Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of overvoltages caused by a direct lightning strike in intrusion detection system equipped with underground radiating cable sensors. Waveforms of currents and voltages in the system components are calculated using analytical formulas basing on a transmission-line model in the frequency domain. The time-domain waveforms are computed using the inverse fast Fourier transform (IFFT). Three network configurations of the intrusion detection system are analyzed.

Go to article

Authors and Affiliations

K. Aniserowicz
Download PDF Download RIS Download Bibtex

Abstract

Temperature effects have a great influence on the mechanical behavior of cable-stayed bridges, especially for long-span bridges, which have significant time-varying and spatial effects. In this paper, the temperature characteristics of multi-tower cable-stayed bridge are obtained by data acquisition with wireless acquisition module. The test results show that: the daily temperature-time curves of atmospheric temperature and structural temperature are similar to sinewaves with obvious peaks and troughs; structure temperature and atmospheric temperature have obvious hysteresis; longitudinal displacement, transverse displacement and vertical of mid-span beam are negatively correlated with atmospheric temperature; the temperature distribution of the cable tower is not uniform, and the maximum temperature difference of the section is 23.7°C considering 98% of the upper limit value; the longitudinal, transverse and vertical displacement of cable tower and the cable force is negatively correlated with atmospheric temperature, and the relationship between cable force and atmospheric temperature is a cubic function rather than linear function.
Go to article

Authors and Affiliations

Liu Chengyuan
1
ORCID: ORCID
Han Zhuowei
2
ORCID: ORCID
Li Wei
3
ORCID: ORCID
Zhao Lin
3
ORCID: ORCID

  1. Shandong High-speed Group Co., Ltd., No. 0, Longding Road, Jinan, China
  2. Geotechnical and Structural Engineering Research Center, Shandong University
  3. Shandong Expressway Jinan West Ring Road Co., Ltd, No. 15551, Jingshi Road, Jinan, China
Download PDF Download RIS Download Bibtex

Abstract

In order to study the change in performance of the Suifenhe cable-stayed bridge in China over 12 years, cable force, elevation, static and dynamic load tests were conducted in 2006 and 2018, respectively. In this paper, theoretical data, obtained through finite element model analysis, were compared with the measured load test data for changes in static and dynamic performances. A comparison between 2006 and 2018 shows that additional dead load deflection exists in the main span after 12 years of operation. And that the cable force due to dead load of the full-scale cable-stayed bridge decreases and redistributes, which have adverse effects on the safety of bridge structure after long-term operations. Therefore, on-site inspection, static and dynamic load tests are reco mmended for cable-stayed bridges over 10-years old to test their static and dynamic performance. Moreover, cable force adjustments are to be conducted whenever necessary for the cable-stayed bridge used swivel construction.
Go to article

Authors and Affiliations

Meng Liu
1
ORCID: ORCID
Quansheng Sun
1
ORCID: ORCID
Haitao Yu
1
ORCID: ORCID
Jianxi Yang
1
ORCID: ORCID
Tongzhou Zhang
1
ORCID: ORCID

  1. School of Civil Engineering, Northeast Forestry University, 150040 Harbin, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an overview of shaping of cable-stayed bridges. Historical background, basic static sketches and overview of selected bridges are included. Selected natural solutions and interesting unrealized projects were presented. Basic ideas and most important principals are discussed. The examples and sketches were given an author’s comment. Static diagrams of two pylon structures with three variants of the arrangement of cables are presented. The details important for the structure were discussed and the consequences of choosing the variant were indicated. Mono-pylon structures in asymmetric and symmetrical arrangements are shown. the solutions are discussed and the details important for the structure are indicated. An overviewof multi-pylon structures is also presented, paying attention to important details. All the discussed static diagrams were enriched with realized examples. The advantages and disadvantages of individual structural solutions are presented. The main ideas allowing to achieve the goal in the implementation of non-standard suspended structures were also indicated.
Go to article

Bibliography

[1] W. Podolny and J.B. Scalzi, “Construction and design of cable-stayed bridges”, John Wiley and Sons, Inc., New York, 1976.
[2] M. Troitski, “Cable-stayed bridges”, BSP Professional Books, 1988.
[3] K. Roik, A. Gert, and U. Weyer, “Schrägseilbrücken”, Ernst & Sohn, Verlag für Architektur und Technische Wissenschaften, Berlin, 1986.
[4] F. Leonhardt, “Bridges”, Deutsche Verlag-Anstalt, 1984.
[5] H. Svensson, “Cable-stayed bridges”, 40 Years of Experience Wordlwide, Ernst and Sohn, 2012.
[6] J. Biliszczuk, “Cable-stayed bridges”, Design and Realization, Arkady, 2005.
[7] J. Szczygieł, “Reinforced and prestressed bridges”, WKiŁ, 1972.
[8] J. Biliszczuk, “Bridges in the history of Poland”, DWE, 2017.

Go to article

Authors and Affiliations

Krzysztof Żółtowski
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Prestressed anchor cables are active reinforcement to improve slope stability. However, the anchoring is not a permanent guarantee of stability, and the slope retains a potential risk of instability. From the perspective of the internal force of anchor cables, a new early warning method for the safety of the slope is provided, and a slope analysis model is established. With the increase in the strength reduction factor, the internal force increment curves of anchor cables under different prestresses are obtained. The point corresponding to strength reduction factors λ1 and λ2 represents a warning point. Key conclusions are drawn as follows: (1) The internal force of an anchor cable can be used to judge the stability of the slope strengthened by a prestressed anchor cable. (2) A warning index based on the internal force increment ratio of anchor cables is established. (3) The internal force increment ratio of anchor cables eliminates the influence of the initial prestress and is convenient for engineering applications.
Go to article

Authors and Affiliations

Jincai Feng
Jiaxin Chen
Jian Li
Yu Zhang
ORCID: ORCID
Jianhua Guo
Hongyong Qiu
Download PDF Download RIS Download Bibtex

Abstract

By simulating the actual working conditions of a cable, the temperature variation rule of different measuring points under different load currents was analyzed. On this basis, a three-dimensional finite element model (FEM) was established, and the difference and influence factors between the simulation temperature and the experimental measured value were discussed, then the influence of thermal conductivity on the operating temperature of the conductor layer was studied. Finally, combined with the steady-state thermal conductivity model and the experimental measured data, the relation between thermal conductivity and load current was obtained.

Go to article

Authors and Affiliations

Xiaokai Meng
Peijie Han
Yongxin Liu
Zhumao Lu
Tao Jin
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the possibilities of treating the ignition cable in the internal combustion engine as a distributed parameter system. It presents the experimental verification of computer simulations of signal propagation generated by ignition systems in the ignition cables, modelled by the distributed parameter system. The tests conducted to determine the wave parameters of ignition cables, as well as the results of numerical simulations and their experimental verifications, are presented. It is concluded that the modelling of the ignition cable by means of a long line gives positive results that can be used for the design of a spark plug with impedance equal to wave impedance of the ignition cable.

Go to article

Authors and Affiliations

Sebastian Różowicz
ORCID: ORCID
Andrzej Zawadzki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Proper design of power installations with the participation of power cables buried in homogeneous and thermally well-conductive ground does not constitute a major problem. The situation changes when the ground is non-homogeneous and thermally low-conductive. In such a situation, a thermal backfill near the cables is commonly used. The optimization of thermal backfill parameters to achieve the highest possible current-carrying capacity is insufficiently described in the standards. Therefore, numerical calculations based on computational fluid dynamics could prove helpful for designers of power cable lines. This paper studies the influence of dimensions and thermal resistivity of the thermal backfill and thermal resistivity of the native soil on the current-carrying capacity of power cables buried in the ground. Numerical calculations were performed with ANSYS Fluent. As a result of the research, proposals were made on how to determine the current-carrying capacity depending on the dimensions and thermal properties of the backfill. A proprietary mathematical function is presented which makes it possible to calculate the cable current-carrying capacity correction factor when the backfill is used. The research is expected to fill the gap in the current state of knowledge included in the provisions of standards.
Go to article

Authors and Affiliations

Seweryn Szultka
1
ORCID: ORCID
Stanisław Czapp
1
ORCID: ORCID
Adam Tomaszewski
2
ORCID: ORCID

  1. Faculty of Electrical and Control Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper is a continuation of part I – Theory and verification and presents some examples of application of the Extended Force Density Method. This method allows for form-finding of cable nets under self-weight and is based on the catenary cable element which assures high accuracy of the results and enables solving wide range of problems. Some essentials of the method are highlighted in this article. A computer program UC-Form was developed in order to perform the calculations and graphically present the results. Main advantages and features of the program are presented in this paper. Subsequently the program is used to perform calculations for a few practical examples with taut and slack cables. Input data is provided in order to enable reproducing calculations by other researchers. The outcomes are shown in the paper and prove that EFDM is an efficient tool for analysis of behaviour of cable nets under self-weight in different configurations.
Go to article

Bibliography

[1] M. Cuomo, L. Greco, “On the force density method for slack cable nets”, International Journal of Solids and Structures, 2012, vol. 49, pp. 1526–1540, DOI: 10.1016/j.ijsolstr.2012.02.031.
[2] H. Deng, Q.F. Jiang, A.S.K. Kwan, “Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements”, Computers and structures, 2005, vol. 83, pp. 1767–1779, DOI: 10.1016/j.compstruc.2005.02.022.
[3] Eurocode 3 – Design of steel structures – Part 1–11: Design of structures with tension components EN 1993-1-1:2006.
[4] W.J. Lewis, Tension Structures. Form and Behaviour. London: Thomas Telford, 2003.
[5] F. Otto, Tensile structures. Cambridge: MIT Press, 1973.
[6] H.-J. Schek, “The Force Density Method for Form Finding and Computation of General Networks”, Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, pp. 115–134, DOI: 10.1016/0045-7825(74)90045-0.
[7] I.Wójcik-Grzaba, “Extended Force Density Method for cable nets under self-weight. Part I – Theory and verification”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 139–157, DOI: 10.24425/ace.2021.138491.
Go to article

Authors and Affiliations

Izabela Wójcik-Grząba
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Tensile structures in general, achieve their load-carrying capability only after the process of initial form-finding. From the mechanical point of view, this process can be considered as a problem in statics. As cable systems are close siblings of trusses (cables, however, can carry tensile forces only), in our study we refer to equilibrium equation similar to those known from the theory of the latter. In particular, the paper regards designing pre-tensioned cable systems, with a goal to make them kinematically stable and such that the weight of so designed system is lowest possible. Unlike in typical topology optimization problems, our goal is not to optimize the structural layout against a particular applied load. However, our method uses much the same pattern. First, we formulate the variational problem of form-finding and next we describe the corresponding iterative numerical procedure for determining the optimum location of nodes of the cable system mesh. We base our study on the concept of force density which is a ratio of an axial force in cable segment to its length.

Go to article

Authors and Affiliations

Grzegorz Michał Dzierżanowski
Izabela Wójcik-Grząba
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the Extended Force Density Method which allows for form-finding of cable nets under self-weight. Formulation of the method is based on the curved catenary cable element which assures high accuracy of the results and enables solving wide range of problems. Essential rules of the Force Density Method (FDM) are summarized in the paper. Some well-known formula describing behaviour of a catenary cable element under self-weight are given.Next the improved variant ofFDMwith all the theoretical and numerical details is introduced. Iterative procedure for solving nonlinear equations is described. Finally a simple verification example proves correctness of methods assumptions. Two further analyses of parameters crucial for correct use of Extended Force Density Method (EFDM) are presented in order to indicate their initial values for other numerical examples. Accuracy of the results are also investigated. A computer program UC-Form was developed in order to perform the calculations and graphically present the results. Some examples of use of EFDM are presented in details in Part II – Examples of application.
Go to article

Authors and Affiliations

Izabela Wójcik-Grząba
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The conduction of mining activity under the conditions of rock bursts and rock mass tremors means that designers often utilise support systems comprising various configurations of steel arch, rock bolt and surface support. Particularly difficult geological and mining conditions, when wire mesh does not provide sufficient dynamic resistance, it requires an additional reinforcement with wire rope lacing in the form of steel ropes installed between the bolt ends and fixed to them by means of various rope clamps (e.g. u-bolt clamps). Bench tests were conducted to compare the strength of wire ropes under static and dynamic loading. The tests involved wire ropes with an internal diameter of Ø15.7 mm. Tests under static loading demonstrated that the cable bolts transferred a maximum force Fs max = 289.0 kN without failure, while the energy absorbed until failure was E 1s = 16.6 kJ. A comparative test result analysis for the wire ropes used in the bolt designs revealed that the influence of dynamic loading forces has a significant effect on reducing the rope load capacity, which results in the brittle cracking of the wires in the rope. Although the average dynamic force leading to wire rope failure F dmax = 279.1 kN is comparable to the minimum static force Fmin = 279 kN defined in the relevant standard, the average energy E1d absorbed by the cable bolt until failure is 48% lower than the energy E1s determined for wire rope failure under static loading. Furthermore, cable bolt failure under dynamic loading occurred at an impact velocity of the combined ram and crosshead masses ranging within vp = 1.4-1.5 m/s.
Go to article

Authors and Affiliations

Andrzej Pytlik
1
Mariusz Szot
1
ORCID: ORCID

  1. GIG – National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Since the digitalization of terrestrial television, many countries have discontinued television broadcasting in the UHF band. The freed-up frequencies are now available as digital dividends for mobile and fixed wireless access communication networks (MFCN), particularly for 4G/5G and public safety services in broadband called BBPPDR. Since cable TV still uses the UHF band, leakage from cable TV networks is the most common cause of interference in MFCN networks. Insufficient containment of the radio frequency signals transmitted through a cable system results in cable signal leakage. This article investigates the significance of controlling electromagnetic signal leaks from cable TV networks and how they impact authorized and standardized MFCN networks in the digital dividend bands. The periodic drivetest approach to detect and measure electromagnetic leakage from a cable TV system in the 700 MHz band at a site is detailed. The causes of the detected leaks and offered the appropriate procedure to repair them are also discussed. Additionally, the current measures taken in Hungary to address cable television signal leakage in the digital dividend bands are also discussed and alternative strategies for the adopted test drive approach are proposed.
Go to article

Authors and Affiliations

Hussein Taha
1
Péter Vári
2

  1. Doctoral School of Multidisciplinary Engineering Sciences, Széchenyi István University, Győr, Hungary
  2. Department of Telecommunications, Széchenyi István University, Győr, Hungary
Download PDF Download RIS Download Bibtex

Abstract

The article presents the assumptions, characteristics and description of the implementation of a pilot system for on-line monitoring of partial discharges in heads of the high-voltage cable lines. The main purpose of the implementation was to increase the reliability of cable line heads by equipping them with a system of continuous assessment of technical condition with direct transmission of measurement data and alarms to the SCADA system. In order to achieve the assumed goal, unconventional methods for measuring partial discharges were used, the application of which does not require disconnecting the line from the voltage. The implementation was carried out on an active 110 kV high voltage cable line in the area of activity of one of the Distribution System Operators.

Go to article

Authors and Affiliations

Michał Konarski
Paweł Węgierek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The cable force of a cable-stayed bridge plays a vital role in its internal force state. Different cable forces on both sides of the main tower make the force characteristics of the polygonal-line tower quite different from those of the straight-line tower. Therefore, the determination of the cable force of the polygonal-line tower cable-stayed bridge is a crucial aspect of any evaluation of its mechanical characteristics. A single-cable plane prestressed concrete broken-line tower cable-stayed bridge is taken as a case study to conduct a model test and theoretical cable force determination. The reasonable cable force of the bridge is determined by the minimum bending energy method combined with false load and internal force balance methods. analysis includes a comparison between cable force calculation results, model test results, and the design value of the actual bridge. The distribution law of the dead load cable force of the completed bridge is determined accordingly.
Go to article

Bibliography


[1] E. Atashpaz-Gargari, C. Lucas. „Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition”. [J] Proceedings of 2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007: pp. 4661–4667.
[2] A. Kaveh, S. Talatahari. “Optimum design of skeletal structures using imperialist competitive algorithm”. [J] Computers and Structures, 2010, 88: pp. 1220–1229.
[3] M. M. Hassana, A. O. Nassef, E. Damatty. “Determination of optimum post-tensioning cable forces of cable-stayed bridges”. [J] Engineering Structures, 2012(1): pp. 248–259.
[4] Z. J. Chen, Y. Liu, L. F. Yang. “Optimization of Stay Cable Tension of Completed Bridge of Single-Pylon Cable-Stayed Bridge Based on Particle Swarm Optimization Algorithm”. [J] Bridge Construction, 2016 46(3): pp. 40–44.
[5] S. Q. Qin, Z Y Gao. „Developments and Prospects of Long-Span High-Speed Railway Bridge Technologies in China”. [J] Engineering, 2017, 3(6): pp. 787–794.
[6] J. L. Wang, L He. “A Prestressing Tendon Element Geoenvironmental Engineering”, 2013, 139(8): pp. 1262–1274.
[7] T. Carey, B. Mason, A. R. Barbosa, et al. “Modeling Framework for Soil-bridge System Response during Sequential Earthquake and Tsunami Loading”. [C] Tenth US National Conference on Earthquake Engineering, Anchorage [s.n.], 2014.
[8] H. Tao, X. F. Shen. “Strongly subfeasible sequential quadratic programming method of cable tension optimization for cable-stayed bridges”. [J] Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): pp. 381–384. (in Chinese)
[9] X. H. Zhou, P. Dai, D. Jin. “Optimization analysis of cable tensions of dead load state for cable-stayed bridge with steel box girder” [J] Journal of Architecture and Civil Engineering, 2007, 24(2): pp. 19–23. (in Chinese)
[10] A. Baldomir, S. Hernandez, F. Nieto, et al. “Cable optimization of along span cable stayed bridge in La Coruña (Spain)”. [J]. Advances in Engineering Software, 2010,41: pp. 931–938.
[11] A. M. B. Martins, L. M. C. Simoes, J. H. J. O. Negrao. “Optimization of cable forces on concrete cable-stayed bridges including geometrical nonlinearities”. [J] Computers and Structures, 2015, 155: pp. 18–27.
[12] M. M. Hassan, A. A. EI Damatty, A. O. Nassef. “Database for the optimum design of semi-fan composite cable-stayed bridges based on genetic algorithms”. [J] Structure and Infrastructure Engineering, 2014, 11(8): pp. 1054–1068.
[13] X. Wu, R. C. Xiao. “Optimization of cable force for cable-stayed bridges with mixed stiffening girders based on genetic algorithm”. [J] Journal of Jiangsu University (Natural Science Edition), 2014, 35(6): 2016, 12(2): pp. 208–222.
[14] Y. C. Sung, C. Y. Wang, E. H. Teo. “Application of particle swarm optimisation to construction planning of cable-stayed bridges by the cantilever erection method”. [J] Structure and Infrastructure Engineering, 2016, 12(2): pp. 208–222.
[15] B. S. Smith. “The Single a Palne Cable-stayed Girder Bridge: a Method of Analysis Suitable for Computer Use”. [J] Civil engineering,1967,37(5): pp.183–194.
[16] Y. Xi; J. S. Kuang. “Ultimate Load Capacity of Cable-stayed Bridge”. Joural of Bridge Engineering [J]. 1999, 4(1): pp. 14–22.
[17] C. Honigmann, D. Billington. “Conceptual Design for the Sunniberg Bridge” [J] Joural of bridge enginerring, 2003, 8(3): pp. 122–130.
[18] R. Karoumi. “Some modelling aspects in the nonlinear finite element analysis of cable supported bridges”. [J] Computers& Structures, 1999, 71(4): pp. 397–412.
[19] Q. S. Chen, W. L. Huang, M G Yang, “Analysis of shear lag effect in construction stage of wide box girder extradosed cable-stayed bridge with large flanges”, Journal of Railway Science and Engineering, vol. 15, no. 12, pp. 3158–3164, 2018.
[20] X. Guo, Y. K. Wu, Y. Guo. “Time-dependent Seismic Fragility Analysis of Bridge Systems under Scour Hazard and Earthquake Loads”. [J] Engineering Structures, 2016, 121: pp. 52–60.
[21] M. M. Chuiaramonte, P. Arduino, D. E. Lehman, et al. “Seismic Analyses of Conventional and Improved Marginal Wharves”. [J] Earthquake Engineering & Structural Dynamics, 2013, 42(10): pp. 1435–1450.
[22] A. E. Haiderali, G. Madabhushi. “Evaluation of Curve Fitting Techniques in Deriving P-Y Curves for Laterally Loaded Piles”. [J] Geotechnical and Geological Engineering, 2016, 34(5): pp. 1453–1473.
[23] M. H. Faber, S. Engelund, R. Rackwitz. “Aspects of parallel wire cable reliability”. [J] Strucural Safety, 2003, 25(2): pp. 201–225.
[24] C. M. Lan, N. N. Bai, H. T. Yang, et al. “Weibull modeling of the fatigue life for steel rebar considering corrosion effects”. [J] International Journal of Fatigue, 2018, 111: pp. 134–143.
[25] C. M. Lan, Y. Xu, C. P. Liu, et al. “Fatigue life prediction for parallel-wire stay cables considering corrosion effects”. [J] International Journal of Fatigue, 2018, 114: pp. 81–91.
[26] M. Bruneau. “Evaluation of system-reliability methods for cable-stayed bridge design”. [J] Journal of Structural Engineering, 1992, 118(4): pp. 1106–1120.
[27] Y. Liu, N. W. Lu, X. F. Yin, et al. “An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge”. [J] Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2016, 230(2): pp. 204–219.
[28] V. Lute, A. Upadhyay, K. K. Singh. “Computationally efficient analysis of cable-stayed bridge for GA-based optimization”. [J] Engineering Applications of Artificial Intelligence, 2009, 22: pp. 750–758.
Go to article

Authors and Affiliations

Yanfeng Li
1
ORCID: ORCID
Tianyu Guo
1
ORCID: ORCID
Longsheng Bao
1
ORCID: ORCID
Fuchun Wang
1

  1. School of Transportation Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Download PDF Download RIS Download Bibtex

Abstract

The goal of paper is the development and demonstration of efficiency of algorithm for form finding of a slack cable notwithstanding of the initial position chosen. This algorithm is based on product of two sets of coefficients, which restrict the rate of looking for cable geometry changes at each iteration. The first set restricts the maximum allowable change of absolute values of positions, angles and axial forces. The second set takes into account whether the process is the converging one (the signs of maximal change of parameters remain the same), so that it increases the allowable changes; or it is a diverging one, so that these changes are discarded. The proposed procedure is applied to two different methods of simple slack cable calculation under a number of concentrated forces. The first one is a typical finite element method, with the cable considered as consisting of number of straight elements, with unknown positions of their ends, and it is essentially an absolute coordinate method. The second method is a typical Irvine’s like analytical solution, which presents only two unknowns at the initial point of the cable; due to the peculiarity of implementation it is named here a shooting method. Convergence process is investigated for both solutions for arbitrary chosen, even very illogical initial positions for the ACM, and for angle and force at the left end for SM as well. Even if both methods provide the same correct convergent results, it is found that the ACM requires a much lower number of iterations.
Go to article

Authors and Affiliations

Igor Orynyak
1
ORCID: ORCID
Federico Guarracino
2
ORCID: ORCID
Mariano Modano
2
ORCID: ORCID
Roman Mazuryk
1
ORCID: ORCID

  1. Department of Applied Mathematics at National Technical University Kiev Polytechnic Institute, Peremohystr, 37, Kyiv 03056, Ukraine
  2. Department of Structural Engineering at University of Naples “Federico II”, via Claudio, 21-80125 Napoli, Italy
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the stiffness and internal force of the finite element model of a cable-stayed bridge, arch bridge and cooperative system bridge with the same span are analyzed, and the stress characteristics of cooperative system bridge compared with arch bridge and cable-stayed bridge are studied. In the stiffness analysis, the live load deflections of the arch bridge (maximum deflection – 6.07 mm) and the cooperative system bridge (maximum deflection –6.00 mm) are similar, while the cable-stayed bridge (maximum deflection –16.27 mm) has a larger deflection. In the internal force analysis, compared with the internal force of the main girder, it can be seen that the girder of the cooperative system bridge reduces the girder-column effect compared with the cable-stayed bridge. The main girder of the cooperative system bridge reserves more stress than the arch bridge. In the stress analysis of arch rib, the axial force and bending moment of arch rib under dead load of cooperative system bridges are greater than the cooperative system bridge. The maximum difference of axial force and bending moment between arch bridge and cooperative system bridge is 16.2% and 58.8%, but there is no obvious difference under live load. In the stress analysis of the cable tower, the advantages of the cooperative system bridge are more obvious under dead load and live load. In the comparative analysis between the cable and the derrick, the dead load and live load are mainly carried by the derrick, and the derrick bears 84% dead load and 97% live load. The research results can provide reference for the stress analysis of similar bridge structures.
Go to article

Authors and Affiliations

Xilong Zheng
1
ORCID: ORCID
Yujun Cui
2
ORCID: ORCID

  1. School of Civil and Architectural Engineering, Harbin University, Harbin, Heilongjiang, China
  2. School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
Download PDF Download RIS Download Bibtex

Abstract

The hereby paper discusses the influence of cable length on the SHM systems with the use of vibrating wire dynamic measurements. Vibrating wire sensors are mainly used for measuring stable or slowly changing strains, e.g. system installed on Rędziński Bridge in Wroclaw. From some time applications of these sensors for measuring dynamic deformations are becoming popular. Such tests were conducted on STS Fryderyk Chopin. New solutions generate new problems. In this case: the operational stability of systems exciting wire vibrations. The structure of such sensors and the electric cables length has an essential influence on their operations, what is undertaken in the paper. The subject of investigations constitutes the measuring system based on self-exciting impulse exciter, for which impedance parameters of electric cables and of the vibrating wire sensor were the most essential. The mathematical model of the system, experimental verification of the model as well as the results of theoretical analyses at the application of electric cables of various lengths are presented in the paper.

Go to article

Authors and Affiliations

G. Cieplok
W. Karwowski
Ł. Bednarski
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the computations of mast guys taking into account both geometric and physical nonlinearities. Experimental studies have been conducted, the aim of which was to determine σ - ε (stress – deformation) relation for steel rope and to determine the value of modulus of elasticity after its pre-stretching. Results of the research were used to create appropriate computational cable models within the elastic and inelastic range in SOFiSTiK software, based on FEM. The computational cable models were then used to perform parametric analyses of single cables with horizontal and diagonal chords and computations of a lattice guyed mast. The computational single cables results obtained in the SOFiSTiK software were confronted with the results obtained by the analytical method, based on the cable equation. The FEM analyses performed for single cables have proven usefulness of presented analytical procedure for computation of structures with cable elements (e.g. guyed masts) taking into account both the geometric and physical nonlinearity of the cables. It has been shown that while using steel ropes without pre-stretching, permanent deformations in the cables may occur, which affect the shape of the cable and may significantly reduce values of forces in the cables. This phenomenon can be particularly dangerous in the case of guyed masts, as it may affect the reduction in rigidity of the mast structure.
Go to article

Bibliography

[1] Eurocode 3. EN 1993-3-1: Design of steel structures. Part 3–1: Towers, masts and chimneys – Towers and masts. CEN Brussels 2006.
[2] S.A. Sadrnejad, “Numerical solution of base shear in high tensioned cable antenna”, Numerical Methods in Civil Engineering, 2016, vol. 1, no. 2, pp. 21–30, http://nmce.kntu.ac.ir/article-1-24-en.html.
[3] M. Matuszkiewicz, R. Orzłowska, “The influence of the second order effects on the results of computations of guyed masts with lattice shaft” (in Polish), Inzynieria i Budownictwo, 2017, no. 6, pp. 329–332.
[4] Sz. Pałkowski, Cable structures. Warszawa: WNT, 1994.
[5] Y.B. Yang, J.Y. Tsay, “Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method”, International Journal of Structural Stability and Dynamics, 2007, vol. 7, no. 4, pp. 571–588, DOI: 10.1142/S0219455407002435.
[6] H. Shi, H. Salim, “Geometric nonlinear static and dynamic analysis of guyed towers using fully nonlinear element formulations”, Engineering Structures, 2015, vol. 99, pp. 492–501, DOI: 10.1016/j.engstruct.2015.05.023.
[7] P.M. Páez, B. Sensale, “Analysis of guyed masts by the stability functions based on the Timoshenko beamcolumn”, Engineering Structures, 2017, vol. 152, pp. 597–606, DOI: 10.1016/j.engstruct.2017.09.036.
[8] Sz. Pałkowski, “Zur statischen Berechnung von Seilkonstruktionen im elastisch-plastischen Bereich”, Bauingenieur, 1992, no. 67, pp. 359–364.
[9] M. Matuszkiewicz, “Computations of cable structures in the elastic-plastic range” (in Polish), Inzynieria i Budownictwo, 2003, no. 7, pp. 393–396.
[10] F. Foti, A. de Luca di Roseto, “Analytical and finite element modeling of the elastic-plastic behaviour of metallic strands under axial-torsional loads”, International Journal of Mechanical Sciences, 2016, vol. 115– 116, pp. 202–214, DOI: 10.1016/j.ijmecsci.2016.06.016.
[11] F. Meng, Y. Chen, M. Du, X. Gong, “Study on effect of inter-wire contact on mechanical performance of wire rope strand based on semi-analytical method”, International Journal of Mechanical Sciences, 2016, vol. 115–116, pp. 416–427, DOI: 10.1016/j.ijmecsci.2016.07.012.
[12] Y.A. Onur, “Experimental and theoretical investigation of prestressing steel strand subjected to tensile load”, International Journal of Mechanical Sciences, 2016, vol. 118, pp. 91–100, DOI: 10.1016/j.ijmecsci.2016.09.006
[13] B. Liang, Z. Zhao, X. Wu, H. Liu, “The establishment of a numerical model for structural cables including friction”, Journal of Constructional Steel Research, 2017, vol. 139, pp. 424–436, DOI: 10.1016/j.jcsr.2017.09.031.
[14] R. Pigon, “Experimental study of mechanical properties of steel cables”, in The 2nd Baltic Conference for Students and Young Researches (BalCon 2018), 20-23 April 2018, Gdynia, Poland. MATEC Web of Conferences, 2018, vol. 219, no. 02004, DOI: 10.1051/matecconf/201821902004.
[15] GmbH, Pfeifer Seil – und Hebetechnik. Pfeifer Tension Members. 2015, no. 10. https://www.pfeifer.info/out/assets/PFEIFER_TENSION-MEMBERS_BROCHURE_EN.PDF
[16] PN-EN 12385-1 ¸ A1: Steel wire ropes. Safety. Part 1: General requirements. Warszawa: Polski Komitet Normalizacyjny, 2009.
[17] PN-EN 13411-4: Terminations for steel wire ropes. Safety. Part 4: Metal and resin socketing. Warszawa: Polski Komitet Normalizayjny, 2013.
[18] Millfield Enterprises (Manufacturing) Limited, WIRELOCK. Technical data manual. 2017. [Online]. https://www.wirelock.com/wp-content/uploads/2016/02/Wirelock-Technical-Data-Manual-2-11-17.pdf
[19] PN ISO 3108: Steel wire ropes for general purposes. Determination of actual breaking load. Warszawa: Polski Komitet Normalizacyjny, 1996.
[20] Eurocode 3. PN-EN 1993-1-11: Design of steel structures. Part 1–11: Design of structures with tension components. Warszawa: Polski Komitet Normalizacyjny, 2008.
[21] Chr. Petersen, Stahlbau. Vieweg, Braunschweig/Wiesbaden, 1993.
[22] U. Peil, “Bauen mit Seilen”, in Stahlbau-Kalender. 2000, pp. 690–755.
[23] A. Der Kiureghian, J.L. Sackman, “Tangent geometric stiffness of inclined cables under self-weight”. Journal of Structural Engineering ASCE, 2005, vol. 131, no. 6, pp. 941–945, DOI: 10.1061/(ASCE)0733-9445(2005)131:6(941).
[24] SOFiSTiK 2016 FEA. Oberschleissheim, Germany 2016.
[25] Eurocode 1. PN-EN 1991-1-4: Actions on structures. Part 1–4: General actions – Wind actions. Warszawa: Polski Komitet Normalizacyjny, 2008.
Go to article

Authors and Affiliations

Monika Matuszkiewicz
1
ORCID: ORCID
Renata Pigoń
1
ORCID: ORCID

  1. Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Sniadeckich 2, 75-453 Koszalin, Poland

This page uses 'cookies'. Learn more