Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the influence of feed on the pharmacokinetics of flumequine (FLU) administered to broiler chickens as follows: directly into the crop (10 mg/kg of BW) of fasted (group I/control) and non-fasted chickens (group II), or administered continu- ously with drinking water (1 g/L for 72 h) and with unlimited access to feed (group III). Plasma concentration of FLU was determined by high-performance liquid chromatography with fluo- rescence detection. In group II, a significant decrease in the maximum concentration (Cmax = 2.13±0.7 μg/mL) and the area under the concentration curve from zero to infinity (AUC0→∞ = 7.47±2.41 μg·h/mL) was noted as compared to the control group (Cmax = 4.11±1.68 μg/mL and AUC0→∞ = 18.17±6.85 μg·h/mL, respectively). In group III, the decrease in AUC was signifi- cant only in the first 3 hours (AUC0→3 = 5.02±1.34 μg·h/mL) as compared to the control group (AUC0→3 = 7.79±3.29 μg·h/mL). The results indicate that feed reduced the bioavailability of FLU from the gastrointestinal tract by at least 50% after the administration of a single oral dose. However, continuous administration of FLU with drinking water could compensate for the feed-induced decrease in absorption after single oral dose.

Go to article

Authors and Affiliations

H. Madej-Śmiechowska
A. Orzoł
A. Jasiecka-Mikołajczyk
H. Ziółkowski
J.J. Jaroszewski
Download PDF Download RIS Download Bibtex

Abstract

Transmissible Viral Proventriculitis (TVP) is a disease of chickens which contributes to significant production losses. Recent reports indicate the role of chicken proventricular necrosis virus (CPNV) in the development of TVP. However, the relationship between CPNV and TVP is inconclusive and it has been addressed in just a few reports.
Given the above, a study was conducted to identify the relationship between TVP and CPNV prevalence in broiler chickens in Poland.
The study was carried out on 35 proventriculi samples sent for histopathological (HP) examination to the Faculty of Veterinary Medicine in Olsztyn between 2017 and 2019. After HP examination, TVP positive samples were processed for CPNV identification by RT-PCR. TVP was the most common pathological condition of proventriculi (23 cases). CPNV was identified in 10 out of those 23 cases. The average HP score, and the average necrosis and infiltration score for CPNV-positive samples was significantly higher than in CPNV-negative ones. The average age of the CPNV-positive chickens was significantly lower than in CPNV-negative birds.
Our study confirms the role of CPNV in TVP pathogenesis and it seems that preservation of the proventriculi in the early stages of the disease, when the lesions are more pronounced, should result in a greater probability of CPNV detection.
Go to article

Bibliography


Dormitorio TV, Giambrone JJ, Hoerr FJ (2007) Transmissible proventriculitis in broilers. Avian Pathol 36: 87-91.
Goodwin MA, Hafner S, Bounous DI, Latimer KS, Player EC, Niagro FD, Campagnoli RP, Brown J (1996) Viral proventriculitis in chick-ens. Avian Pathol 25: 369-379.
Grau-Roma L, Marco A, Martinez J, Chaves A, Dolz R, Majo N (2010) Infectious bursal disease - like virus in case of transmissible viral proventriculitis. Vet Rec 167: 836.
Grau-Roma L, Reid K, de Brot S, Jennison R, Barrow P, Sánchez R, Nofrarías M, Clark M, Majó N (2016) Detection of transmissible viral proventriculitis and Chicken proventricular necrosis virus in the UK. Avian Pathol 46: 68-75.
Grau-Roma L, Schock A, Nofrarías M, Ali Wali N, de Fraga AP, Garcia-Rueda C, de Brot S, Majó N (2020) Retrospective study on trans-missible viral proventriculitis and chicken proventricular necrosis virus (CPNV) in the UK. Avian Pathol 49: 99-105.
Guy JS, West AM, Fuller FJ (2011a) Physical and genomic characteristics identify chicken proventricular necrosis virus (R11/3 virus) as a novel birnavirus. Avian Dis 55: 2-7.
Guy JS, West MA, Fuller FJ, Marusak RA, Shivaprasad HL, Davis JL, Fletcher OJ (2011b) Detection of chicken proventricular necrosis virus (R11/3 virus) in experimental and naturally occurring cases of transmissible viral proventriculitis with the use of a reverse transcriptase – PCR procedure. Avian Dis 55: 70-75.
Hafner S, Guy JS (2013) Proventriculitis and proventricular dilatation of broiler chickens. In: Swayne DE, Glisson JR, McDouglald LR, Nolan LK, Suarez DL, Nair VL (eds) Diseases of poultry. 13th ed., Wiley-Blackwell Publishing, Ames, USA, pp 1328-1332.
Kim HR, Yoon SJ, Lee HS, Kwon YK (2015) Identification of a picornavirus from chickens with transmissible viral proventriculitis using metagenomic analysis. Arch Virol 160: 701-709.
Kouwenhoven B, Davelaar FG, Van Walsum J (1978) Infectious proventriculitis causing runting in broilers. Avian Pathol 7: 183-187.
Leão PA, Amaral CI, Santos WH, Moreira MV, de Oliveira LB, Costa EA, Resende M, Wenceslau R, Ecco R (2021) Retrospective and prospective studies of transmissible viral proventriculitis in broiler chickens in Brazil. J Vet Diagn Invest 33: 605-610.
Marquerie J, Leon O, Albaric O, Guy JS, Guerin JL (2011) Birnavirus-associated proventriculitis in French broiler chickens. Vet Rec 169: 394-396.
Śmiałek M, Gesek M, Dziewulska D, Niczyporuk JS, Koncicki A (2020) Transmissible Viral Proventriculitis Caused by Chicken Proventric-ular Necrosis Virus Displaying Serological Cross-Reactivity with IBDV. Animals 11: 8, doi: https://doi.org/10.3390/ani11010008
Śmiałek M, Gesek M, Śmiałek A, Koncicki A (2017) Identification of Transmissible Viral Proventriculitis (TVP) in broiler chickens in Po-land. Pol J Vet Sci 20: 417-420.
Yu L, Jiang Y, Low S, Wang Z, Nam SJ, Liu W, Kwangac J (2001) Characterization of three infectious bronchitis virus isolates from China associated with proventriculus in vaccinated chickens. Avian Dis 45: 416-424.
Go to article

Authors and Affiliations

M. Śmiałek
1
M. Gesek
2
D. Dziewulska
1
A. Koncicki
1

  1. Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
  2. Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the effect of the addition of fungal solid-state fermented product (FP) enriched with gamma-linolenic acid (GLA) and β-carotene to feed on the haematological and immunological parameters of broiler chickens. Eighty 1-day-old COBB 500 broiler chickens were divided into two groups. The control group was fed with basic diets and chickens of the experimental group received 10% addition of FP, while the amount of basic diet was reduced. FP was produced during a solid-state fermentation (SSF) process using Umbellopsis isabellina CCF2412 as a producer of GLA and β-carotene. After 38 days of feeding, blood samples were collected and analyzed. Lower total and LDL-cholesterol values were measured in blood samples of the experimental animals (p<0.05). However, the triacylglycerol content was higher in the experimental group (p<0.05). Significantly higher levels of hematocrit and hemoglobin, and lower eosinophil and basophil content in the experimental group were recorded (p<0.05). The experimental group showed higher numbers of B lymphocytes and greater phagocytic capacity (p<0.05). The results indicate that a fermented product produced by SSF, using the fungal strain Umbellopsis isabellina, is a good source of GLA and β-carotene, which can influence the biochemical, hematological and immunological parameters of broiler chickens.

Go to article

Authors and Affiliations

M. Bartkovský
D. Mudroňová
D. Marcinčáková
T. Klempová
E. Sesztáková
I. Maskaľová
V. Karaffová
I. Jaďuttová
M. Čertík
M. Hudák
S. Marcinčák

This page uses 'cookies'. Learn more