Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

problem of sound radiation from an unflanged duct with mean flow of the medium taking into account existence of all allowable wave modes and, in particular, occurrence of the so-called unstable wave, which results in decay of radiation on and in vicinity of the duct axis. The flow is assumed to be uniform with the source of flow located inside the duct, which is the case frequently occurring in industrial systems. Mathematical considerations, accounting for multimodal and multifrequency excitation and diffraction at the duct outlet, are based on the model of the semi-infinite unflanged hard duct with flow. In the experimental set-up a fan, mounted inside the duct served as the source of flow and noise at the same time modelled as an array of uncorrelated sources of broadband noise, what led to the axisymmetrical shape of the sound pressure directivity characteristics. The theoretical analysis was carried out for the root mean square acoustic pressure in the far-field conditions. Experimental results are presented in the form of the measured pressure directivity characteristics obtained for uniform flow directed inwards and outwards the duct compared to this observed for the zero-flow case. The directivity was measured in one-third octave bands throughout five octaves (500 Hz - 16 kHz) which, for a duct with radius of 0.08 m, corresponds to the range 0.74-23.65 in the reduced frequency ka (Helmholtz number) domain. The results obtained are consistent with theoretical solutions presented by Munt and Savkar, according to whom the weakening of the on-axis and close-to-axis radiation should take place in the presence of medium flow. Experimental results of the present paper indicate that this effect is observed even for the Mach number as low as 0.036.

Go to article

Authors and Affiliations

Łukasz Gorazd
Jerzy Jurkiewicz
Anna Snakowska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the concept of a fully planar treeshaped antenna with quasi-fractal geometry. The shape of the proposed radiator is based on a multi-resonant structure. Developed planar tree has symmetrical branches with different length and is fed by a coplanar waveguide (CPW) with modified edge of the ground plane. The antenna of size 29 mm x25 mm has been designed on Taconic - RF-35 substrate (r = 3.5, tg= 0.0018, h = 0.762 mm). The paper shows simulated and measured characteristics of return loss, as well as measured radiation patterns. The proposed antenna could be a good candidate for broadband applications (for instance: wideband imaging for medical application and weather monitoring radars in satellite communication etc.)

Go to article

Authors and Affiliations

Małgorzata Malinowska
Marek Kitliński
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose a multi-layer micro-perforated panel structure based on a curled space for broadband sound absorption at low frequencies, which increases the number of perforated panel layers in a limited space using a curled space. The absorption coefficients of the structure under plane wave conditions were calculated using the transfer matrix method and the finite element method. It is demonstrated that the multilayer micro-perforated panel structure can ensure high absorption (consistently over 90%) in the frequency range of 400~5000 Hz. The sound absorption mechanism of the multi-layer micro-perforated panel structure is investigated by using the acoustic impedance along with the reflection coefficient of the complex frequency surface. In addition, we also discuss the effects of the micro-perforated panel parameters on the structural sound absorption coefficient. The results show that the proposed multi-layer micro-perforated panel structure provides an excellent solution for sound absorption in a limited space.
Go to article

Authors and Affiliations

Jiaming Chu
1
Xiao Liang
1 2
Zhen Yang
1
Haofeng Liang
1
Tao Chen
1
Liang Su
1
Zhuo Zhou
3

  1. School of Mechanical Engineering, Xiangtan University, Xiangtan, China
  2. Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Foshan, Guangdong, China
  3. School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shanxi, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a broadband Switch-Mode Power Amplifier (SMPA) using a Band-Pass Filter (BPF) at the Output Matching Network (OMN). The proposed SMPA integrates a microstrip BPF as an output impedance matching network to significantly reduce the final circuit size. The microstrip lines of the filter simultaneously play the role of filtering and impedance matching. This proposed method reduces the size of the PA and reduces the power dissipation as much as possible. The BPF is placed at the output of the circuit using microstrip lines and the RT Duroid 6006 substrate. This BPF covers a wide bandwidth ranging from 3.0 GHz to 4.4 GHz. Simulation results show 9-14 dB gain with 44 - 56.6 % drain efficiency ( DE %), and the output power of 39 – 41.3 dBm would be achieved across the frequency band from 3.0 GHz to 4.4 GHz.
Go to article

Authors and Affiliations

Farzad Moloudi
1
Omid Eslamipour
1
Ali Khoshnoud
2

  1. University of Kurdistan, Iran
  2. Iran University of Science and Technology, Iran
Download PDF Download RIS Download Bibtex

Abstract

In the framework of the 4th International Polar Year Panel “Plate Tectonics and Polar Gateways” the international project “The Dynamic Continental Margin Between the Mid-Atlantic-Ridge System (Mohns Ridge, Knipovich Ridge) and the Bear Island Region” was undertaken in 2007-2008. As a part of this project a new three-component seismic broadband station was installed in September 2007 in the area of the Polish Polar Station Hornsund in Southern Spitsbergen . The new HSPB station has the coordinates: Φ = 77.0019°N, λ = 15.5332°E, H = 11 m a.s.l. During the first years of operation a number of good quality teleseismic events were recorded. This gives the opportunity for a first determination of crustal and mantle structure beneath the station by using receiver function (RF) and SKS splitting techniques. The Moho depth determined using RF is about 32 km beneath HSPB. Significant amplitudes on the transverse components of the RF indicate a shallowly dipping discontinuity (sedimentary-basement) towards the south-west. The fast polarization of SKS phases is near parallel to the border between the continental and the oceanic crust and the Hornsund fault (α = 151.8°). The average time delay dt between “fast” and “slow” directions is 0.68 s, which implies ca. 2% anisotropy in a 100- 200 km thick layer in the mantle.

Go to article

Authors and Affiliations

Monika Wilde-Piórko
Marek Grad
Paweł Wiejacz
Johannes Schweitzer
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the formulation and implementation of the broadband finite element time domain algorithm. The presented formalism is valid to analysis of electromagnetic phenomena in linear, frequency selective materials. The complex profile of permittivity of materials is approximated using a set of the Lorentz resonance models. The solution of the integro-differential second order equation is obtained using a singlestep integration scheme and a recursive convolution algorithm. The discussed formulation enables to adopt the structure of the narrowband part as well as the phase of calculation of the convolution equations for the subsequent components. The properties of the algorithm are validated using a finite difference broadband algorithm.

Go to article

Authors and Affiliations

Bogusław Butryło
Download PDF Download RIS Download Bibtex

Abstract

This article provides a thorough description of a range of non-standard application cases in which EMC laboratories can be used other than those traditionally associated with this kind of facilities. The areas covered here include investigations of: wireless and radio systems (such as IoT and broadband radio systems) also that require ultra-high operational dynamic range, emulation of interference-free and/or heavilymultipath propagation environment, shielding effectiveness of cabinets and materials (i.e. thin, light and flexible as textiles as well as heavy and thick such as building construction elements).

Go to article

Authors and Affiliations

Kamil Staniec
Zbigniew Jóskiewicz
Jarosław Janukiewicz
Tadeusz Więckowski

This page uses 'cookies'. Learn more