Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper the paths of bubbles emitted from the brass nozzle with inner diameter equal to 1.6 mm have been analyzed. The mean frequency of bubble departure was in the range from 2 to 65.1 Hz. Bubble paths have been recorded using a high speed camera. The image analysis technique has been used to obtain the bubble paths for different mean frequencies of bubble departures. The multifractal analysis (WTMM - wavelet transform modulus maxima methodology) has been used to investigate the properties of bubble paths. It has been shown that bubble paths are the multifractals and the influence of previously departing bubbles on bubble trajectory is significant for bubble departure frequency fb > 30 Hz.

Go to article

Authors and Affiliations

Romuald Mosdorf
Tomasz Wyszkowski
Kamil Dąbrowski
Download PDF Download RIS Download Bibtex

Abstract

In the experiment, bubbles were generated from two brass nozzles with inner diameters of 1.1 mm. They were submerged in the glass tank filled with distilled water. There have been measured the air pressure fluctuations and the signal from the laser-phototransistor sensor. For analysis of the pressure signal the correlation (the normalized cross - correlation exponent) and non-linear analyses have been used. It has been shown that hydrodynamic interactions between bubbles can lead to bubble departure synchronization. In this case the bubble departures become periodic. The results of calculation of correlation dimension and the largest Lyapunov exponent confirm that hydrodynamic bubble interactions observed for 4 mm spacing between nozzels cause the periodic bubble departures from two neighbouring nozzles.
Go to article

Authors and Affiliations

Romuald Mosdorf
Tomasz Wyszkowski
Download PDF Download RIS Download Bibtex

Abstract

Designers of all types of equipment applied in oxygenation and aeration need to get to know the mechanism behind the gas bubble formation. This paper presents a measurement method used for determination of parameters of bubbles forming at jet attachment from which the bubles are displaced upward. The measuring system is based on an optical tomograph containing five projections. An image from the tomograph contains shapes of the forming bubbles and determine their volumes and formation rate. Additionally, this paper presents selected theoretical models known from literature. The measurement results have been compared with simple theoretical models predictions. The paper also contains a study of the potential to apply the presented method for determination of bubble structures and observation of intermediate states.

Go to article

Authors and Affiliations

Mariusz R. Rząsa
Download PDF Download RIS Download Bibtex

Abstract

The hulls of naval ships are exposed to forces and moments coming from internal and external sources. Usually, these are interactions that can be described mathematically by harmonic and polyharmonic functions. The shock of UNDEX type (underwater explosion) works completely differently and its time waveform is difficult to describe with mathematical functions as pressure vs. time. The paper presents a simplification of physical and mathematical models of 1-D kickoff pressure whose aim is performance the simulation of the external force of the detonation wave. The proposed models were verified and tuned on naval, sea trials. The main goals of the proposed models are to perform simulation calculations of the detonation pressure for different explosion charge weights from different distances of the UNDEX epicentre for the design process of machine foundation. The effects of pressure are transformed as impulses exposed on shock absorber mounted at light shock machine.

Go to article

Authors and Affiliations

Andrzej Grządziela
Agata Załęska-Fornal
Marcin Kluczyk
Download PDF Download RIS Download Bibtex

Abstract

The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
Go to article

Authors and Affiliations

Noor Fifinatasha Shahedan
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Norsuria Mahmed
1 2
ORCID: ORCID
Liew Yun Ming
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Ikmal Hakem A Aziz
1
ORCID: ORCID
Aeslina Abdul Kadir
3
ORCID: ORCID
Andrei Victor Sandu
4
ORCID: ORCID
Mohd Fathullah Ghazali
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, Johor, Malaysia
  4. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Feasibility of a model of gas bubble break-up and coalescence in an air-lift column enabling determination of bubble size distributions in a mixer with a self-aspirating impeller has been attempted in this paper. According to velocity measurements made by the PIV method with a self-aspirating impeller and Smagorinski’s model, the spatial distribution of turbulent energy dissipation rate close to the impeller was determined. This allowed to positively verify the dependence of gas bubble velocity used in the model, in relation to turbulent energy dissipation rate. Furthermore, the range of the eddy sizes capable of breaking up the gas bubbles was determined. The verified model was found to be greatly useful, but because of the simplifying assumptions some discrepancies of experimental and model results were observed.

Go to article

Authors and Affiliations

Jacek Stelmach
Czesław Kuncewicz
Radosław Musoski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a photographic analysis of the break-up of gas bubbles flowing out of the outlets of a self-aspirating disk impeller. It was found that bubbles detached from the interfacial surface most often disintegrate to form several daughter bubbles. Further in the work, the population balance model was verified for several formulas describing the bubble break-up rate. It has been found that a good fit to the experimental data is provided by the formula given by Laakkonen for 5 daughter bubbles. The possibility of using the Monte Carlo method to model the bubble break-up processwas also determined. For this method, a good agreement of results was achieved for the division into a maximum of 10 daughter bubbles. In the case of this method it was also found necessary to use the function of break-up frequency at a higher rate for smaller bubbles.

Go to article

Authors and Affiliations

Jacek Stelmach
ORCID: ORCID
Radosław Musowski
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of flux type and amounts on recovery behavior of aluminum alloy during the melting process of Al can scrap. The heat treatment was conducted to remove the coating layer on the surface of can scrap at 500°C for 30 min. The molten metal treatment of the scrap was performed at 750°C in a high-frequency induction furnace with different flux types and amounts. It was observed that the optimum condition for recovery of Al alloy was to add about 3 wt.% flux with a salt and MgCl2 mixing ratio of 70:30 during melting process. The mechanical properties of recovered Al alloy were about 254.8 MPa, which is similar to that of the virgin Al5083 alloy.
Go to article

Bibliography

[1] Y. Nam, J. Choi, Y.-C. Jang, J.-H. Lee, J. of Korea Society of Waste Management 33 (1), 29 (2016).
[2] E .-K. Jeon, J.-Y. Park, I.-M. Park, J. Korea Foundry Society 27 (1), 20 (2007).
[3] V . Güley, N. Ben Khalifa, A.E. Tekkaya, Int. J. Mater. Form. 3, 853 (2010).
[4] J. Cui, H.J. Roven, Trans. Nonferrous Met. Soc. China 20, 2057 (2010).
[5] M .A. Rabah, Waste Manage. 23, 173 (2003).
[6] S .N. Ab Rahim, M.A. Lajis, S. Ariffin, Procedia CIRP 26, 761 (2015).
[7] S . Capuzzi, G. Timelli, Metals 8, 249 (2018).
[8] A. Abdulkadir, A. Ajayi, M.I. Hassan, Energy Procedia 75, 2009 (2015).
[9] C. Han, S.H. Son, B.-D. Ahn, D.-G. Kim, M.S. Lee, Y.H. Kim, J. of Korean Inst. of Resources Recycling 26 (4), 71 (2017).
[10] M .A Bae, H.D. Kim, M.S. Lee, J. Korea Acad. Industr. Coop. Soc. 14 (10), 4672 (2013).
[11] S .O. Adeosun, M.A. Usman, W.A. Ayoola, I.O. Sekunowo, ISRN Polymer Sci. 2012, 1 (2012).
[12] T.A. Utigard, K. Friesen, R.R. Roy, J. Lim, A. Silny, C. Dupuis, JOM 50, 38 (1998).
[13] D. Bajarea, A. Korjakinsa, J. Kazjonovsa, I. Rozenstrauhab, J. Eur. Ceram. Soc. 32 (1), 141 (2012).
[14] O . Majidi, S.G. Shabestari, M.R. Aboutalebi, J. Mater. Process. Technol. 182, 450 (2007).
[15] S . Begum, J. Chem. Soc. Pak. 35 (6), 1490 (2013).
[16] B. Wan, W. Li, F. Liu, T. Lu, S. Jin, K. Wang, A. Yi, J. Tian, W. Chen, J. Mater. Res. Technol. 9 (3), 3447 (2020).
[17] J.H. L. V. Linden, D.L. Stewart Jr., Essential Readings in Light Metals 3, 173 (2013).
[18] T.A. Utigard, R.R. Roy, K. Friesen, High Temp. Mater. Process. 20, 303 (2001).
Go to article

Authors and Affiliations

Chulwoong Han
1
ORCID: ORCID
Yong Hwan Kim
1
ORCID: ORCID
Dae Geun Kim
2
ORCID: ORCID
Man Seung Lee
3
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Research Institute of Advanced Manufacturing & Mat erials, 156 Gaetbeol Rd., Yeonsu-gu, Incheon,406-840, Korea
  2. Institute for Advanced Engineering Materials Science and Chemical Engineering Center , Korea
  3. Mokpo National University, Department of Advanced Materials Science and Engineering, Korea
Download PDF Download RIS Download Bibtex

Abstract

Controlling the bubble size is a major concern in enhancing transport performance in gas-liquid systems. The role of wettability of diffuser surface on bubble size is the subject of the current work. The study inspects the contact angle of a set of liquids on HP ceramic diffusers using the Washburn method. The results demonstrate that organic liquids like toluene, methanol–water (1:1 v/v), ethanol– water (1:1 v/v) and decane have small contact angles of 12.9°, 37.5°, 24.4° and 22.5° respectively. Water has a lower wettability than the organic compounds where the contact angle was about 67.4°. The effect of wettability of the bubble size is investigated by measuring the size of air bubble produced using the same diffuser material. The results of bubble size measurement demonstrates that with liquids of small contact angle, i.e. good wetting properties, small bubble sizes are produced in comparison with liquids with a higher contact angle. The study demonstrates the viability of Washburn method in characterization of wettability of porous diffuser, which was verified by measuring the bubble size produced. A high reduction in bubble size can be obtained by a carefully chosen diffuser material that provides better wettability.
Go to article

Authors and Affiliations

Atheer M.G. Al-Yaqoobi
1
William B. Zimmerman
2

  1. Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Al-jadriya, Iraq
  2. Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Download PDF Download RIS Download Bibtex

Abstract

Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor.
Go to article

Authors and Affiliations

Nicolas Ratkovich
Thomas R. Bentzen
Michael R. Rasmussen
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is a theoretical analysis of propagation of high-intensity acoustic waves throughout a bubble layer. A simple model in the form of a layer with uniformly distributed mono-size spherical bubbles is considered. The mathematical model of the pressure wave’s propagation in a bubbly liquid layer is constructed using the linear non-dissipative wave equation and assuming that oscillations of a single bubble satisfy the Rayleigh-Plesset equation. The models of the phase sound speed, changes of resonant frequency of bubbles and damping coefficients in a bubbly liquid are compared and discussed. The relations between transmitted and reflected waves and their second harmonic amplitudes are analyzed. A numerical analysis is carried out for different environmental parameters such as layer thicknesses and values of the volume fraction as well as for different parameters of generated signals. Examples of results of the numerical modeling are presented.

Go to article

Authors and Affiliations

Anna Baranowska
Download PDF Download RIS Download Bibtex

Abstract

Based on hydrodynamic data, Kato-Wen and Kunii-Levenspiel bubbling-bed model parameters, supplemented with assumptions characteristic for tested confined fluidised bed, were analysed. The calculated bubble diameters and the bed composition proved essential influence of inter-particle space of packed compacted component onto fluidisation character. The usability of the conducted model analysis was also confirmed. Finally, it can be concluded that Kunii-Levenspiel and Kato- Wen models with characteristic assumptions (for the tested bed) can be applied for calculation of the confined fluidised bed layer porosity. Discrepancies of ε f value, determined on the basis of the above mentioned bubbling-bed models do not exceed 8% of the error. The model parameters obtained from the matching the model relations to experimental data εf = f(u0) allow an analysis of the fluidisation character as well as gas velocity regime and the fluidised bed structural composition identification. A description of the regime of the process in which confined fluidised bed is characterised with an increase of mass and heat transfer rate is also possible using relation (17) derived in the present study.

Go to article

Authors and Affiliations

Piotr Zabierowski
Download PDF Download RIS Download Bibtex

Abstract

The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996) typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b), Lehr et al. (2002) and Alopaeus et al. (2002) were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

Go to article

Authors and Affiliations

Zbyněk Kálal
Milan Jahoda
Ivan Fořt
Download PDF Download RIS Download Bibtex

Abstract

An optical tomograph in which a tested object is illuminated from five directions has been presented in the paper. The measurements of luminous intensity after changing into discrete signals (0 or 1) in the detectors equipped with 64 optical sensors were subjected to reconstruction by means of the matrix algorithm. Detailed description of the measuring sensor, as well as the principles of operation of the electronic system, has been given in the paper. Optical phenomena occurring at the phase boundary while transmitted through the sensor wall and phenomena inside the measuring space have also been taken into account. The method of the sensor calibration has been analysed and a way of technical solution of the problem under consideration has been discussed. The elaborated method has been tested using objects of the known shape and dimensions. It was found that reconstruction of the shapes of moving bubbles and determination of their main parameters is also possible with a reasonable accuracy.

Go to article

Authors and Affiliations

Mariusz R. Rząsa
Download PDF Download RIS Download Bibtex

Abstract

The main topic of this study is the experimental measurement and mathematical modelling of global gas hold-up and bubble size distribution in an aerated stirred vessel using the population balance method. The air-water system consisted of a mixing tank of diameter T = 0.29 m, which was equipped with a six-bladed Rushton turbine. Calculations were performed with CFD software CFX 14.5. Turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the homogeneous MUSIG method with 24 bubble size groups. To achieve a better prediction of the turbulent quantities, simulations were performed with much finer meshes than those that have been adopted so far for bubble size distribution modelling. Several different drag coefficient correlations were implemented in the solver, and their influence on the results was studied. Turbulent drag correction to reduce the bubble slip velocity proved to be essential to achieve agreement of the simulated gas distribution with experiments. To model the disintegration of bubbles, the widely adopted breakup model by Luo & Svendsen was used. However, its applicability was questioned.

Go to article

Authors and Affiliations

Zbyněk Kálal
Milan Jahoda
Ivan Fořt
Download PDF Download RIS Download Bibtex

Abstract

Electroflotation is used in the water treatment industry for the recovery of suspended particles. In this study the bubble formation and release of hydrogen bubbles generated electrolytically from a platinum cathode was investigated. Previously, it was found that both the growth rate and detachment diameter increased with increasing wire diameter. Conversely, current density had little effect on the released bubble size. It was also found that the detached bubbles rapidly increased in volume as they rose through the liquid as a result of decreasing hydrostatic pressure and high levels of dissolved hydrogen gas in the surrounding liquid. The experimental system was computationally modelled using a Lagrangian-Eulerian Discrete Particle approach. It was revealed that desorption of gaseous solutes from the electrolyte solution, other than hydrogen, may have a significant impact on the diameter variation of the formed bubbles. The simulation confirmed that liquid circulation, either forced or induced by the rising bubble plume, influences both the hydrogen supersaturation (concentration) in the neighbourhood of the electrode and the size of the resulting bubbles.

Go to article

Authors and Affiliations

Shahjahan K. A. Sarkar
Piotr M. Machniewski
Geoffrey M. Evans
Download PDF Download RIS Download Bibtex

Abstract

In the present research, an experimental investigation was conducted to assess the heat transfer coefficient of aqueous citric acid mixtures. The experimental facility provides conditions to assess the influence of various operating conditions such as the heat flux (0–190 kW/m2), mass flux (353–1059 kg/m2s) and the concentration of citric acid in water (10%– 50% by volume) with a view to measure the subcooled flow boiling heat transfer coefficient of the mixture. The results showed that two main heat transfer mechanisms can be identified including the forced convective and nucleate boiling heat transfer. The onset point of nucleate boiling was also identified, which separates the forced convective heat transfer domain from the nucleate boiling region. The heat transfer coefficient was found to be higher in the nucleate boiling regime due to the presence of bubbles and their interaction. Also, the influence of heat flux on the heat transfer coefficient was more pronounced in the nucleate boiling heat transfer domain, which was also attributed to the increase in bubble size and rate of bubble formation. The obtained results were also compared with those theoretically obtained using the Chen type model and with some experimental data reported in the literature. Results were within a fair agreement of 22% against the Chen model and within 15% against the experimental data.

Go to article

Authors and Affiliations

Mohammad Amin Abdolhossein Zadeh
Shima Nakhjavani
Download PDF Download RIS Download Bibtex

Abstract

The paper presents different approaches to the proper and accurate production and modelling (multi- phase reaction) of CaCO3 formation in the most popular, different types of reactors, i.e. continuous reactor (STR – stirred tank reactors, MSMPR – mixed suspension, mixed product removal; tube reactor), a bubble column reactor and a thin film reactor.
Many different methods of calcium carbonate production and their effect on the various characteristics of the product have been presented and discussed. One of the most important, from the point of view of practical applications, is the morphology and size of the produced particles as well as their agglomerates and size distribution. The size of the obtained CaCO3 particles and their agglomerates can vary from nanometers to micrometers. It depends on many factors but the most important are the conditions calcium carbonate precipitation and then stored.
The experimental research was strongly aided by theoretical considerations on the correct description of the process of calcium carbonate precipitation. More than once, the correct modelling of a specific process contributed to the explanation of the phenomena observed during the experiment (i.e. formation of polyforms, intermediate products, etc.).
Moreover, different methods and approaches to the accurate description of crystallization processes as well as main CFD problems has been widely reviewed. It can be used as a basic material to formulation and implementation of new, accurate models describing not only multiphase crystallization processes s taking place in different chemical reactors.
Go to article

Bibliography

Auone A., Ramshaw C., 1999. Process intensification: Heat and mass transfer characteristics of liquid films on rotating discs. Int. J. Heat Mass Transfer, 42, 2543-2556. DOI: 10.1016/S0017-9310(98)00336-6.
Baldyga J., Bourne J.R., 1984a. A fluid mechanical approach to turbulent mixing and chemical reaction. Part I: Inadequacies of available methods. Chem. Eng. Commun., 28, 231–241. DOI: 10.1080/00986448408940135.
Baldyga J., Bourne J.R., 1984b. A fluid mechanical approach to turbulent mixing and chemical reaction. Part II: Mi- cromixing in the light of turbulence theory. Chem. Eng. Commun., 28, 243–258. DOI: 10.1080/00986448408940136.
Baldyga J., Bourne J.R., 1984c. A fluid mechanical approach to turbulent mixing and chemical reaction. Part III: Computational and experimental results for the new micromixing model. Chem. Eng. Commun., 28, 259–281. DOI: 10.1080/00986448408940137.
Baldyga J., Podgorska W., Pohorecki R., 1995. Mixing-precipitation model with application to double feed semibatch precipitation . Chem. Eng. Sci., 50, 1281–1300. DOI: 10.1016/0009-2509(95)98841-2.
Bandyopadhyaya R., Kumar R., Gandhi K.S., 2001. Modelling of CaCO3 nanoparticle formation during overbasing of lubricating oil additive. Langmuir, 17, 1015–1029. DOI: 10.1021/la000023r.
Bao W., Li H., Zhang Y., 2009. Preparation of monodispersed aragonite microspheres via a carbonation crystal- lization pathway. Cryst. Res. Technol., 44, 395–401. DOI: 10.1002/crat.200800065.
Boodhoo K.V.K., Jachuck R.J.J., 2000. Process intensification: Spinning disc reactor for condensation polymeriza- tion. Green Chem., 2, 235–244. DOI: 10.1039/b002667k.
Burns J.R., Jachuck R.J.J., 2005. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. AIChE J., 51, 1497–1507. DOI: 10.1002/aic.10414.
Cafiero L.M., Baffi G., Chianese A., Jachuck R.J.J., 2002. Process intensification: precipitation of barium sulfate using a spinning disk reactor. Ind. Eng. Chem. Res., 41, 5240–5246. DOI: 10.1021/ie010654w.
Chakraborty D., Bhatia S.K., 1996. Formation and aggregation of polymorphs in continuous precipitation. 2. Kinetics of CaCO3 precipitation. Ind. Eng. Chem. Res., 35, 1995–2006. DOI: 10.1021/ie950402t.
Chen J.F., Wang Y.H., Guo F., Wang X.M., Zheng, Ch., 2000. Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation. Ind. Eng. Chem. Res., 39, 948–954. DOI: 10.1021/ie990549a.
Chen P.-C., Tai C.Y., Lee K.C., 1997. Morphology and growth rate of calcium carbonate crystals in a gas-liquid-solid reactive crystallizer. Chem. Eng. Sci., 52, 4171–4177. DOI: 10.1016/S0009-2509(97)00259-5.
Cheng B., Lei M., Yu J., Zhao X., 2004. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Materials Lett., 58, 1565–1570. DOI: 10.1016/j.matlet.2003.10.027.
Colfen H., Antonietti M., 2005. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 44, 5576–5591. DOI: 10.1002/anie.200500496.
Collier A.P., Hounslow M.J., 1999. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE J., 45, 2298–2305. DOI: 10.1002/aic.690451105.
Czaplicka N., Konopacka-Łyskawa D., 2019. The overview of reactors used for the production of precipitated tion route. Aparatura Badawcza i Dydaktyczna, 24(1), 83–90.
Dindore V.Y., Brilman D.W.F., Versteeg G.F., 2005. Hollow fiber membrane contactor as a gas–liquid model contactor. Chem. Eng. Sci., 60, 467–479. DOI: 10.1016/j.ces.2004.07.129.
Ding L., Wu B., Luo P. 2018. Preparation of CaCO3 nanoparticles in a surface-aerated tank stirred by a long-short blades agitator. Powder Technol., 333, 339–346. DOI: 10.1016/j.powtec.2018.04.057.
Eek R.A., Dijkstra S., Van Rosmalen G.M., 1995. Dynamic modeling of suspension crystallisers using experimental data. AIChE J., 41, 571–584. DOI: 10.1002/aic.690410315.
Feng B., Yonga A.K., Ana H., 2007. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process. Mater. Sci. Eng., A, 445–446, 170–179. DOI: 10.1016/j.msea.2006.09.010.
Ferziger J.H., Perić, M., 1996. Computational methods for fluid dynamics, Springer-Verlag, Berlin, Germany.
Gahn C., Mersmann A., 1999. Brittle fracture in crystallization processes. Part A. Attrition and abrasion of brittle solids. Chem. Eng. Sci., 54, 1273–1282. DOI: 10.1016/S0009-2509(98)00450-3.
Garside J., Davey R.J., 1980. Invited review secondary contact nucleation: kinetics, growth and scale-up. Chem. Eng. Commun., 4, 393–424. DOI: 10.1080/00986448008935918.
Grimes C.J., Hardcastle T., Manga M.S., Mahmud T., York D.W., 2020. Calcium carbonate particle formation through precipitation in a stagnant bubble and a bubble column reactor. Cryst. Growth Des., 20, 5572–5582. DOI: 10.1021/acs.cgd.0c00741.
Hill P.J., Ng K.M., 1995. New discretization procedure for the breakage equation. AIChE J., 41, 1204–1217. DOI: 10.1002/aic.690410516.
Hindmarsh A.C., 1983. ODEPACK, A Systematized collection of ODE solvers, In: Stepleman R.S., Carver M., Peskin R., Ames W.F., Vichnevetsky R. (Eds.). Scientific Computing, North-Holland, Amsterdam, 1983, 55–64.
Hostomsky J., Jones A.G., 1991. Calcium carbonate crystallization, agglomeration and form during continuous precipitation from solution. J. Phys. D: Appl. Phys., 24, 165–170. DOI: 10.1088/0022-3727/24/2/012.
Hounslow M.J., 1990. A discretized population balance for continuous systems at steady state. AIChE J., 36, 106–116. DOI: 10.1002/aic.690360113.
Hounslow M.J.; Ryall R.L., Marshall V.R., 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J., 34, 1821–1832. DOI: 10.1002/aic.690341108.
Hounslow M.J., Mumtaz H.S., Collier A.P., Barrick J.P., Bramley A.S., 2001. A micro mechanical model for the rate of aggregation during precipitation from solution. Chem. Eng. Sci., 56, 2543–2552. DOI: 10.1016/S0009- 2509(00)00436-X.
Hulburt H.M., Katz S., 1964. Some problems in particle technology – statistical mechanical formulation. Chem. Eng. Sci., 19, 555–574. DOI: 10.1016/0009-2509(64)85047-8.
Jones A.G., Rigopoulos S., Zauner R., 2005. Crystallization and precipitation engineering. Comput. Chem. Eng., 29, 1159-1166. DOI: 10.1016/j.compchemeng.2005.02.022.
Judat B., Kind M., 2004. Morphology and internal structure of barium sulfate – derivation of a new growth mechanism. J. Colloid Interface Sci., 269, 341–353. DOI: 10.1016/j.jcis.2003.07.047.
Jung T., Kim W.S., Choi Ch.K., 2004. Effect of nonstoichiometry on reaction crystallization of calcium carbonate in a Couette−Taylor reactor. Cryst. Growth Des, 4, 491–495. DOI: 10.1021/cg034240c.
Jung T., Kim W.S., Choi Ch.K., 2005. Effect of monovalent salts on morphology of calcium carbonate crystallized in Couette-Taylor reactor. Cryst. Res. Technol., 40, 586–592. DOI: 10.1002/crat.200410387.
Jung W.M., Kang S.H., Kim W.S., Choi C.K., 2000. Particle morphology of calcium carbonate precipitated by gas- liquid reaction in a Couette-Taylor reactor. Chem. Eng. Sci., 55, 733–747. DOI: 10.1016/S0009-2509(99)00395-4.
Kang S.H., Lee S.G., Jung W.M., Kim M.C., Kim W.S., Choi C.K., Feigelson R.S., 2003. Effect of Taylor vortices on calcium carbonate crystallization by gas–liquid reaction. J. Cryst. Growth, 254, 196–205. DOI: 10.1016/S0022- 0248(03)01152-7.
Kangwook L., Jay H.L., Dae R.Y., Mahoney A.W., 2002. Integrated run-to-run and on line model-based con- trol of particle size distribution for a semi-batch precipitation reactor. Comput. Chem. Eng., 26, 1117–1131. DOI: 10.1016/S0098-1354(02)00030-3.
Kakaraniya S., Gupta A., Mehra A., 2007. Reactive precipitation in gas-slurry systems: The CO2 – Ca(OH)2 – CaCO3 System. Ind. Eng. Chem. Res., 46, 3170–3179. DOI: 10.1021/ie060732l.
Kataki, Y., Tsuge H., 1990. Reactive crystallization of calcium carbonate by gas–liquid and liquid–liquid reactions. Can. J. Chem. Eng., 68, 435–442. DOI: 10.1002/cjce.5450680313.
Kędra-Królik K., Gierycz P., 2006. Obtaining calcium carbonate in a multiphase system by the use of new rotating disc precipitation reactor. J. Therm. Anal. Calorim., 83, 579–582. DOI: 10.1007/s10973-005-7416-y.
Kędra-Królik K., Gierycz P., 2009. Precipitation of nanostructured calcite in a controlled multiphase process. J. Cryst. Growth, 311, 3674–3681. DOI: 10.1016/j.jcrysgro.2009.05.017.
Kędra-Królik K., Gierycz P., 2010. Simulation of nucleation and growing of CaCO3 nanoparticles obtained in the rotating disk reactor. J. Cryst. Growth, 312, 1945–1952. DOI: 10.1016/j.jcrysgro.2010.02.036.
Kim W.S., 2014. Application of Taylor vortex to crystallization. J. Chem. Eng. Jpn, 47, 115–123. DOI: 10.1252/jcej.13we143.
Kitano Y., Park K., Hood D.W., 1962. Pure aragonite synthesis. J. Geophys. Res., 67, 4873–4874. DOI: 10.1029/JZ067i012p04873.
Konopacka-Łyskawa D., Cisiak Z., Kawalec-Pietrenko B., 2009. Effect of liquid circulation in the draft-tube reactor on precipitation of calcium carbonate via carbonation. Powder Technol., 190, 319–323. DOI: 10.1016/j.powtec.2008.08.014.
Kramer H.J.M., Dijkstra J.W., Verheijen P.J.T., Van Rosmalen G.M., 2000. Modeling of industrial crystallizers for control and design purposes. Powder Technol., 108, 185–191. DOI: 10.1016/S0032-5910(99)00219-3.
Kulikov V., Briesen H., Marquardt W. 2005. Scale integration for the coupled simulation of crystallization and fluid dynamics. Chem. Eng. Res. Des., 83, 706–717. DOI: 10.1205/cherd.04363.
Kumar S., Ramkrishna D., 1996. On the solution of population balance equations by discretization – II. A moving pivot technique. Chem. Eng. Sci., 51, 1333–1342. DOI: 10.1016/0009-2509(95)00355-X.
Lim S.T. 1980. Hydrodynamics and mass transfer processes associated with the absorption of oxygen in liquid films flowing across a rotating disc. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Majerczak K., Gierycz P., 2016. Analysis and simulation of monodispersed, nanostructured calcite obtained in a controlled multiphase process. Nanomater. Nanotechnol., 6, DOI: 10.1177/1847980416675127.
Malkaj P., Chrissanthopoulos A., Dalas E., 2004. Understanding nucleation of calcium carbonate on gallium oxide using computer simulation. J. Cryst. Growth, 264, 430–437. DOI: 10.1016/j.jcrysgro.2004.01.005.
Marchisio D.L., Vigil R.D., Fox R.O., 2003. Implementation of quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci., 58, 3337–3351. DOI: 10.1016/S0009-2509(03)00211-2.
Montes-Hernandez G., Renard F., Geoffroy N., Charlet L., Pironon J., 2007. Calcite precipitation from CO2–H2O– Ca(OH)2 slurry under high pressure of CO2. J. Cryst. Growth, 308, 228–236. DOI: 10.1016/j.jcrysgro.2007.08.005.
Moore S.R., 1986. Mass transfer into thin liquid films with and without chemical reaction. PhD Thesis. University of Newcastle-upon-Tyne, UK.
Mullin J.W., 2001. Crystallization. Butterworth-Heinemann, Oxford, UK.
Myerson A.S, 1999. Molecular modelling applications in crystallization. Cambridge University Press, Cambridge, UK.
Nancollas G.H., Reddy M.M., 1971. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci., 37, 824–830. DOI: 10.1016/0021-9797(71)90363-8.
Nicmanis N., Hounslow M.J., 1998. Finite-element methods for steady-state population balance equations. AIChE J., 44, 2258–2272. DOI: 10.1002/aic.690441015.
Popescu M.-A., Isopescu R., Matei C., Fagarasan G., Plesu V., 2014. Thermal decomposition of calcium carbonate polymorphs precipitated in the presence of ammonia and alkylamines. Adv. Powder Technol., 25, 500-507. DOI: 10.1016/j.apt.2013.08.003.
Prasher C.L., 1987. Crushing and grinding process handbook. Wiley, New York, US.
Quigley D., Roger P.M., 2008. Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. J. Chem. Phys., 128, 2211011–2211014. DOI: 10.1063/1.2940322.
Ramkrishna D., 2000. Population balances. Theory and applications to particulate systems in engineering. Academic Press, San Diego, US.
Randolph A.D., Larson, M.A., 1988. Theory of particulate processes, Academic Press, New York, US.
Reddy M.M., Nancollas G.H., 1976. The crystallization of calcium carbonate: IV. The effect of magnesium, strontium and sulfate ions. J. Cryst. Growth, 35, 33–38. DOI: 10.1016/0022-0248(76)90240-2.
Rielly C.D., Marquis A.J., 2001. A particle’s eye view of crystallizer fluid mechanics. Chem. Eng. Sci., 56, 2475– 2493. DOI: 10.1016/S0009-2509(00)00457-7.
Rigopoulos S., Jones A.G., 2001. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction. Chem. Eng. Sci., 56, 6177–6183. DOI: 10.1016/S0009-2509(01)00259-7.
Rigopoulos S., Jones A.G., 2003a. Modeling of semibatch agglomerative gas–liquid precipitation of CaCO3 in a bubble column reactor. Ind. Eng. Chem. Res., 42, 6567–6575. DOI: 10.1021/ie020851a.
Rigopoulos S., Jones A.G., 2003b. Finite-element scheme for solution of the dynamic population balance. AIChE J., 49, 1127–1139. DOI: 10.1002/aic.690490507.
Sisoev G.M., Matar O.K., Lawrence C.J., 2003. Modelling of film flow over a spinning disk. J. Chem. Technol. Biotechnol., 78, 151–155. DOI: 10.1002/jctb.717.
Sisoev G.M., Matar O.K., Lawrence C.J., 2006. The flow of thin liquid films over spinning discs . Can. J. Chem. Eng., 84, 625-642. DOI: 10.1002/cjce.5450840601.
Schlomach J., Quarch K., Kind M., 2006. Investigation of precipitation of calcium carbonate at high supersaturations. Chem. Eng. Technol., 29, 215-220. DOI: 10.1002/ceat.200500390.
Schwarz M.P., Turner W.J., 1988. Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl. Math. Modell., 12, 273–279. DOI: 10.1016/0307-904X(88)90034-0.
Sha, Z., Palosaari, S., 2000. Mixing and crystallization in suspensions. Chem. Eng. Sci., 55, 1797–1806. DOI: 10.1016/S0009-2509(99)00458-3.
Sohnel O., Mullin J.W., 1982. Precipitation of calcium carbonate. J. Cryst. Growth, 60, 239–250. DOI: 10.1016/0022- 0248(82)90095-1.
Spanos N., Koutsoukos P.G., 1998. Kinetics of precipitation of calcium carbonate in alkaline pH at constant supersaturation. spontaneous and seeded growth. J. Phys. Chem. B, 102, 6679–6684. DOI: 10.1021/jp981171h.
Spiegelman M., 2004. Myths and methods in modeling. LDEO, Columbia University, New York, US.
Tai C.Y., Chen P.-C., Shih S-M., 1993. Size-dependent growth and contact nucleation of calcite crystals. AIChE J., 39, 1472–1482. DOI: 10.1002/aic.690390907.
Tai C.Y., Chen P.-C., 1995. Nucleation, agglomeration and crystal morphology of calcium carbonate. AIChE J., 41, 68–77. DOI: 10.1002/aic.690410108.
Tamura K., Tsuge H., 2006. Characteristic of multistage column crystallizer for gas-liquid reactive crystallization of calcium carbonate. Chem. Eng. Sci., 61, 5818–5826. DOI: 10.1016/j.ces.2006.05.002.
Tobias J., Klein M.L., 1996. Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem. B, 100, 6637–6648. DOI: 10.1021/jp951260j.
Trippa G., Hetherington P., Jachuck R.J.J., 2002. Process intensification: Precipitation of calcium carbonate from the carbonation reaction of lime water using a spinning disc reactor. 15th International symposium on industrial 2002; Sorrento, Italy, 1053–1058.
Tsutsumi A., Nieh J.-Y., Fan L.-S., 1991. Role of the bubble wake in fine particle production of calcium carbonate in bubble column system. Ind. Eng. Chem. Res., 30, 2328–2333. DOI: 10.1021/ie00058a012.
Ukrainczyk M., Kontrec J., Babić-Ivancić V., Brecević L., Kralj D. 2007. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol., 171, 192–199. DOI: 10.1016/j.powtec.2006.10.046.
Vacassy R., Lemaître J., Hofmann H., Gerlings J.H., 2000. Calcium carbonate precipitation using new segmented flow tubular reactor. AIChE J., 46, 1241–1252. DOI: 10.1002/aic.690460616.
Varma A., Morbidelli M., 1997. Mathematical methods in chemical engineering. Oxford University Press, New York, US.
Villermaux J., Falk L., 1994. A generalized mixing model for initial contacting of reactive fluids. Chem. Eng. Sci., 49, 5127–5140. DOI: 10.1016/0009-2509(94)00303-3.
Wachi S., Jones A.G., 1991. Mass transfer with chemical reaction and precipitation. Chem. Eng. Sci., 46, 1027–1033. DOI: 10.1016/0009-2509(91)85095-F.
Wan B., Ring T.A., 2006. Verification of SMOM and QMOM population balance modeling in CFD code us- ing analytical solutions for batch particulate processes. China Particuology, 4, 243–249. DOI: 10.1016/S1672- 2515(07)60268-1.
Wang T., Antonietti M., Colfen H., 2006. Calcite mesocrystals: “Morphing” crystals by a polyelectrolyte. Chem. Eur. J., 12, 5722–5730. DOI: 10.1002/chem.200501019.
Wei H.Y., Garside J., 1997. Application of CFD modelling to precipitation systems. Chem. Eng. Res. Des., 75, 219–227. DOI: 10.1205/026387697523471.
Wen Y., Xiang L., Jin Y., 2003. Synthesis of plate-like calcium carbonate via carbonation route. Mater. Lett., 57, 2565–2571. DOI: 10.1016/S0167-577X(02)01312-5.
Wojcik J., Jones A.G., 1998. Dynamics and stability of continuous MSMPR agglomerative precipitation: Numer- ical analysis of the dual particle coordinate model. Comput. Chem. Eng., 22, 535–545. DOI: 10.1016/S0098-1354(97)00239-1.
Wray J.L., Daniels F., 1957. Precipitation of calcite and aragonite. J. Am. Chem. Soc., 79, 2031–2034. DOI: 10.1021/ ja01566a001.
Wszelaka-Rylik M., Piotrowska K., Gierycz P., 2015. Simulation, aggregation and thermal analysis of nanos- tructured calcite obtained in a controlled multiphase process. J. Therm. Anal. Calorim., 119, 1323–1338. DOI: 10.1007/s10973-014-4217-1.
Wuklow M., Gerstlauer A., Nieken U., 2001. Modeling and simulation 1 of crystallization processes using parsival. Chem. Eng. Sci., 56, 2575–2588. DOI: 10.1016/S0009-2509(00)00432-2.
Go to article

Authors and Affiliations

Paweł Gierycz
1
Artur Poświata
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The flow structure around rising single air bubbles in water and their characteristics, such as equivalent diameter, rising velocity and shape, was investigated using Particle Image Velocimetry (PIV) and Shadowgraphy in a transparent apparatus with a volume of 120 mL. The effect of different volumetric gas flow rates, ranging from 4 μL/min to 2 mL/min on the liquid velocity was studied. Ellipsoidal bubbleswere observedwith a rising velocity of 0.25–0.29m/s. It was found that a Kármán vortex street existed behind the rising bubbles. Furthermore, the wake region expanded with increasing volumetric gas flow rate as well as the number and size of the vortices.

Go to article

Authors and Affiliations

Björn Lewandowski
Michał Fertig
Georg Krekel
Mathias Ulbricht
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to introduce the concept of cognitive confinement. This aim is realized stepwise. First, the notion of cognitive niche is discussed. A cognitive niche is the sum of information and cognitive skills attributed to a specific subject (or species); these resources determine the subject’s cognitive ability – beginning with her perceptual apparatus, and extending (in the case of humans) intellectual capacities such as conceptualization and thinking. The paper examines two social phenomena that justify speaking of the cognitive niche and its alterations – the phenomena referred to as filter bubble and cognitive island. The second part of the paper introduces and discusses the notion of cognitive confinement. The latter refers to a pathological form of cognitive niche; it is a cognitive niche that impoverishes or distorts the epistemic interests of its inhabitant, so to speak, by actively blocking his/her access to some sources of information, problems and solutions. Finally, all of the issues mentioned can be viewed in the light of the problem of rationality (as it was understood by Kazimierz Ajdukiewicz). At the end of the day, it is the alleged irrationality of beliefs that gives rise to the filter bubbles and sparks lively debates in the social and political sciences these days.
Go to article

Bibliography

1. Ajdukiewicz K. (1934), Das Weltbild und die Begriffsapparatur, „Erkenntnis” IV, s. 259–287.
2. Ajdukiewicz K. (1949), Zagadnienia i kierunki filozofii, Warszawa: Czytelnik.
3. Alston W. (1989), Epistemic Justification, Ithaca: Cornell University Press. 4. Arfini S., Bertolotti T., Magnani L. (2017), Online communities as virtual cognitive niches, „Synthese”, DOI: 10.1007/s11229‑017‑1482‑0.
5. Barnett R. (1997), Higher education: A critical business, Buckingham, UK: Open University Press.
6. Bertolotti T., Magnani L. (2017), Theoretical considerations on cognitive niche construction, „Synthese”, s. 4757–4779.
7. Bhopal K. (2018), White privilege: The myth of a post‑racial society, Bristol: Policy Press.
8. Chemero A. (2009), Radical embodied cognitive science, Cambridge, MA: MIT Press.
9. Clark A. (2005), Word, niche and super‑niche: How language makes minds matter more, „Theoria” 54, s. 255–268.
10. Clark A. (2006), Language, embodiment, and the cognitive niche, „Trends in Cognitive Science” 10 (8), s. 370–374.
11. Dretske F. (2004), Naturalizowanie umysłu, przeł. B. Świątczak, Warszawa: Wydawnictwo IFiS PAN.
12. Elton Ch.S. (1927), Animal ecology, New York: Macmillan.
13. Flaxman S., Goel S., Rao J.M. (2016), Filter Bubbles, Echo Chambers, and Online News Consumption, „Public Opinion Quarterly” 80, s. 298–320.
14. Floridi L. (2006), The logic of being informed, „Logique et Analyse” 49 (196), s. 433–460.
15. Gibson J.J. (1979), The ecological approach to visual perception, Boston: Houghton Mifflin.
16. Gigerenzer G. (2010), Rationality for Mortals: How People Cope with Uncertainty, Oxford: Oxford University Press.
17. Godfrey‑Smith P. (2016), Individuality, subjectivity, and minimal cognition, „Biology & Philosophy” 31, s. 775–796.
18. Goldman A. (1979), What is Justified Belief, w: G. Pappas (red.), Justification and Knowledge, Dordrecht: D. Reidel.
19. Habgood‑Coote J. (2019), Stop Talking about Fake News, „Inquiry” 62 (9–10), s. 1033–1065.
20. Harding A., Blokland T. (2014), Urban Theory: A critical introduction to power, cities and urbanism in the 21st century, Los Angeles: SAGE.
21. Horkheimer M., Adorno T. (2010), Dialektyka oświecenia, przeł. M. Łukasiewicz, Warszawa: Wydawnictwo Krytyki Politycznej.
22. Hutchinson G.E. (1957), Concluding remarks, „Cold Spring Harbor Symposia on Quantitative Biology” 22, s. 415–427.
23. Hutto D., Myin E. (2013), Radicalizing enactivism: Basic minds without content, Cambridge, MA: MIT Press.
24. Korzeniewski B. (1998), Trzy ewolucje. Ewolucja wszechświata, ewolucja życia, ewolucja świadomości, Kraków: Korona.
25. Laland K.N., Odling‑Smee J., Feldman M.W. (1999), Evolutionary consequences of niche construction and their implications for ecology, „Proceedings of the National Academy of Sciences” 96, s. 10242–10247.
26. Laland K.N., Odling‑Smee F.J., Feldman M.W. (2000), Niche construction, biological evolution and cultural change, „Behavioral and Brain Sciences” 23 (1), s. 131–175.
27. Laland K.N., Sterelny K. (2006), Seven reasons (not) to neglect niche construction, „Evolution” 60, s. 1751–1762.
28. Lavelle D. (2018), From ‘Slimeball Comey’ to ‘Crooked Hillary’, why Trump loves to brand his enemies, „The Guardian”, 27.04.2018, https://www.theguardian.com/ us‑news/shortcuts/2018/apr/17/presidents‑nicknames‑slimeball‑comey‑former‑fbi- ‑director
29. Lewontin R. (2000), The triple helix: Gene, organism, and environment, Cambridge, MA: Harvard University Press.
30. Livini E. (2017), A Stanford psychologist says internet culture isn’t as toxic as it feels, „Quartz”, https://qz.com/1055662/a‑stanford‑psychologist‑says‑internet‑culture- ‑isnt‑as‑toxic‑as‑it‑feels/ [02.08.2018].
31. Matz S.C., Kosinski M., Nave G., Stillwell D.J. (2017), Psychological targeting as an effective approach to digital mass persuasion, „Proceedings of the National Academy of Sciences”, DOI: 10.1073/pnas.1710966114.
32. Millgram E. (2015), The Great Endarkenment: Philosophy for an Age of Hyperspecialization, Oxford: Oxford University Press.
33. Moreno A., Umerez J., Ibañez J. (1997), Cognition and life: The autonomy of cognition, „Brain and Cognition” 34, s. 107–129.
34. Moulin L., Flacher D., Harari‑Kermadec H. (2016), Tuition fees and social segregation: Lessons from a natural experiment at the University of Paris 9‑Dauphine, „Applied Economics” 48 (40), s. 3861–3876, DOI: 10.1080/ 00036846.2016.1148253.
35. Mueller R.S. III (2019), Report on the Investigation into Russian Interference in the 2016 Presidential Election, vol. I, Washington D.C.: US Department of Justice, https://www.justice.gov/storage/report.pdf [17.09.2019].
36. Mukerji N. (2018), What is Fake News?, „Ergo” 5, s. 923–946.
37. Nagel T. (1997), Widok znikąd, przeł. C. Cieśliński, Warszawa: Fundacja Aletheia.
38. Odling‑Smee F.J., Laland K.N., Feldman M.W. (2003), Niche construction: The neglected process in evolution, Princeton, NJ: Princeton University Press.
39. Pariser E. (2011), The filter bubble: What the Internet is hiding from you, London: Penguin.
40. Peacocke C. (2003), The realm of reason, Oxford: Oxford University Press.
41. Piłat R. (2007), O istocie pojęć, Warszawa: Wydawnictwo IFiS PAN.
42. Pinker S. (2003), Language as an adaptation to the cognitive niche, w: M.H. Christiansen, S. Kirby (red.), Language evolution, Oxford: Oxford University Press, s. 16–37.
43. Pinker S. (2010), The cognitive niche: Coevolution of intelligence, sociality, and language, „Proceedings of the National Academy of Sciences” 17 (Suppl. 2), s. 8993–8999.
44. Rowlands M. (1999), The body in mind: Understanding cognitive processes, Cambridge: Cambridge University Press.
45. Searle J.R. (2001), Rationality in action, Cambridge, MA: MIT Press.
46. Smith B. (1996), Mereotopology: A theory of parts and boundaries, „Data & Knowledge Engineering” 20, s. 287–303.
47. Smith B., Brogaard B. (2002), Quantum mereotopology, „Annals of Mathematics and Artificial Intelligence” 36, s. 153–175.
48. Smith B., Varzi A. (1999), The Niche, „Noûs” 33 (2), s. 214–238.
49. Stoffregen T.A. (2003), Affordances are properties of the animal‑environment system, „Ecological Psychology” 15, s. 115–134.
50. Szahaj A. (2008), Teoria krytyczna szkoły frankfurckiej, Warszawa: Wydawnictwa Akademickie i Profesjonalne.
51. Tate S.A., Page D. (2018), Whiteliness and institutional racism: Hiding behind (un)conscious bias, „Ethics and Education” 13 (1), s. 141–155.
52. Thi Nguyen C. (2018), Cognitive islands and runaway echo chambers: Problems for epistemic dependence on experts, „Synthese” 197, s. 2803–2821, DOI: 10.1007/ s11229‑018‑1692‑0.
53. Thompson E. (2007), Mind in life: Biology, phenomenology, and the sciences of mind, Cambridge, MA: Harvard University Press.
54. Tooby J., DeVore I. (1987), The reconstruction of hominid behavioral evolution through strategic modeling, w: W.G. Kinzey (red.), Primate models of hominid behavior, Albany: Suny Press, s. 183–237.
Trilling D., Van Klingeren M., Tsfati Y. (2017), Selective exposure, political polarization, and possible mediators: Evidence from the Netherlands, „International Journal of Public Opinion Research” 29 (2), s. 189–213, DOI: 10.1093/ijpor/edw003.
55. Van Duijn M., Keijzer F., Franken D. (2006), Principles of minimal cognition: Casting cognition as sensorimotor coordination, „Adaptive Behavior” 14, s. 157–170.
56. Varela F., Thompson E., Rosch E. (1991), The embodied mind: Cognitive science and human experience, Cambridge MA: MIT Press.
57. Varzi A. (2007), Spatial reasoning and ontology: Parts, wholes, and locations, w: M. Aiello, I. Pratt‑Hartmann, J. van Benthem (red.), Handbook of spatial logics, Berlin: Springer, s. 945–1038.
58. Vīķe‑Freiberga V., Däubler‑Gmelin H., Hammersley B., Pessoa Maduro L.M.P. (2013), A free and pluralistic media to sustain European democracy, http://ec. europa.eu/digital‑agenda/sites/digital‑agenda/files/HLG%20Final%20Report.pdf
59. Werner K. (2017), Zarys internalizmu ekologicznego w filozofii umysłu, „Filozofia Nauki” 25 (1), s. 5–30.
60. Werner K. (2018), Enactivism and Construction of the Cognitive Niche, „Synthese”, DOI: 10.1007/s11229‑018‑1756‑1.
61. Werner K. (2019a), Philosophy in Poland: Varieties of Anti‑Irrationalism. A Commitment to Reason without the Worship of Reason, „Philosophia”, DOI: 10.1007/ s11406‑019‑00074‑8.
62. Werner K. (2019b), Cognitive confinement: Theoretical considerations on the construction of a cognitive niche, and on how it can go wrong, „Synthese”, DOI: 10.1007/s11229‑019‑02464‑7.
63. Werner K. (2020), Cognitive Confinement, Embodied Sense‑making, and the (De) Colonization of Knowledge, „Philosophical Papers”, DOI: 10.1080/ 05568641.2020.1779603.
64. Williamson T. (1990), Identity and Discrimination, Cambridge, MA: Blackwell.
65. Zuiderveen Borgesius F., Trilling D., Möller J., Bodó B., de Vreese C., Helberger N. (2016), Should we worry about filter bubbles?, „Internet Policy Review” 5 (1), DOI: 10.14763/2016.1.401.


Go to article

Authors and Affiliations

Konrad Werner
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00-927 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

Mass Spring Systems (MSS) are often used to simulate the behavior of deformable objects, for example in computer graphics (modeling clothes for virtual characters) or in medicine (surgical simulators that facilitate the planning of surgical operations) due to their simplicity and speed of calculation. This paper presents a new, two-parameter method (TP MSS) of determining the values of spring coefficients for this model. This approach can be distinguished by a constant parameter which is calculated once at the beginning of the simulation, and a variable parameter that must be updated at each simulation step. The value of this variable parameter depends on the shape changes of the elements forming the mesh of the simulated object. The considered mesh is built of elements in the shape of acute-angled triangles. The results obtained using the new model were compared to FEM simulations and the Van Gelder model. The simulation results for the new model were also compared with the results of the bubble inflation test.
Go to article

Bibliography

[1] J. Bender, M. Muller, M.A. Otaduy, M. Teschner, and M. Macklin. A survey on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):228–251, 2014. doi: 10.1111/cgf.12346.
[2] X. Provot. Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In: Proceedings of Graphics Interface '95, pages 147–154, Quebec, Canada, 1995. doi: 10.20380/GI1995.17.
[3] T.I. Vassilev, B. Spanlang, and Y. Chrysanthou. Efficient cloth model and collisions detection for dressing virtual people. In: Proceeding of ACM/EG Games Technology, Hong Kong, 2001.
[4] Z. Cao and B. He. Research of fast cloth simulation based on mass- spring model. In: Proceedings of the 2012 National Conference on Information Technology and Computer Science, pages 467–471, 2012. doi: 10.2991/citcs.2012.121.
[5] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson. Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836, 2006. doi: 10.1111/j.1467-8659.2006.01000.x.
[6] E. Basafa, F. Farahmand, and G. Vossoughi. A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Studies in Health Technology and Informatics, 132:23–25, 2008.
[7] S. Xu, X. P. Liu, H. Zhang, and L. Hu. An improved realistic mass-spring model for surgery simulation. In: 2010 IEEE International Symposium on Haptic Audio Visual Environments and Games, Phoenix, USA, 2010. doi: 10.1109/HAVE.2010.5623989.
[8] Y. Nimura, J. D. Qu, Y. Hayashi, M. Oda, T. Kitasaka, M. Hashizume, K. Misawa, and K. Mori. Pneumoperitoneum simulation based on mass-spring-damper models for laparoscopic surgical planning. Journal of Medical Imaging, 2(4):044004, 2015. doi: 10.1117/1.JMI.2.4.044004.
[9] H. Dehghani Ashkezari, A. Mirbagheri, S. Behzadipour, and F. Farahmand. A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tools and large organs. Scientia Iranica, 22(5):1833–1841, 2015.
[10] B. Dong, J. Li, G. Yang, X. Cheng, and Q. Gang. A multi-component conical spring model of soft tissue in virtual surgery. IEEE Access, 8:146093–146104, 2020. doi: 10.1109/ACCESS.2020.3014730.
[11] X. Zhang, J. Duan, W. Sun, T. Xu, and S.K. Jha. A three-stage cutting simulation system based on mass-spring model. Computer Modeling in Engineering & Sciences, 127(1):117–133, 2021. doi: 10.32604/cmes.2021.012034.
[12] S. Tudruj and J. Piechna. Numerical analysis of the possibility of using an external air bag to protect a small urban vehicle during a collision. Archive of Mechanical Engineering, 59(3): 257–281, 2012. doi: 10.2478/v10180-012-0013-2.
[13] J. Piechna, T. Janson, P. Sadowski, S. Tudruj, A. Piechna, and L. Rudniak. Numerical study of aerodynamic characteristics of sports car with movable flaps and deformable airbags. In: Proceedings of Automotive Simulation World Congress, Frankfurt, Germany, 2013.
[14] A. Van Gelder. Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools, 3(2):21–41, 1998. doi: 10.1080/10867651.1998.10487490.
[15] P. E. Hammer, M.S. Sacks, P.J. del Nido, and R.D. Howe. Mass-spring model for simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6):1668–679, 2011. doi: 10.1007/s10439-011-0278-5.
[16] J. Louchet, X. Provo, and D. Crochemore. Evolutionary identification of cloth animation models. In: D. Terzopoulos, D. Thalmann, (eds) Computer Animation and Simulation'95, pages 44–54, Springer, 1995. doi: 10.1007/978-3-7091-9435-5_4.
[17] K. Golec. Hybrid 3D Mass Spring System for Soft Tissue. Modeling and Simulation. Ph.D. Thesis, Université de Lyon, France, 2018.
[18] V. Baudet, M. Beuve, F. Jaillet, B. Shariat, and F. Zara. Integrating tensile parameters. In WSCG’2009, 2009, hal-00994456.
[19] B.A. Lloyd, G. Székely, and M. Harders. Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer, 13(5):1081–1094, 2007. doi: 10.1109/TVCG.2007.1055.
[20] S. Natsupakpong and M.C. Çavusoglu. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graphical Models, 72(6): 61–73, 2010. doi: 10.1016/j.gmod.2010.10.001.
[21] W.P. Jackson. Characterization of Soft Polymers and Gels using the Pressure-Bulge Technique. Ph.D. Thesis, California Institute of Technology, Pasadena, USA, 2008.
[22] L. Wanigasooriya. Mechanical Characterisation and Ram Extrusion of Wheat Flour Dough. Ph.D. Thesis, Imperial College London, UK, 2006.
[23] P. Jaszak. Modelling of the rubber in Finite Element Method. Elastomery, 20(3):31–39, 2016. (in Polish).
[24] R. Jakel. Analysis of hyperelastic materials with MECHANICA. Presentation for 2nd SAXSIM Technische Universität Chemnitz, Germany, 2010.
[25] A. Ali, M. Hosseini, and B.B. Sahari. A review of constitutive models for rubber-like materials. American Journal of Engineering and Applied Sciences, 3(1):232–39, 2010. doi: 10.3844/ajeassp.2010.232.239.
[26] P. Małkowski and Ł. Ostrowski. The methodology for the young modulus derivation for rocks and its value. Procedia Engineering, 191:134–141, 2017. doi: 10.1016/j.proeng.2017.05.164.
[27] Ansys [Online]. Available: www.ansys.com.
[28] M. Kot, H. Nagahashi, and P. Szymczak. Elastic moduli of simple mass spring models. The Visual Computer, 31:1339–1350, 2015. doi: 10.1007/s00371-014-1015-5.
Go to article

Authors and Affiliations

Sylwester Tudruj
1
ORCID: ORCID
Krzysztof Kurec
2
ORCID: ORCID
Janusz Piechna
1
ORCID: ORCID
Konrad Kamieniecki
2
ORCID: ORCID

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland
  2. Warsaw University of Technology, Institute of Micromechanics and Photonics, Warsaw, Poland

This page uses 'cookies'. Learn more