Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper contains a description of a multiscale algorithm based on the boundary element method (BEM) coupled with a discrete atomistic model. The atomic model uses empirical pair-wise potentials to describe interactions between atoms. The Newton-Raphson method is applied to solve a nanoscale model. The continuum domain is modelled by using BEM. The application of BEM reduces the total number of degrees of freedom in the multiscale model. Some numerical results of simulations

at the nanoscale are shown to examine the presented algorithm.

Go to article

Authors and Affiliations

T. Burczynski
A. Mrozek
W. Kuś
Download PDF Download RIS Download Bibtex

Abstract

One of the most effective designs to control the road traffic noise is the T-shaped barrier. The aim of this study was to examine the performance of T-shape noise barriers covered with oblique diffusers using boundary element method. A 2D simulation technique based on the boundary element method (BEM) was used to compute the insertion loss at the center frequency of each one-third octave band. In designed barriers, the top surface of the T-shaped noise barriers was covered with oblique diffusers. The width and height of the barrier stem and the width of its cap were 0.3, 2.7, and 1 m, respectively. Angles of he oblique diffusers were 15, 30, and 45 degrees. The oblique diffusers were placed on the top surface with two designs including same oblique diffusers (SOD) and quadratic residue oblique diffusers (QROD). Barriers considered were made of concrete, an acoustically rigid material. The barrier with characteristics of QROD, forward direction, and sequence of angles (15, 30, and 45 degrees) had the greatest value of the overall A-weighted insertion loss equal to 18.3 to 21.8 dBA at a distance of 20 m with various heights of 0 to 6 m.

Go to article

Authors and Affiliations

Mohammad Reza Monazzam
Milad Abbasi
Saeid Yazdanirad
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a tool for accurate evaluation of high field concentrations near singular lines, such as contours of cracks, notches and grains intersections, in 3D problems solved the BEM. Two types of boundary elements, accounting for singularities, are considered: (i) edge elements, which adjoin a singular line, and (ii) intermediate elements, which while not adjoining the line, are still under strong influence of the singularity. An efficient method to evaluate the influence coefficients and the field intensity factors is suggested for the both types of the elements. The method avoids time expensive numerical evaluation of singular and hypersingular integrals over the element surface by reduction to 1D integrals. The method being general, its details are explained by considering a representative examples for elasticity problems for a piece-wise homogeneous medium with cracks, inclusions and pores. Numerical examples for plane elements illustrate the exposition. The method can be extended for curvilinear elements.

Go to article

Authors and Affiliations

L. Rybarska-Rusinek
Download PDF Download RIS Download Bibtex

Abstract

In the paper the thermal processes proceeding in the solidifying metal are analyzed. The basic energy equation determining the course of solidification contains the component (source function) controlling the phase change. This component is proportional to the solidification rate ¶ fS/¶ t (fS Î [0, 1], is a temporary and local volumetric fraction of solid state). The value of fS can be found, among others, on the basic of laws determining the nucleation and nuclei growth. This approach leads to the so called micro/macro models (the second generation models). The capacity of internal heat source appearing in the equation concerning the macro scale (solidification and cooling of domain considered) results from the phenomena proceeding in the micro scale (nuclei growth). The function fS can be defined as a product of nuclei density N and single grain volume V (a linear model of crystallization) and this approach is applied in the paper presented. The problem discussed consists in the simultaneous identification of two parameters determining a course of solidification. In particular it is assumed that nuclei density N (micro scale) and volumetric specific heat of metal (macro scale) are unknown. Formulated in this way inverse problem is solved using the least squares criterion and gradient methods. The additional information which allows to identify the unknown parameters results from knowledge of cooling curves at the selected set of points from solidifying metal domain. On the stage of numerical realization the boundary element method is used. In the final part of the paper the examples of computations are presented.

Go to article

Authors and Affiliations

B. Mochnacki
E. Majchrzak
Download PDF Download RIS Download Bibtex

Abstract

An isogeometric boundary element method is applied to simulate wave scattering problems governed by the Helmholtz equation. The NURBS (non-uniform rational B-splines) widely used in the CAD (computer aided design) field is applied to represent the geometric model and approximate physical field variables. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The singular integrals existing in Burton-Miller formulation are evaluated directly and accurately using Hadamard’s finite part integration. Fast multipole method is applied to accelerate the solution of the system of equations. It is demonstrated that the isogeometric boundary element method based on NURBS performs better than the conventional approach based on Lagrange basis functions in terms of accuracy, and the use of the fast multipole method both retains the accuracy for isogeometric boundary element method and reduces the computational cost.

Go to article

Authors and Affiliations

Leilei Chen
Wenchang Zhao
Cheng Liu
Haibo Chen
Steffen Marburg
Download PDF Download RIS Download Bibtex

Abstract

This paper describes boundary element method (BEM), experimental and optimization studies conducted to understand the potential of expansion tube coupled micro-perforated cylindrical panel (MPCP) to enhance the acoustic attenuation for in-duct noise control issues. Due to complex structure of the MPCP and for the correct prediction of acoustic attenuation, BEM is adopted on the basis of PLM Simcenter 3D software to compute the sound transmission loss (TL). As the MPCP is cylindrical in-shape with numbers of sub-milimeter holes, additive manufacturing based 3D printing was utilized for the model prototyping to reduce current design limitation and enabled fast fabrication. The TL measurement based two-load method is adopted for modal validation. Subsequently, a parametric studies of the MPCP concerning the perforation hole diameter, perforation ratio and depth of air space are carried out to investigate the acoustical performance. Optimization via response surface method (RSM) is used as it allows evaluating the effects of multiple parameters as required in this study. The model validation result shows that the error between the BEM and and measured values is relatively small and show a good agreement. The R-square value is 0.89. The finding from parametric study shows that a widen peak attenuation can be achieve by reducing the perforation hole diameter and one way to increase the transmission loss amplitude is by increasing the air cavity depth. Finally, the optimized MPCP model was adopted to the commercial vacuum cleaner for the verification. The sound pressure level (SPL) of the vacuum cleaner is significantly attenuated within the objective frequency of 1.7 kHz and its A-weighted SPL is reduced by 1.8 dB.
Go to article

Bibliography

1. Andersen K.S. (2008), Analyzing muffler performance using the transfer matrix method, Comsol Conference, https://www.comsol.com/paper/analyzing-muffler-per formance-using-the-transfer-matrix-method-5079.
2. Aziz M.S.A., Abdullah M.Z., Khor C.Y., Azid I.A. (2015), Optimization of pin through hole connector in thermal fluid–structure interaction analysis of wave soldering process using response surface methodology, Simulation Modelling Practice and Theory, 57: 45–57, doi: 10.1016/j.simpat.2015.06.001.
3. Citarella R., Landi M. (2011), Acoustic analysis of an exhaust manifold by Indirect Boundary Element Method, The Open Mechanical Engineering Journal, 5: 138–151, doi: 10.2174/1874155X01105010138.
4. Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3(2): 105–116, doi: 10.1016/0003-682X(70)90031-9.
5. Fu J., Chen W., Tang Y., Yuan W., Li G., Li Y. (2015), Modification of exhaust muffler of a diesel engine based on finite element method acoustic analysis, Advances in Mechanical Engineering, 7(4): 1-11, doi: 10.1177/1687814015575954.
6. Gaeta R.J., Ahuja K.K. (2016), Effect of orifice shape on acoustic impedance, International Journal of Aeroacoustics, 15(4–5): 474–495, doi: 10.1177/1475 472X16642133.
7. Ganguli R. (2002), Optimum design of a helicopter rotor for low vibration using aeroelastic analysis and response surface methods, Journal of Sound and Vibration, 258(2): 327–344, doi: 10.1006/jsvi.2002.5179.
8. Ishak M.H.H., Ismail F., Aziz M.S.A., Abdullah M.Z., Abas A. (2019), Optimization of 3D IC stacking chip on molded encapsulation process: a response surface methodology approach, The International Journal of Advanced Manufacturing Technology, 103(1–4): 1139– 1153, doi: 10.1007/s00170-019-03525-4.
9. Ji Z.L., Selamet A. (2000), Boundary element analysis of three-pass perforated duct mufflers, Noise Control Engineering Journal, 48(5): 151–156, doi: 10.3397/1.2827962.
10. Kallias A.N., Imran Rafiq M. (2013), Performance assessment of corroding RC beams using response surface methodology, Engineering Structures, 49: 671– 685, doi: 10.1016/j.engstruct.2012.11.015.
11. Leong W.C., Abdullah M.Z., Khor C.Y. (2013), Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology, Microelectronics Reliability, 53(12): 1996–2004, doi: 10.1016/j.microrel.2013.06.008.
12. Li Z., Liang X. (2007), Vibro-acoustic analysis and optimization of damping structure with Response Surface Method, Materials & Design, 28(7): 1999–2007, doi: 10.1016/j.matdes.2006.07.006.
13. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25–32, doi: 10.1016/j.apacoust.2017.01.032.
14. Lu C., Chen W., Liu Z., Du S., Zhu Y. (2019), Pilot study on compact wideband micro-perforated muffler with a serial-parallel coupling mode, Applied Acoustics, 148: 141–150, doi: 10.1016/j.apacoust.2018.12.001.
15. Maa D.Y. (1975), Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica, 18(1): 55–71, doi: 10.1360/ya1975-18-1-55.
16. Munjal M.L. (1987), Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons.
17. Na Y., Lancaster J., Casali J., Cho G. (2007), Sound absorption coefficients of micro-fiber fabrics by reverberation room method, Textile Research Journal, 77(5): 330–335, doi: 10.1177/0040517507078743.
18. Qian Y.J., Kong D.Y., Liu S.M., Sun S.M., Zhao Z. (2013), Investigation on micro-perforated panel absorber with ultra-micro perforations, Applied Acoustics, 74(7): 931–935, doi: 10.1016/j.apacoust.2013.01.009.
19. Qin X., Wang Y., Lu C., Huang S., Zheng H., Shen C. (2016), Structural acoustics analysis and optimization of an enclosed box-damped structure based on response surface methodology, Materials & Design, 103: 236–243, doi: 10.1016/j.matdes.2016.04.063.
20. C S.W. et al. (2019), Improvement of the sound absorption of flexible micro-perforated panels by local resonances, Mechanical Systems and Signal Processing, 117: 138–156, doi: 10.1016/j.ymssp.2018.07.046.
21. Selamet A., Ji Z.L. (1999), Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet, Journal of Sound and Vibration, 223(2): 197–212, doi: 10.1006/jsvi.1998.2138.
22. Selamet A., Ji Z.L., Radavich P.M. (1998), Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. Comparison with experimental and computational studies, Journal of Sound and Vibration, 213(4): 619–641, doi: 10.1006/jsvi.1998.1515.
23. Tan W.-H., Ripin Z.M. (2013), Analysis of exhaust muffler with micro-perforated panel, Journal of Vibroengineering, 15(2): 558–573.
24. Tan W.-H., Ripin Z.M. (2016), Optimization of double-layered micro-perforated panels with vibroacoustic effect, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(3): 745–760, doi: 10.1007/s40430-014-0274-4.
25. Vasile O. (2010), Transmission loss assessment for a muffler by boundary element method approach, Analele Universitaµii “Eftimie Murgu”, 17(1): 233–242, http://anale-ing.uem.ro/2010/26_C.pdf.
26. Wang Y., Qin X., Huang S., Lu L., Zhang Q., Feng J. (2017), Structural-borne acoustics analysis and multi-objective optimization by using panel acoustic participation and response surface methodology, Applied Acoustics, 116: 139–151, doi: 10.1016/ j.apacoust.2016.09.013.
27. Wu M.Q. (1997), Micro-perforated panels for duct silencing, Noise Control Engineering Journal, 45(2): 69– 77.
28. Yuksel E., Kamci G., Basdogan I. (2012), Vibroacoustic design optimization study to improve the sound pressure level inside the passenger cabin, Journal of Vibration and Acoustics, 134(6): 061017-1–061017- 9, doi: 10.1115/1.4007678.
29. Zhenlin J., Qiang M., Zhihua Z. (1994), Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow, Journal of Sound and Vibration, 173(1): 57–71, doi: 10.1006/jsvi.1994.1217.
Go to article

Authors and Affiliations

Mohamad Izudin Alisah
1
Lu-Ean Ooi
1
Zaidi Mohd Ripin
1
Ahmad Fadzli Yahaya
2
Kelvin Ho
2

  1. The Vibration Lab, School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang, Malaysia
  2. Dyson Manufacturing, 81400 Senai, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
Go to article

Authors and Affiliations

Ying-Chun Chang
Ho-Chih Cheng
Min-Chie Chiuminchie
Yuan-Hung Chien

This page uses 'cookies'. Learn more