KALETOVA T., ARIFJANOV A.M. 2019. Small water reservoirs: Sources of water for irrigation. In: Water resources in Slovakia. Part 1. Assessment and Development. Eds. A.M. Negm, M. Zelenakova. Cham. Springer p. 115–131.
KEESSTRA S.D., KONDRLOVÁ E., CZAJKA A., SEEGER M., MAROULIS J. 2012. Assessing riparian zone impacts on water and sediment move- ment: A new approach. Netherlands Journal of Geosciences. Vol. 91 p. 245–255. DOI 10.1017/S0016774600001633.
LATIPOV K.S., ARIFJANOV A.M. 1994. Voprosy dvizheniya vzvesenesush- chego potoka v ruslah [Questions of motion of suspended flow in the channels]. Tashkent. Mehnat pp. 110.
LIU C., WALLING D. E., HE Y. 2018. Review: The international sediment initiative case studies of sediment problems in river basins and their management. International Journal of Sediment Research. Vol. 33(2) p. 216–219. DOI 10.1016/j.ijsrc.2017.05.005.
MIDLER M., RAMPASEKOVA Z., SOLCOVA L. 2017. Elementary georelief forms as a tool for delineation of soil areas influenced by water erosion. In: Proceedings of 24th international PhD students conference (MENDELNET 2017). Eds. R. Cerkal, N.B. Belcredi, L. Prokesova, P. Vacek. Brno. Mendel University p. 413–418.
MOHTAR W.H.M.W., BASSA S.I., PORHEMMAT M. 2017. Grain size analysis of surface fluvial sediments in rivers in Kelantan, Malaysia. Sains Malaysiana. Vol. 46(5) p. 685–693. DOI 10.17576/jsm-2017-4605-02.
OKEYODE I., JIBIRI N. 2013. Grain size analysis of the sediments from Ogun River, South Western Nigeria. Earth Science Research. Vol. 2(1). DOI 10.5539/esr.v2n1p43.
RAI R.K., SINGH V.P., UPADHYAY A. 2017. Design of irrigation canals. In: Planning and evaluation of irrigation projects. Methods and Implementation. Elsevier. Academic Press p. 283–318. DOI 10.1016/B978-0-12-811748-4.00007-8.
University of Iowa 1941. A study of methods used in measurement and analysis of sediment loads in streams. Report No. 4. Methods of analyzing sediment samples. St. Pau.1 U. S. Engineer District Sub-office Hydraulic Laboratory, University of Iowa Iowa City, Iowa pp. 205.
SAMIEV L.N., IBRAGIMOVA Z.I., ALLAYOROV D.S., BABAJANOV F.K. 2019. Influence of the exploitation condition of sediment reservoir on the hydraulic parameters of the main canal. Journal of Irrigation and Melioration. Vol. 2(16) p. 24–27.
SHAHROKHI M., ROSTAMI F., MD SAID M.A., SYAFALNI. 2013. Numerical modeling of baffle location effects on the flow pattern of primary sedimentation tanks. Applied Mathematical Modelling. Vol. 37(6) p. 4486–4496. DOI 10.1016/j.apm.2012.09.060.
SHAMOV G.I. 1954. Rechnye nanosy [River sediment]. St. Petersburg. Gidrometeoizdat pp. 348.
WALLING D.E. 1983. The sediment delivery problem. Journal of Hydrology. Vol. 65(1–3) p. 209–237. DOI 10.1016/0022-1694(83)90217-2.
WÓJCIKOWSKA-KAPUSTA A., SMAL H., LIGĘZA S. 2018. Contents of selected macronutrients in bottom sediments of two water reservoirs and assessment of their suitability for natural use. Journal of Water and Land Development. Vol. 38 p. 147–153. DOI 10.2478/jwld-2018-0051.
Go to article

Authors and Affiliations

Tatiana Kaletova
1 2
ORCID: ORCID
Aybek Arifjanov
2
ORCID: ORCID
Luqmon Samiev
2
ORCID: ORCID
Farrukh Babajanov
2
ORCID: ORCID

  1. Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovak Republic
  2. Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

Several conclusions and recommendations concerning sediment trap geometry, the technique of their deployment and interpretation of measurements results are described in this paper. Only cylindrical sediment traps are able to cope with the diverse and dynamic environment of glaciated fjords. The relation between different trap parameters shows the optimal proportion of cylinder diameter as being between 6 and 10 cm and ratio length/diameter not less than 7/1. During the peak of the melting season in Kongsfjorden (Spitsbergen) the rate of sedimentation of total matter reaches over 900 g m–2 d–1 and the velocity of brackish water current can reach 80 cm s–1 on the surface. Owing to the high productivity of Arctic fiords and large concentration of suspended mineral matter it is possible to collect of large samples in a short time, therefore prevention of sediment traps by swimmers is not necessary.

Go to article

Authors and Affiliations

Marek Zajączkowski
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the results of chemical pre-treatment of effluents from Chip Washing by coagulation. Three different, most frequently used coagulants i.e. calcium hydroxide, aluminium sulphate and ferric chloride were applied. Influence of single and simultaneous dosage of the reagents was investigated. Fully randomized block systems were applied in the factorial variance analysis and final approximation analytic-empiric mathematical equations with application of the central point method were formulated.
Go to article

Authors and Affiliations

Jacek Piekarski
Tadeusz Piecuch
Download PDF Download RIS Download Bibtex

Abstract

This work determined the solid-water distribution coefficient Kd, the Freundlich constant KF and the organic carbon normalized coefficient K0c of ibuprofen in natural, aquifer sediments. They are characterized as silt sediments with different clay and sand fraction contents varied in specific surface areas. Content of organic carbon and pH are on the same level. For determining sorption coefficients values of ibuprofen in sediments, its concentration was measured in the aqueous and calculated in the solid phase. Batch tests were conducted following OECD Guideline 106. The resulting Kd values ranged between 1.14 and 2.29 L/kg, ~ between 0.25 and 5.48 and Koc between 1.22 and 2.53 for ibuprofen in sediments SI and S2, respectively. These experiments proved that the presence of clay minerals beside organic carbon and pH might be relevant in sorption of ibuprofen in sediments. A comparison of experimentally determined Koc with modelled Koc calculated on the base of octanol-water partitioning coefficient K0w shows that the prediction of sorption behaviour cannot be based only on Kow· This is probably due to the fact that these approaches well describe hydrophobic interactions, but fail to predict sorption of polar and ionic compounds.
Go to article

Authors and Affiliations

Katarzyna Styszko
Katarzyna Sosonowska
Piotr Wojtanowicz
Janusz Gołaś
Jerzy Górecki
Mariusz Macherzyński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The contents of total P and its bioavailable forms. as well as of Fe, Al, Mn, Ca, and OM in the bottom sediments of the Solina-Myczkowce (S-E Poland) cascade of reservoirs, are presented. Notwithstanding a relatively low calcium content, it is the apatite fraction that accounts for the largest share of total phosphorus in the shallower parts of the Solina and Myczkowce Reservoirs. In turn, while contents of iron and aluminium (and manganese in the Solina Reservoir) are high, the fraction containing non-apatite inorganic phosphorus accounts for the smallest portion of the total phosphorus in the bottom sediments of both reservoirs. Bottom sediments of the Solina Reservoir are also characterised by significant correlations between total phosphorus content and aluminium content. Otherwise, significant correlations are reported for only some of the stations at each of the reservoirs.
Go to article

Authors and Affiliations

Lilianna Bartoszek
Janusz A. Tomaszek
Download PDF Download RIS Download Bibtex

Abstract

Plastics are materials with many properties that make them extremely popular in everyday life and various industries. Studies show that plastic debris is global pollution and widespread in virtually all ecosystems. This study aimed to assess the coastal sediments of Ełckie Lake in terms of the presence of microplastics. Samples of sediments (n = 37) from the coastal zone of Ełckie Lake were drawn from different areas, including urban, rural, and tourist locations, and beaches. After the coastal sediment samples taking, they were subjected to density separation, filtration, and visual evaluation using the Olympus BX63 fluorescent microscope. Particles were classified according to the category of visible characteristics of microplastics including size, shape and colour. The results of the study showed the presence of microplastics in 84% of the examined coastal sediment samples of Ełckie Lake. Fibres, flakes, granules, and foils (films) had found in 58%, 45%, 32%, and 13% of the samples that contained microplastic, respectively. The majority of the detected microplastic was 0.5–1 mm in size and black was the dominant colour. Spatial variability was perceived in microplastic concentrations, giving premises to the assumption of dependence between local human activity and the content of particles.
Go to article

Bibliography

Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62, 1596–1605.

Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1977–1984.

Ballent, A., Corcoran, P.L., Madden, O., Helm, P.A., Longstaffe, F.J., 2016. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 110, 383–395.

Bańkowska, A., 2007. Performance evaluation of the BIO-HYDRO structures in recultivation of the Elckie Lake. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska 16, 21–28 (in Polish with English summary).

Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry 35, 1656–1666.

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199–2204.

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588–2597.

Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., Goffart, A., 2014. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin 79, 293–298.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment 671, 411–420.

da Costa, J.P., Duarte, A.C., Rocha-Santos, T.A.P., 2017. Microplastics – Occurrence, Fate and Behaviour in the Environment. Comprehensive Analytical Chemistry 75, 1–24.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44, 842–852.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology 69, 320–330.

Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q., Yang, C., 2019. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment 667, 427–434.

Duis, K., Coors, A., 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28, 1–25.

Dümichen, E., Barthel, A.K., Braun, U., Bannick, C.G., Brand, K., Jekel, M., Senz, R., 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research 85, 451–457.

Dunalska, J.A., 2019. Lake restoration – theory and practice. Warszawa. Wydawnictwo Polskiej Akademii Nauk (in Polish with English summary).

Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75, 63–82.

Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A., Chubarenko, I.P., 2018. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: Laboratory experiments. Frontiers in Marine Science 5, 313.

Faure, F., Corbaz, M., Baecher, H., De Alencastro, L.F., 2012. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences 65, 157–164.

Faure, F., Demars, C., Wieser, O., Kunz, M., De Alencastro, L.F., 2015. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environmental Chemistry 12, 582–591.

Fischer, E.K., Paglialonga, L., Czech, E., Tamminga, M., 2016. Microplastic pollution in lakes and lake shoreline sediments – a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution 213, 648–657.

Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., Boldgiv, B., 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85, 156–163.

GESAMP, 2015. Sources, fate and effects ofmicroplastics in the marine environment: a global assessment. London: IMO/FAO/UNESCO- IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology 46, 3060–3075.

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586, 127–141.

Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, C., 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23, R867–R868.

Klein, S., Worch, E., Knepper, T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine main area in Germany. Environmental Science and Technology 49, 6070–6076.

Lee, H., Shim, W.J., Kwon, J.H., 2014. Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment 470–471, 1545–1552.

Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J., 2013. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin 77, 349–354.

Lenz, R., Enders, K., Beer, S., Sørensen, T.K., Stedmon, C.A., 2016. Analysis of Microplastic in the Stomachs of Herring and Cod from the North Sea and the Baltic Sea. Lyngby: DTU Aqua 1–30.

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137, 362–374.

Lin, L., Zuo, L.Z., Peng, J.P., Cai, L.Q., Fok, L., Yan, Y., Li, H.X., Xu, X.R., 2018. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment 644, 375–381.

Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., Voisin, A., 2016. Swedish sources and pathways for microplastics to the marine environment A review of existing data. IVL Swedish Environmental Research Institute,Report C 183, 1–87.

Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin 81, 69–79.

Moore, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108, 131–139.

Napper, I.E., Bakir, A., Rowland, S.J., Thompson, R.C., 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185.

Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112, 39–45.

Nizzetto, L., Futter, M., Langaas, S., 2016. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science and Technology 50, 10777–10779.

Novotny, T.E., Lum, K., Smith, E., Wang, V., Barnes, R., 2009. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research and Public Health 6, 1691–1705.

Peters, C.A., Bratton, S.P., 2016. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution 210, 380–387.

Piñon-Colin, T. de J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., Wakida, F.T., 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment 704, 135411.

PlasticsEurope, 2019. Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data. Report, 1–42.

Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Policy: Classify plastic waste as hazardous. Nature 494, 169–170.

Rodrigues, M.O., Abrantes, N., Gonçalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M., 2018. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment 633, 1549–1559.

Sruthy, S., Ramasamy, E. V., 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution 222, 315–322.

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M. aki, Watanuki, Y., 2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin 69, 219–222.

Turner, S., Horton, A.A., Rose, N.L., Hall, C., 2019. A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology 61, 449–462.

van Wezel, A., Caris, I., Kools, S.A.E., 2016. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry 35, 1627–1631.

Vaughan, R., Turner, S.D., Rose, N.L., 2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution 229, 10–18.

Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., 2017a. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258.

Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research 113, 7–17.

Wang, W., Ndungu, A.W., Li, Z., Wang, J., 2017b. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment 575, 1369–1374.

Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., Wu, C., 2018. Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake. Environmental Pollution 235, 899–906.

Yonkos, L.T., Friedel, E.A., Perez-Reyes, A.C., Ghosal, S., Arthur, C.D., 2014. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environmental Science and Technology 48, 14195–14202.

Yu, X., Peng, J., Wang, J., Wang, K., Bao, S., 2016. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea. Environmental Pollution 214, 722–730.

Yuan, W., Liu, X., Wang, W., Di, M., Wang, J., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety 170, 180–187.

Yurtsever, M., 2019. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin 146, 678–682.

Zbyszewski, M., Corcoran, P.L., Hockin, A., 2014. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. Journal of Great Lakes Research 40, 288–299.

Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., Liu, J., 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environmental Pollution 219, 450–455.

Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science and Technology 51, 3794–3801.

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322, 201–208.

Zobkov, M., Esiukova, E., 2017. Microplastics in Baltic bottom sediments: Quantification procedures and first results. Marine Pollution Bulletin 114, 724–732.
Go to article

Authors and Affiliations

Weronika Rogowska
1
Elżbieta Skorbiłowicz
1
Mirosław Skorbiłowicz
1
Łukasz Trybułowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Wiejska 45E, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Ninety eight polychaete species were found in the shallow sublittoral of Admiralty Bay. The most abundant were Leitoscoloplos kerguelensis, Tauberia gracilis, Ophelina syringopyge, Rhodine intermedia, Tharyx cincinnatus, Aricidea (Acesta) strelzovi, Apistobranchus sp., Cirrophorus brevicirratus and Microspio moorei. Mean abundance of polychaetes was estimated at 120 ind./ 0.1m2. As a result of cluster analysis several polychaete assemblages were distinguished. The highly specific assemblage with two characteristic species, Scoloplos marginatus and Travisia kerguelensis, from shallow areas with sandy bottom situated far from glaciers; a distincly specific assemblage with Apistobranchus sp. from poorly sorted sediments in the bottom areas situated on the slopes at the base of steep rubble shores; the richest and most diverse, highly specific polychaete assemblage from the central basin of the bay with Tauberia gracilis as the most characteristic species, as well as two assemblages from the bottom areas neighbouring glaciers and influenced by the intensive enrichment of very small grain-sized sediments with Ophelina cylindricaudata and Tharyx cincinnatus. Clear assemblages’ arrangement was observed along the gradient: sand, silty sand, silt towards clay silt. Other important factors, supporting the proposed classification of assemblages and their character, include the sorting coefficient of the sediment (So) as well as the slope of the bottom. The between-habitat diversity of polychaete fauna is strongly connected with the phenomena occurring in the neighbouring terrestrial coastal areas.

Go to article

Authors and Affiliations

Jacek Siciński
Download PDF Download RIS Download Bibtex

Abstract

On the ground of results obtained by the seismoacoustic profiling carried out in 1985 and primary examination of core samples the following main seismoacoustic units are distinguished and characterized: unit A — bedrock, unit B — till and/or compacted glaciomarine deposit, unit C — glaciomarine ice-front deposit, unit D — glaciomarine mud. These results enabled to present the distribution of seismoacoustic units along the fiord and its extension on the shelf, as well as to determine a relation of bottom structures to Late Vistulian(?) deglaciation and the action of Holocene tributary glaciers, probably during the Little Ice Age. The position of marginal structures corresponding to local retreat stages of the glacier front is also presented.

Go to article

Authors and Affiliations

Włodzimierz Kowalewski
Stanisław Rudowski
S. Maciej Zalewski
Download PDF Download RIS Download Bibtex

Abstract

70 Mg/day of fine grained waste gneiss in slurry condition, together with 700 m3/day or water from the wet bencfication plant flow from the Miklcuśka gneiss quarry (Croatia) into the Kamcnjaća stream. The stream flows between two gneiss quarries, originating in the northern catchment area or which approximately 15 km2 is predominantly covered by forest. The quality ofwater in the Kamcnjaća permanent stream should be protected from any contamination due to the activities in the Miklcuśka quarry. The paper describes the aspects of sustainable technical, environmental and economical protection ofthe water quality in Karncnjaća regarding gneiss mining.
Go to article

Authors and Affiliations

Mladen Zelenika
Bozo Soldo
Damir Stuhee
Download PDF Download RIS Download Bibtex

Abstract

The study deals with the assessment of the solid transport in the wadi Mouillah watershed (Tafna, Algeria). Sediment transport is a complex phenomenon. The quantity of sediment transported is very important, and it fills in the reservoirs. The scale is out of proportion in semiarid areas. Algeria is one of the most affected countries by this phenomenon. A simple method, based on average discharges, easy to implement, has been developed for estimating the sediment yield using dou-ble correlation method (a first one between liquid discharge – solid concentration and a second one between solid flow – concentration). It is based on hydrometric data (liquid flow, concentrations and sediment discharges) with applications analysis on seasonal and annual scales for data’s of Sidi Belkheir station at the outlet of the wadi Mouillah watershed (North-West of Algeria). The obtained results by the application of this method are very encouraging because of the quite significant correlation coefficients found (≥59% for the first correlation and ≥88% for the second correlation). The water-shed of Mouillah produces between 43 730 and 56 410 Mg·y–1 as suspended sediment load against 48.56∙103 to 53.3∙103 m3·y–1 of liquid intake.

Go to article

Authors and Affiliations

Fadila Belarbi
ORCID: ORCID
Hamid Boulchelkia
Boualem Remini
Download PDF Download RIS Download Bibtex

Abstract

Soil loss is a major problem for watersheds management in semi-arid environments. The objective of the present study is to analyze the annual and seasonal patterns of suspended loads and quantify the specific sediment yields in a semi-arid environment of the Mazafran Watershed in central Algeria. The obtained information of water discharge and suspended sediment load, recorded during 19 years, was confronted with precipitation data in order to establish the relationships between theforcing agents and erosive processes. The specific sediment yield was estimated by assessing rating curve data under two types of identified responses. The obtained results allowedconfirming the seasonality on suspended sediment transport in the studied basin, which accounts for 56% of the total suspended sediment load estimated in winter. The mean annual suspended sediment is estimated at 17.52 Mg·ha–1·y–1. The results highlighted that the type 2 event dominates the production of sediment in the study area in comparison with type 1 event. The analysis of the variability of rainfall erosivity index showed that there is a strong correlation between the annual precipitation and modified Fournier index ( MFI), and a weak correlation with the monthly precipitation concentration index ( PCI). Moreover, the spatial distribution of the modified Fournier index at the basin scale showed the highest precipitation aggressiveness in the Southern part of the study region for both type of events, whereas the precipitation aggressiveness low to moderate in the remaining part of the study region.
Go to article

Authors and Affiliations

Mosbah Rabah
1
ORCID: ORCID
Hamad Bouchelkia
1
ORCID: ORCID
Fadila Belarbi
1
ORCID: ORCID
Agustin Millares
2
ORCID: ORCID

  1. University of Abou Bekr Belkaïd, Faculty of Technology, Department of Hydraulics, Rue Abi Ayad Abdelkrim Fg Pasteur, 22, BP 119, 13000, Tlemcen, Algeria
  2. Andalusian Inter-University Institute for Earth System Research (IISTA-CEAMA), Environmental Fluid Dynamic Group, Granada, Spain
Download PDF Download RIS Download Bibtex

Abstract

The theoretical dependence between flocculated suspension settling time and mass floe size has been presented. The good agreement with the experimental relation between settling time of 80% of suspension and mass median floe size was showed, which indicates the possibility of developing a new method for clarification efficiency estimation.
Go to article

Authors and Affiliations

Bernard Połednik
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study presented in the article is to implement modern hydrographic characteristics of freshwater of the Shatsk Lakes (28 lakes in Volyn Polissya, Ukraine) by typing water bodies according to the requirements of the EU Water Framework Directive, assessment of the chemical composition of lake water and bottom sediments (sapropel), determination of the opportunity for their recreational use in the special status of the district as a national park. Despite the presence of the two large lakes (Svityaz – 26.2 km 2 and Pulemetske – 15.5 km 2), very small lakes with a water surface area of less than 0.5 km 2 (64%) are dominating in the Shatsk group. Mineralisation of calcium-hydrocarbonate lake waters is 115–303 mg∙dm –3 and calcium-sulphate aqueous extract of sapropel is – 318–1451 mg∙dm –3. Using a Piper diagram, it was found that there is genetic homogeneity between surface and groundwater, indicating a significant share of groundwater in the water supply of lakes. There are eight species of sapropel deposits in 19 lakes of the district. A wide range of chemical composition and physical and mechanical properties of sapropel deposits of the Shatsk Lakes allow us to consider them as an important resource for agriculture and industry. We found that sapropel from Shatsk Lakes meets the requirements for therapeutic mud and can be used for therapeutic and health purposes.
Go to article

Authors and Affiliations

Valentyn Khilchevskyi
1
ORCID: ORCID
Leonid Ilyin
2
ORCID: ORCID
Mykhailo Pasichnyk
2
ORCID: ORCID
Myroslava Zabokrytska
2
ORCID: ORCID
Olga Ilyina
2
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Department of Hydrology and Hydroecology, Kyiv, Ukraine
  2. Lesya Ukrainka Volyn National University, Faculty of Geography, 13 Voli Avenue, 43025, Lutsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In the Central Caucasus region, the intense process of deglaciation is identified as caused by cryoconite formation and accumulation. The fine earth materials were collected on the surfaces of Skhelda and Garabashi glaciers as well as from zonal soils of Baksan Gorge and were studied in terms of chemical, particle-size, and micromorpholo-gical features. Supraglacial sediments are located at the glacial drift area of material and, thus, due to transfer of these sediments to the foothill area, their fine earth material can affect micromorphological and chemical characteristics of adjacent zonal soils. Thin sections of mineral and organo-mineral micromonoliths were analyzed by classic micromorphological methods. Data obtained showed that the weathering rates of cryoconite and soil minerals are different. The cryoconite material on the debris-covered Skhelda Glacier originated from local massive crystalline rocks and moraines, while for Garabashi Glacier the volcanic origin of cryoconite is more typical. Soils of Baksan Gorge are characterized by more developed microfabric and porous media, but their mineralogical composition is essentially inherited from sediments of glacial and periglacial soils. These new data could be useful for understanding the process of evolution of the mineral matrix of cryoconite to the soil matrix formed at the foot of the mountain.
Go to article

Bibliography


Aleynikova A.M. 2008. Periglacial landscapes of the Mt. Elbrus region as a zone of catastrophic debris flow formation. Selevye potoki: katastrofy, risk, prognoz, zashchita: 33–36 (in Russian).
Aleinikova A.M., Gaivoron T.D., Marsheva N.V. and Mainasheva G.M. 2020. Risk analysis of mudflows in the Central Caucasus. IOP Conference Series: Earth and Environmental Science 579: 012098.
Amato P., Joly M., Besaury L., Oudart A., Taib N., Mone A.I., Deguillaume L., Delort A.-M. and Debroas D. 2017. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS ONE 12: e0182869.
Anesio A.M., Hodson A.J., Fritz A., Psenner R. and Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology 15: 955–960.
Antony R., Mahalinganathan K., Thamban M. and Nair S. 2011. Organic carbon in Antarctic snow: spatial trends and possible sources. Environmental Science and Technology 45: 9944–9950. Bagshaw E.A., Tranter M., Fountain A.G., Welch K.A., Basagic H. and Lyons W.B. 2007. The biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research-Biogeosciences 112: G04S35.
Bagshaw E.A., Tranter M., Fountain A.G., Welch K., Hassan J. Basagic H.J. and Berry W.L. 2013. Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic, and Alpine Research 45: 440–454.
Ball B.A., Barrett J.E., Gooseff M.N., Virginia R.A. and Wall D.H. 2011. Implications of meltwater pulse events for soil biology and biogeochemical cycling in a polar desert. Polar Research 30: 14555.
Bowman G.M. and Hutka J. 2002. Particle size analysis. In: McKenzie N., Coughlan K., Cresswell H. (eds.) Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing, Victoria: 224–239.
Castaldini M., Mirabella A., Sartori G., Fabiani A., Santomassimo F. and Miclaus N. 2002. Soil development and microbial community along an altitudinal transect in Trentino mountains. Developments in Soil Science 28: 217–228.
Cook J., Edwards A., Takeuchi N. and Irvine-Fynn T. 2016. Cryoconite: the dark biological secret of the cryosphere. Progress in Physical Geography 40: 66–111.
Egli M., Mirabella A. and Sartori G. 2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology 102: 307–324.
FAO 2006. Guidelines for Soil Description. 4th edition. FAO, Rome.
Fountain A.G., Lyons, W.B., Burkins M.B., Dana G.L., Doran P.T., Lewis K.J., McKnight D.M., Moorhead D.L., Parsons A.N., Priscu J.C. and Wall, D.H. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49: 961–971.
Foreman C.M., Sattler B., Mikucki J.A., Porazinska D.L. and Priscu J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences 112: G04S32.
Fortner S.K. and Lyons W.B. 2018. Dissolved trace and minor elements in cryoconite holes and supraglacial streams, Canada Glacier, Antarctica. Frontiers in Earth Science 6: 31.
Franzluebbers A.J. 2005. Organic residues, decomposition. In: Hillel D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, Amsterdam: 112–188.
Gagarina E.I. 2004. Micromorphological method of soil investigation, St. Petersburg University Publishing, Saint Petersburg (in Russian).
Gerasimova M.I., Kovda I.V., Lebedeva M.P. and Tursina T.V. 2011. Micromorphological terms: the state of the art in soil microfabric research. Eurasian Soil Science 44: 804–817.
Glazovskaya M.A. 2005a. Subareal cover loams and soils of the inner Tyan-Shan ridges Mnogolikaya geografiya. Razvite idej Innokentiya Petrovicha Gerasimova (k 100-letiyu so dnya rozhdeniya): 132–162 (in Russian).
Glazovskaya M.A. 2005b. On the problem of the relative age of subaerial mountain meadow and mountain forest soils of Tien Shan. Eurasian Soil Science 38: 1265–1276.
Gooseff M.N., McKnight D.M., Runkel R.L. and Duff J.H. 2004. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnological Oceanography 49: 1884–1895.
Gurbanov A.G., Gazeev V.M., Bogatikov O.A., Dokuchaev A.Y., Naumov V.B. and Shevchenko A. V. 2004. Elbrus active Volcano and its geological history. Russian Journal of Earth Sciences 6: 257–277.
Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., Layborn-Parry J. and Sattler B. 2008. Glacial ecosystems. Ecological monographs 78: 41–67.
Jenkinson D.S. and Powlson D.S. 1976. The effects of biocidal treatments on metabolism in soil—V. A method for measuring soil biomass. Soil biology and Biochemistry 8: 209–213.
Kaczorek D. and Sommer M. 2003. Micromorphology, chemistry, and mineralogy of bogiron ores from Poland. Catena 54: 393–402.
Kalińska-Nartisa E., Lamsters K., Karuss J., Krievans M., Recs A. and Meija R. 2017. Fine-grained quartz from cryoconite holes of the Russell Glacier, southwest Greenland – A scanning electron microscopy study. Baltica 30: 63–73.
Kalińska E., Lamsters K., Karuss J., Krievans M., Recs A. and Jeskins J. 2022. Does glacial environment produce glacial mineral grains? Pro-and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617: 101–111.
Konistsev V. and Rogov V. 1977. Micromorphology of cryogenic soils. Eurasian Soil Science 2: 119–125.
Kotlyakov V.M., Chernova L.P., Muraviev A.Y., Khromova T.E. and Zverkova N.M. 2017. Changes of mountain glaciers in the Southern and Northern Hemispheres over the past 160 years. Ice and Snow 57: 453–467.
Kubiëna W.L. 1938. Micropedology. Ames, Iowa: Collegiate Press.
Kubiëna W.L. 1970. Micromorphological features of Soil geography. New Jersey: Rutgers University Press.
Langford H., Hodson A., Banwart S. and Boggild C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51: 87–94.
Lokas E., Zaborska A., Kolicka M., Rozycki M. and Zawierucha K. 2016. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 160: 162–172.
Maksimova E. and Abakumov E. 2017. Micromorphological characteristics of sandy forest soils recently impacted by wildfires in Russia. Solid Earth 8: 553–560.
Marchenko P., Gedueva M. and Dzhappuev D. 2017. Actual and potential exposure to mudflow processes of the upper reaches of the Baksan river. Izvestiya Kabardino-Balkarskogo Nauchnogo Centra RAN 3: 33–43 (in Russian).
Mazurek R., Kowalska J., Gasiorek M. and Setlak M. 2016. Micromorphological and physico- chemical analyses of cultural layers in the urban soil of a medieval city – A case study from Krakow, Poland. Catena 141: 73–84.
Nordenskjold A.E. 1875. Cryoconite found 1870, July 19th–25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geological Magazine 2: 157–162.
Nosenko G.A., Khromova T.E., Rototaeva O.V. and Shakhgedanova M.V. 2013. Glacier reaction to temperature and precipitation change in Central Caucasus, 2001–2010. Ice and Snow 53: 26–33 (in Russian).
Orlov D.S. 1985. Soil Chemistry: A Textbook. Moscow State University, Moscow (in Russian).
Pengerud A., Dignac M.-F., Certini G., Strand L.T., Forte C. and Rasse D.P. 2017. Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135: 277–292.
Polyakov V., Zazovskaya E. and Abakumov V. 2019. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area. Spitsbergen. Polish Polar Research 40: 105–120.
Riebe C.S., Kirchner J.W. and Finkel R.C. 2004. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters 218: 421–434.
Rogov V. and Konistsev V. 2008. The influence of cryogenesis on clay materials. Cryosphere of Earth 12: 51–59.
Sanyal A., Antony R., Samui G. and Thamban M. 2018. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiological Research 208: 32–42.
Stibal M., Tranter M., Benning L.G. and Rehak J. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental microbiology 10: 2172–2178.
Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin section. Soil Science Society of America. Inc. Madison, Wisconsin, USA.
Stoops G. 2009. Evaluation of Kubiena’s contribution to micropedology. Eurasian Soil Science 42: 693–698.
Stoops G. and Eswaran H. 1986. Soil micromorphology. New York: Van Nostrands Reinhold Company.
Solomina O.N., Savoskyl O.S. and Cherkinsky A.E. 1994. Glacier variation, mudflow activity and landscape development in the Aksay Valley (Tien Shan) during the late Holocene. Holocene 4: 25–31.
Świstowiak M., Mroczek P. and Bednarek R. 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – Case study: Brodnica and Chełmno Lake Regions (North Poland.) Catena 137: 583–595.
Takeuchi N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology 34: 409–414.
Takeuchi N., Koshima S. and Seko K. 2001. Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33: 115–122.
Takeuchi N., Nishiyama H. and Li Z. 2010. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology 51: 9–14.
Walkely A. 1947. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of organic soil constituents. Soil Science 63: 251–264.
Weisleitner K., Perras A.K., Unterberger S.H., Moissl-Eichinger C., Andersen D.T. and Sattler B. 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11: 1165.
Wientjes I.G.M., Van De Wal R.S.W., Reichart G.J., Sluijs A. and Oerlemans J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere 5: 589– 601.
WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Zawierucha K., Baccolo G., Di Mauro B., Nawrot A., Szczuciński W. and Kalińska E. 2019. Micromorphological features of mineral matter from cryoconite holes on Arctic (Svalbard) and alpine (the Alps, the Caucasus) glaciers. Polar Science 22: 100482.
Go to article

Authors and Affiliations

Evgeny Abakumov
1
ORCID: ORCID
Rustam Tembotov
2
Ivan Kushnov
1
Vyacheslav Polyakov
1

  1. Saint-Petersburg State University, 7/9 University Embankment, St. Petersburg, 199034, Russia
  2. Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, 37a, I. Armand Street, Nalchik, 360051, Russia
Download PDF Download RIS Download Bibtex

Abstract

This article presents characteristics of the Quaternary deposits and landforms of Ebbadalen, the Nordenskióldbreen foreląnd and the Wordiekammen massif on the basis of geomorphological mapping of this area and a number of geologic profiles A—L studied in detail. Glaciers were much more expanded during the Pleistocene than they are nowadays. Over a period referred to by the present authors as the Petuniabukta-Adolfbukta Stage they occupied the whole Ebbadalen area and the eastern part of Adolfbukta. Marine terraces of 70- 80, 60—65 and 50—55 m a.s.l. were formed earlier. At the turn of the Pleistocene three marine terraces were produced at 40—45, 30—35 and 20—25 m a.s.l. Throughout the Early Holocene transgression (the Ebbadalen Stage = the Thomsondalen Stage) glaciers occurred in nearly the entire Ebbadalen area and occupied a larger part of Adolfbukta than nowadays. During the Middle and Late Holocene marine terraces of 12—15, 5—8, 3—4 and 1—2 m a.s.l. were initiated. Two more glacier advances, the later relating to the Little Ice Age, took place during the Late Holocene

Go to article

Authors and Affiliations

Piotr Kłysz
Leszek Lindner
Leszek Marks
Lech Wysokiński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of investigations of bottom sediments in Hornsund, Wijdefjorden and Isfjorden as well as of the shelf around the Bjornoya. carried out in 1982—1985 by a continuous seismic profiling. Geophysic structures and bottom sediments on the bedrock to a depth of 170 ms have been recognized, particularly in the Hornsund region. The following seismoacoustic units have been distinguished: unit A — bedrock, unit В — till and/or compacted glaciogenic deposit, unit С — glaciomarine ice-front deposit, unit D — glaciomarine mud. These results allowed to present a model of glaciomarine sedimentation in a fiord, fed by warm tidewater glaciers.

Go to article

Authors and Affiliations

Włodzimierz Kowalewski
Stanisław Rudowski
S. Maciej Zalewski
Krystyna Żakowicz
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was fractionation of Zn, Cu, Ni, Pb in the bottom sediments of two small reservoirs: at Krempna on the Wisłoka River and at Zcslwicc on the Dlubnia River. The partitioning of metals for various fractions was performed with the use of Tessier's sequential chemical extraction method. All together five metal fractions were distinguished: exchangeable metals (fraction I), metals bound to carbonates (fraction II), metals bound to hydrate Fe-Mn oxides (fraction III), metals bound to organic matter (fraction IV), and metals bound to minerals (fraction V). The largest quantities of metals were bound with fraction V, the smallest occurred in the forms most easily available for living organisms, in faction I. Proportions ofZn, Ni and Pb in the exchangeable fraction were about 1%. The amounts of metals bound with fraction II were also relatively low, except lor Zn in bottom sediment at the Zeslawice Reservoir. In this bottom sediment the share of Zn bound to carbonates was 33%. Medium metal quantities were associated with hydrate Fe-Mn oxides (fraction III) and with organic matter (fraction IV). Relatively high proportion ofmetals in fraction V and trace amounts ofmetals in fraction I as well as alkaline and neutral reaction of the sediments may prove a potentially low hazard of the metal release in the case of chemical changes in the reservoirs.
Go to article

Authors and Affiliations

Marek Madeyski
Marek Tarnawski
Czesława Jasiewicz
Agnieszka Baran
Download PDF Download RIS Download Bibtex

Abstract

In result of a lew years' investigations or silting of small water reservoirs located in South Poland, intensity ofthe silting process as well as the granulometrie and chemical composition ofbottorn sediments were evaluated. The content of heavy metals i.e. copper, lead and cadmium was determined in samples collected in various parts or five small water reservoirs. The content of heavy metals was appraised according to the regulation of the Minister of Environment, according to the criteria or Polish Geological Institute, of Inspection lor Environmental Protection, of Institute of Soil Science and Plant Cultivation, and according to the Muller's method. The obtained results or determination of the examined heavy metals concentrations were compared with the values or reservoir and river sediment concentrations determined by other authors in Europe. Appraisal or sill quality, respectively to the adopted criteria, showed only an insignificant degree of pollution. Concentrations ofmicroclemcnts do not exceed the toxic concentrations for soils and environment bul may have a harmful influence on living organisms. Recording of changes or heavy metal pollution during many years' operation or small water reservoirs, considering changes occurring in the basins, requires continuation of investigations. It will enable to record changes or pollution during a longer period or operation or reservoirs, also against the background 01· changes occurring in river basins.
Go to article

Authors and Affiliations

Bogusłąw Michalec
Marek Tarnawski
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations into suspended matter sedimentation from mine waters in the settling tank at the Ziemowit coal mine as well as in the relevant model of the settling tank were presented. It was shown that variations in the performance of the tank are caused by improperly accumulated sediment, which generates privileged water flow in superficial layers. Additionally, impetuous periodical water discharges seem to be important. The investigations performed on the settling tank model were focused on estimating the influence of temperature, flow rate and the aeration of mine water on the suspended matter sedimentation. Reasons for inefficiency of the settling tank were determined, and technological changes enhancing the process of suspensions removal were suggested.
Go to article

Authors and Affiliations

Beata Jabłońska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Research concerning temporal variations of suspended sediment concentration during period of high water stages was done in the lower course of the Obra River near Międzyrzecz (Western Poland). The analysis regarding dependence of mean suspended sediment concentration and discharge allowed to determine the way of suspended sediment supply to the river bed during high water stages. It was supposed that exposures of glacial and fluvioglacial sediments in high concave banks could be an important factor influencing the amount of delivery of suspended material. Besides, normal hysteretic loops (oriented clockwise) were observed in cross-sections 4 and 5. That fact would suggest that transported material originates form the Obra River bed or its vicinity. The process of sediment accretion was observed on a fragment of drowned floodplain during high water stages. Collection of samples of freshly deposited sediment and grain size analysis allowed to illustrate the mechanism of forming floodplain sediments. It also was possible to draw near conditions of forming such sediments in the past.
Go to article

Authors and Affiliations

Zygmunt Młynarczyk
Marcin Słowik

This page uses 'cookies'. Learn more