Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article considers the problem of the rise in temperature of the windings of an induction motor during start-up. Excessive growth of thermal stresses in the structure of a cage winding increases the probability of damage to the winding of the rotor. For the purpose of analysis of the problem, simplified mathematical relationships are given, enabling the comparison of quantities of energy released in a rotor winding during start-up by different methods. Also, laboratory tests were carried out on a specially adapted cage induction motor enabling measurement of the temperature of a rotor winding during its operation. Because there was no possibility of investigating motors in medium- and high-power drive systems, the authors decided to carry out tests on a low-power motor. The study concerned the start-up of a drive system with a 4 kW cage induction motor. Changes in the winding temperature were recorded for three cases: direct online start-up, soft starting, and the use of a variable-frequency drive (VFD). Conclusions were drawn based on the results obtained. In high-power motors, the observed phenomena occur with greater intensity, because of the use of deep bar and double cage rotors. For this reason, indication is made of the particular need for research into the energy aspects of different start-up methods for medium- and high-power cage induction motors in conditions of prolonged start-up.
Go to article

Bibliography

  1.  Y. Gritli, S.B. Lee, F. Filippetti, and L. Zarri, “Advanced diagnosis of outer cage damage in double-squirrel-cage induction motors under time-vartyng conditions besed on wavelet analysis”, IEEE Trans. Ind. Appl. 50(3), 1791‒1800, (2014).
  2.  Y. Gritli, O. Di. Tommaso, R. Miceli, F. Filippeti, and C. Rossi, “Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives”, 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 2013, pp. 1814‒1820.
  3.  F. Wilczyński, P. Strankowski, J. Guziński, M. Morawiec, and A. Lewicki, “Sensorless field oriented control for five-phase induction motors with third harmonic injection and fault insensitive feature”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 253‒262, (2019).
  4.  C.G. Dias, L.C. da Silva, and I. E. Chabu, “Fuzzy-based statistical feature extraction for detecting broken rotor bars in line-fed and inverter-fed induction motors”, Energies 12(12), 2381, (2019).
  5.  T. Nakahama, D. Biswas, K. Kawano, and F. Ishibashi, “Improved cooling performance of large motors using fans”, IEEE Transactions on Energy Conversion, 21(2), 324‒331, (2006).
  6.  D. Staton, A. Boglietti, and A. Cavagnino, “Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors”, IEEE Trans. Energy Convers. 20(3), 620‒628, (2005).
  7.  C. Ulu, O. Korman, and G. Komurgoz, “Electromagnetic and thermal design/analysis of an induction motor for electric vehicles”, 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, 2017.
  8.  Y. Xie, J. Guo, P. Chen, and Z. Li, “Coupled fluid-thermal analysis for induction motors with broken bars operating under the rated load”, Energies, 11(8), 2024, (2018).
  9.  K.N. Gyftakis, D. Athanasopoulos, and J. Kappatou, “Study of double cage induction motors with different rotor bar materials”, 20th International Conference on Electrical Machines (ICEM), Marseille, France, 2012, pp. 1450‒1456.
  10.  Z. Maddi and D. Aouzellag, “Dynamic modelling of induction motor squirrel cage for different shapes of rotor deep bars with estimation of the skin effect”, Prog. Electromagn. Res. M 59, 147‒160, (2017)
  11.  M. Sundaram, M. Mohanraj, P. Varunraj, T.D. Kumar, and S. Sharma, “FEA based electromagnetic analysis of induction motor rotor bars with improved starting torque for traction applications”, Proceedings of the International Conference on Automatic Control, Mechatronics and Industrial Engineering (ACMIE), Suzhou, China, 2018.
  12.  H.J. Lee, S.H. Im, D.Y. Um, G.S. Park, “A design of rotor bar for improving starting torque by analyzing rotor resistance and reactance in squirrel cage induction motor”, IEEE Trans. Magn. 99, 1‒4, (2017).
  13.  L. Livadaru, A. Simion, A. Munteanu, M. Cojan, and O. Dabija, “Dual cage high power induction motor with direct start-up design and FEM analysis” Adv. Electr. Comput. Eng. 13(2), 55‒58, (2013).
  14.  S. Sinha, N.K. Deb, and S.K. Biswas, “The design and its verification of the double rotor double cage induction motor”, Journal of The Institution of Engineers (India): Series B 98(1), 107‒113, (2017).
  15.  W. Poprawski and T. Wolnik, “Innovative design of double squirrel cage induction motor for high start frequency operation”, Electr. Mach. Trans. J. Inst. Electr. Drives Mach. KOMEL 111(3), 41‒44, (2016).
  16.  J. Mróz and W. Poprawski, “Improvement of the Thermal and Mechanical Strength of the Starting Cage of Double-Cage Induction Motors”, Energies 12 (23), 4551, (2019).
  17.  J. Mróz, “Start-up of the Deep-Bar Motor with the use of the Softstart-up – An Energetisitc Face”, Zeszyty Problemowe BOBRME Komel 81, 17‒22, (2009) [in Polish].
  18.  J. Mróz, “Energy Emitted in the Induction Motor’s Winding During the Start-up with the use of the Softstart-up”, Zeszyty Problemowe BOBRME Komel, 84, 121‒126, (2009) [in Polish].
  19.  M.G. Solveson, B. Mirafazal, and N.A.O. Demerdash, “Soft-Started Induction Motor Modeling and Heating Issues for Different Starting Profiles Using a Flux Linkage ABC Frame of Reference”, IEEE Trans. Ind. Appl. 42(4), 973‒982, (2006)
  20.  R. Krok,” Influence of work environment on thermal state of electric mine motors”, Arch. Electr. Eng. 60(3), 357‒370, (2011).
  21.  Q. Al’Akayshee and D.A. Staton, “1150 hp motor design, electromagnetic and thermal analysis”, ICEM – 15-th International conference on electrical machines, Bruges, Belgium, 2002.
  22.  J. Mróz, The Analysis of Coupled Electromechanical and Thermal Problems in Transient States of Double-Cage Induction Motors, Publishing House Rzeszow University of Technology: Rzeszow, Poland, 2013, [in Polish].
Go to article

Authors and Affiliations

Jan Mróz
1
Piotr Bogusz
1

  1. Rzeszów University of Technology, The Faculty of Electrical and Computer Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is the control possibility of the multiphase cage induction motors having number of phases greater than 3. These motors have additional properties for speed control that distinguish them from the standard 3 phase motors: operation at various sequences of supplying voltages due to the inverter control and possible operation with few open-circuited phases. For each supply sequence different no load speeds at the same frequency can be obtained. This feature extends the motor application for miscellaneous drive demands including vector or scalar control. This depends mainly on the type of the stator winding for a given number of phases, since the principle of motor operation is based on co-operation of higher harmonics of magnetic field. Examples of operation are presented for a 9-phase motor, though general approach has been discussed. This motor was fed by a voltage source inverter at field oriented control with forced currents. The mathematical model of the motor was reduced to the form incorporating all most important physical features and appropriate for the control law formulation. The operation was illustrated for various supply sequences for “healthy” motor and for the motor operating at one phase broken. The obtained results have shown that parasitic influence of harmonic fields interaction has negligible influence on motor operation with respect to the useful coupling for properly designed stator winding.
Go to article

Authors and Affiliations

Piotr Drozdowski
Download PDF Download RIS Download Bibtex

Abstract

This study presents a method to directly calculate the stator current Fourier spectra in double-cage induction motors to diagnose faults in rotor cages. A circuit model is developed for this purpose, allowing the modelling of any asymmetry in the outer and inner rotor cages. The model extends the conventional model of a cage motor by considering the higher space harmonics generated by the stator windings. The asymmetry of the cages is modelled by growing the resistance of any of the rotor bars. This results in various model equations, to be solved by looking for diagnostic signals. Motor current signature analysis is typically used to diagnose cage motors based on the Fourier spectra of the stator currents during steady-state operation. This study determines these spectra for double cage motors using the harmonic balance method, omitting the transient calculations. The calculation results confirmed the sensitivity of the stator current Fourier spectra as a diagnostic signal to distinguish faults in the outer and inner cages.
Go to article

Authors and Affiliations

Jarosław Tulicki
1
ORCID: ORCID
Tadeusz Jan Sobczyk
1
ORCID: ORCID
Maciej Sułowicz
1
ORCID: ORCID

  1. Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska str., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to study the influence of closed loop control on diagnostic indices of both broken bar and mixed air-gap eccentricity fault indices of the squirrel cage induction motor drive. The present work is focused on the direct stator current isd signal analysis, which is independent of torque load when the induction motor is controlled by an indirect control field. The fault signatures are on the line extracted from the direct stator current signal using the discrete Fourier transformation (DFT). The formula of the measured direct stator current at both conditions is determined by the transfer function of the current loop. The obtained results show that the current loop corresponds to a low pass filter and can reduce the magnitude of diagnostic indicators which lead to wrong evaluation of the fault. Simulation and experiments were carried out in order to confirm the theoretical analysis.
Go to article

Authors and Affiliations

Nourelhouda Bouabid
1
ORCID: ORCID
Mohamed-Amine Moussa
1
Yassine Maouche
1
Abdelmalek Khezzar
1

  1. Departement d’electrotechnique, Laboratoire d’electrotechnique de Constantine, Universite Constantine 1, 25000 Constantine, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the analysis of different fault states in drive systems with multiphase induction motors. The mathematical models of a five-phase and six-phase induction motor and the MRASCC estimator have been presented and the description of the Space Vector Modulation has been shown. The Direct Field-Oriented Control (DFOC) system is analyzed. Results of the simulation and experimental studies of the Direct Field-Oriented Control systems in the fault conditions are presented. The author’s original contribution includes analysis and studies of the DFOC control method of a five-phase induction motor resistant to the motor speed sensor fault with the use of the MRASCC estimator.

Go to article

Authors and Affiliations

Jacek Jan Listwan

This page uses 'cookies'. Learn more