Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 44
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hardfacing deposition processes were carried out using unalloyed S1-EL12 welding wire and submerged arc welding fluxes produced by agglomerated method containing 4-16 wt.% ferrochromium and 2 wt.% ferroboron to achieve wear-resistant of hardfacing deposits on common steel substrates via submerged arc welding. Typical parameters such as slag detachment behaviour, measurements of weld seam widths and heights, microstructural examinations, and hardness and wear tests of hardfacing deposits were characterized. End of the characterization processes, with the increase of chromium, carbon, and boron transition from welding fluxes to hardfacing deposits, the welding seam widths, and heights were determined to increase from 14.12 mm to 15.65 mm and 6.14 mm to 6.50 mm, respectively. Besides; carbide and boro-carbide ratios in the microstructures increased, the hardness values increased from 43 HRC to 61 HRC and the wear losses decreased from 5.79 to 4.43. (10 –7 mm 3 (N m) –1).
Go to article

Authors and Affiliations

M. Kaptanoglu
1
ORCID: ORCID
M. Eroglu
1
ORCID: ORCID

  1. University of Firat, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Elazig, 23000, Turkey
Download PDF Download RIS Download Bibtex

Abstract

A superior SiC based thermal protection coating process for carbon composite, which can be especially effective in a hot oxidizing atmosphere, was established in this study. A multi-coating process based on a combination of Chemical Vapor Reaction (CVR) and Chemical Vapor Deposition (CVD) was developed. Various protective coating layers on carbon composite were tested in hot oxidizing surroundings and the test results verified that the thermal ablation rate could be dramatically reduced down to 3.8% when the protective multi-coating was applied. The thermal protection mechanism of the coating layers was also investigated.

Go to article

Authors and Affiliations

Soo Bin Bae
ORCID: ORCID
Ji Eun Lee
ORCID: ORCID
Jong Gyu Paik
Nam Choon Cho
ORCID: ORCID
Hyung Ik Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for

obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self

shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this

obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with

specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this

kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high

chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of

microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical

microscopy and X- ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited

materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences

in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of

investigated coatings.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
M. Dośpiał
R. Bęczkowski
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to basalt reprocessing together with magnetite concentrate in order to obtain ferrous alloy and calcium carbide. The studies have been based on thermodynamic simulation and electric smelting in arc furnace. The thermodynamic simulation has been performed using HSC-5.1 software based on the principle of minimum Gibbs energy. The blend was smelted in arc furnaces. On the basis of the obtained results of combined processing of basalt, it has been established that under equilibrium conditions, the increase in carbon content from 36 to 42 wt % of basalt and concentrate mixture makes it possible to increase the aluminum extraction into the alloy up to 81.4%, calcium into calcium carbide – up to 51.4%, and silicon into the alloy – up to 78.5%. Increase in the amount of lime to 32% allows to increase the content of calcium carbide to 278 dm3/kg. Electric smelting of the blend under laboratory conditions in the presence of 17-32% of lime makes it possible to extract ferrous alloy containing 69.5-72.8% of silicon, 69.1-70.2% of aluminum, and to obtain ferrous alloy containing 49-53% of ΣSi and Al and calcium carbide in the amount of 233-278 dm3/kg. During large-scale laboratory smelting of blend comprised of basalt (38.5%), magnetite concentrate (13.4%), lime (15.4%), and coke fines (32.7%), the ferrous alloy has been produced containing 48-53% of ΣSi and Al, calcium carbide in amount of 240-260 dm3/kg. Extraction of Si and Al into the alloy was 70.4 and 68.6%, respectively; Ca into carbide – 60.3%; Zn and Pb into sublimates – 99.6 and 92.8%, respectively.

Go to article

Authors and Affiliations

V.M. Shevko
G.E. Karataeva
A.D. Badikova
M.A. Tuleev
R.A. Uteeva
Download PDF Download RIS Download Bibtex

Abstract

Electrical properties of semiconductor materials depend on their defect structure. Point defects, impurities or admixture contained in a semiconductor material, strongly affect its properties and determine the performance parameters of devices made on its basis. The results of the currently used methods of examining the defect structure of semiconductor material are imprecise due to solution of ill-posed equations. These methods do not allow for determination of concentration of the defect centers examined. Improving the resolution of the obtained parameters of defect centers, determining their concentration and studying changes in the resistivity of semi-insulating materials can be carried out, among others, by modelling changes in the concentration of carriers in the conduction and valence bands. This method allows to determine how charge compensation in the material affects the changes in its resistivity. Calculations based on the Fermi-Dirac statistics can complement the experiment and serve as a prediction tool for identifying and characterizing defect centers. Using the material models (GaP, 4H–SiC) presented in the article, it is possible to calculate their resistivity for various concentrations of defect centers in the temperature range assumed by the experimenter. The models of semi-insulating materials presented in the article were built on the basis of results of testing parameters of defect centers with high-resolution photoinduced transient spectroscopy (HRPITS). The current research will allow the use of modelling to determine optimal parameters of semi-insulating semiconductor materials for use in photoconductive semiconductor switches (PCSS).
Go to article

Bibliography

[1] Sangwal, K. (2007). Additives and Crystallization Processes: From Fundamentals to Applications. Wiley. https://doi.org/10.1002/9780470517833
[2] Shah, P. B.,&Jones, K. A. (1998). Two-dimensional numerical investigation of the impact of materialparameter uncertainty on the steady-state performance of passivated 4H–SiC thyristors. Journal of Applied Physics, 84(8), 4625–4630. https://doi.org/10.1063/1.368689
[3] Pas, J., & Rosinski, A. (2017). Selected issues regarding the reliability-operational assessment of electronic transport systems with regard to electromagnetic interference. Eksploatacja i Niezawodnosc, 19(3), 375–381. https://doi.org/10.17531/ein.2017.3.8
[4] Makowski, L., Dziadak, B., & Suproniuk, M. (2019). Design and development of original WSN sensor for suspended particulate matter measurements. Opto-Electronics Review, 27(4), 363–368. https://doi.org/10.1016/j.opelre.2019.11.005
[5] Górecki, P., & Górecki, K. (2015). The analysis of accuracy of selected methods of measuring the thermal resistance of IGBTs. Metrology and Measurement Systems, 22(3), 455–464. https://doi.org/10.1515/mms-2015-0036
[6] Matsuura, H., Komeda, M., Kagamihara, S., Iwata, H., Ishihara, R., Hatakeyama, T., Watanabe, T., Kojima, K., Shinohe, T., & Arai, K. (2004). Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H–SiC epilayers. Journal of Applied Physics, 96(5), 2708–2715. https://doi.org/10.1063/1.1775298
[7] Kagamihara, S., Matsuura, H., Hatakeyama, T., Watanabe, T., Kushibe, M., Shinohe, T., & Arai, K. (2004). Parameters required to simulate electric characteristics of SiC devices for n-type 4H–SiC. Journal of Applied Physics, 96(10), 5601–5606. https://doi.org/10.1063/1.1798399
[8] Matsuura, H., Komeda, M., Kagamihara, S., Iwata, H., Ishihara, R., Hatakeyama, T., Watanabe, T., Kojima, K., Shinohe, T., & Arai, K. (2004). Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H–SiC epilayers. Journal of Applied Physics, 96(5), 2708–2715. https://doi.org/10.1063/1.1775298
[9] Suproniuk, M., Pawłowski, M., Wierzbowski, M., Majda-Zdancewicz, E., & Pawłowski, Ma. (2018). Comparison of methods applied in photoinduced transient spectroscopy to determining the defect center parameters: The correlation procedure and the signal analysis based on inverse Laplace transformation. Review of Scientific Instruments, 89(4). https://doi.org/10.1063/1.5004098
[10] Suproniuk, M., Kaczmarek, W., & Pawlowski, M. (2019). A New Approach to Determine the Spectral Images for Defect Centres in High-Resistive Semiconductor Materials. Proceedings of the 23rd International Conference Electronics 2019, Lithuania. https://doi.org/10.1109/ELECTRONICS.2019.8765694
[11] Piwowarski, K. (2020). Comparison of photoconductive semiconductor switch parameters with selected switch devices in power systems. Opto-electronics Review, 28(2), 74–81. https://doi.org/10.24425/opelre.2020.132502
[12] Suproniuk, M. (2020). Effect of generation rate on transient photoconductivity of semi-insulating 4H–SiC. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68898-z
[13] Suproniuk, M., Piwowarski, K., Perka, B., Kaminski, P., Kozlowski, R., & Teodorczyk, M. (2019). Blocking characteristics of photoconductive switches based on semi-insulating GAP and GaN. Elektronika ir Elektrotechnika, 25(4), 36–39. https://doi.org/10.5755/j01.eie.25.4.23968
[14] Sze, S. M.,&Kwok, K. Ng. (2006). Physics of Semiconductor Devices.Wiley. https://doi.org/10.1002/ 0470068329
[15] Colinge, J. P., & Colinge C. A. (2002). Physics of Semiconductor Devices. Springer. https://doi.org/10.1007/b117561
[16] Kozubal, M. (2011). Effect shallow impurities on the properties and concentrations of deep-level defect centres in SiC. Ph.D. Dissertation. https://rcin.org.pl/dlibra/publication/29712
[17] Zvanut, M. E., & Konovalov, V. V. (2002). The level position of a deep intrinsic defect in 4H–SiC studied by photoinduced electron parametric resonance. Applied Physics Letters, 80(3), 410–412. https://doi.org/10.1063/1.1432444
[18] Kaminski, P., Kozubal, M., Caldwell, J. D., Kew, K. K., Van Mil, B. L., Myers-Ward, R. L., Eddy, C. R. Jr., & Gaskill, D. K. (2010). Deep-level defects in epitaxial 4H–SiC irradiated with low-energy electrons. Electron Mater, 38(3–4), 26–34.
[19] Danno, K., & Kimoto, T. (2006). Deep hole traps in as-grown 4H–SiC epilayers investigated by deep level transient spectroscopy. Materials Science Forum, 527–529, 501–504. https://doi.org/10.4028/ www.scientific.net/MSF.527-529.501
[20] Kaminski, P., Kozłowski, R., Strzelecka, S., Hruban, A., Jurkiewicz-Wegner, E., & Piersa, M. (2011). High-resolution photoinduced transient spectroscopy of defect centres in semi-insulating GaP. Physica Status Solidi (C) Current Topics in Solid State Physics, 8(4), 1361–1365. https://doi.org/10.1002/ pssc.201084009
[21] Ioffe.ru. GaP – Gallium Phosphide, Band structure and carrier concentration. http://www.ioffe.ru/ SVA/NSM/Semicond/GaP/bandstr.html
[22] Kennedy, T. A., & Wilsay, N. D. (1984). Electron paramagnetic resonance identification of the phosphorus antisite in electron-irradiated InP. https://doi.org/10.1063/1.94654
[23] Baber, N., & Iqbal, M. Z. (1987). Field effect on thermal emission from the 0.85-eV hole level in GaP. Journal of Applied Physics, 62(11), 4471–4474. https://doi.org/10.1063/1.339036
[24] Panish M. B., & Casey, H. C. Jr. (1969). Temperature dependence of the energy GaP in GaAs and GaP. Journal of Applied Physics, 40(1), 163–167. https://doi.org/10.1063/1.1657024
Go to article

Authors and Affiliations

Marek Suproniuk
1

  1. Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, gen. S. Kaliskiego 2, Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The application of hardfacing is one of the ways to restore the functional properties of worn elements. The possibility of using filler materials rich in chrome allows for better wear resistance than base materials used so far. The paper presents the results of research on the use of 3 different grades of covered electrodes for the regeneration of worn track staves. The content of the carbon in the covered electrodes was from 0,5% to 7% and the chromium from 5% to 33%. The microscopic and hardness tests revealed large differences in the structure and properties of the welds. The differences in the hardness of the welds between the materials used were up to 150 HV units. The difference in wear resistance, in the ASTM G65 test, between the best and worst materials was almost 12 times big.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
P. Wieczorek
M. Mičian
ORCID: ORCID
R. Koňár
Download PDF Download RIS Download Bibtex

Abstract

Vanadium carbide is important for industrial applications because of its high hardness, high temperature resistance, high chemical, and thermal stability. It is generally obtained from the reaction between V and C powders at a high temperature ranging from 1100 to 1500°C. Investigations on these high strength, high abrasion resistant, hard materials have been intensified in recent years and consequently, significant improvements have been achieved. In this study, VC alloys are produced with low cost processes, by reducing the oxides of their components by SHS methods and ball mill-assisted carbothermal reduction. In the experimental stage, V2O5 was used as oxidized Vanadium source, Cblack as carbon source, magnesium and Cblack as reductant. In the study, VC powders were synthesized by two different methods and optimum production conditions were determined. Furthermore, the effect of different stoichiometric charge components and the effect of experiment durations were realized by X-ray diffraction, HSC Chemistry, and SEM analyses for different reductants.
Go to article

Authors and Affiliations

Mehmet Bugdayci
1
Levent Once
2
Murat Alkan
Ahmet Turan
3
Umay Cinarli
4

  1. Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200, Yalova, Turkey; Istanbul Medipol University, Vocational School, Construction Technology Department, 34810, Istanbul, Turkey
  2. Sinop University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, 57000, Sinop, Turkey
  3. Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, 35390, Izmir, Turkey
  4. Yeditepe University, Engineering Faculty, Materials Science and Nanotechnology Engineering Department, 34755, Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

WC-Co cemented carbides were consolidated using spark plasma sintering in the temperature 1400°C with transition metal carbides addition. The densification depended on exponentially as a function of sintering exponent. Moreover, the secondary (M, W)Cx phases were formed at the grain boundaries of WC basal facet. Corresponded, to increase the basal facets lead to the plastic deformation and oriented grain growth. A higher hardness was correlated with their grain size and lattice strain. We suggest that this is due to the formation energy of (M, W)Cx attributed to inhibit the grain growth and separates the WC/Co interface.
Go to article

Bibliography

[1] A.I. Gusev, A.A. Remple, A.J. Magerl, Disorder and order in strongly non-stoichiometric compounds: transition metal carbides, nitrides and oxide. Berlin: Springer; 607 (2001).
[2] T.A. Fabijanic, M. Kurtela, I. Skrinjaric, J. Potschke, M. Mayer, Metals 10, 224 (2020).
[3] X. Liu, X. Song, H. Wang, X. Liu, F. Tang, H. Lu, Acta Materialia 149, 164-178 (2018).
[4] H.O. Andren, Microstructures of cemented carbides, Mater. Des. 22, 491-498 (2001).
[5] C. Barbatti, J. Garcia, P. Brito, A.R. Pyzalla, Int. J. Refract. Met. Hard Mater. 27, 768-776 (2009).
[6] G .R. Antis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (9), 533-538 (1981).
[7] Y.V. Milman, J. Superhard Mater. 36, 65-81 (2014).
[8] M . Christensen, G. Wahnstrom, Acta Materialia 52 (8), 2199-2207 (2004).
[9] Y . Peng, H. Miao, Z. Peng, Int. J. Refract. Met. Hard Mater. 39, 78-89 (2013).
Go to article

Authors and Affiliations

Jeong-Han Lee
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Hyun-Kuk Park
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil , Buk-gu, Gwang-Ju,61012, Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with hypereutectic high chromium cast irons. The subject of examination was the effect of various alloying elements (Ti, W, Mo, V) on the size of primary carbides and on the resultant material hardness. Using a scanning electron microscope with a wave dispersion analyser, the carbon content in carbides was established. To determine the other elements, an energy dispersion analyser was used. It was found that both the primary and the eutectic carbides were of the M7C3 type and very similar in composition. The carbides always contained Cr and Fe, and also W, Mo, V or Ti, in dependence on the alloying elements used. The structure of materials containing only chromium without any alloying additions exhibited coarse acicular primary carbides. The structure of materials alloyed with another element was always finer. Marked refinement was obtained by Ti alloying.
Go to article

Authors and Affiliations

A. Záděra
V. Kaňa
V. Krutiš
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of producing a grey cast iron casting locally reinforced with a titanium insert printed using SLM method (Selective Laser Melting). This article attempts to examine the impact of the selected geometry of titanium spatial insert on the surface layer formation on grey cast iron. The scope of the research focuses on metallographic examination - observation and analysis of the structure of the reinforced surface layer on a light and scanning microscope and a hardness measurement of the titanium layer area. Based on the obtained results, it was concluded that the reaction between titanium insert and metal (grey cast iron) locally develops numerous carbides precipitation (mainly TiC particles), which increases the hardness of the reinforced surface layer and local strengthening of the material. The ratio between the thickness of the support part (grey cast iron) and the working part (titanium insert) affects the resulting layers connection structure. The properties of the obtained reinforced surface layer depend mainly on the geometry of the insert (primarily on the internal dimensions of the connector) and the volume of the casting affecting the re-melting of the insert. A more concentrated structure of carbides precipitation occurs in castings with a full connector insert.

Go to article

Authors and Affiliations

A. Dziwoki
A. Dulska
J. Szajnar
M. Król
Download PDF Download RIS Download Bibtex

Abstract

A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites.

In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the

crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data

given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat

solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated

fibres.

In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high

temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after

directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of

directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.

Go to article

Authors and Affiliations

M. Górny
M. Kawalec
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

Research in additive manufacturing of tungsten carbide-cobalt has intensified over the last few years due to the increasing need for products designed using topology optimisation and multiscale structures (lattice). These products result in complex shapes and contain inner structures that are challenging to produce through conventional techniques, thus involving high costs. The present work addresses this problem using a two-step approach to 3D print parts with complex shapes and internal structures by employing indirect selective laser sintering (SLS) and tungsten carbide-cobalt sintering. The paper takes further our research in this field [1] to improve the part density by using high bulk density tungsten carbide-cobalt powders. Mechanically mixing tungsten carbide-cobalt with the sacrificial binder, polyamide 12, results in a homogenous powder successfully used by the selective laser sintering process to produce green parts. By further processing, the green parts through a complete sintering cycle, an average final part density of 11.72 g/cm3 representing more than 80% of the theoretical density is achieved.
Go to article

Authors and Affiliations

R.V. Gădălean
1 2
ORCID: ORCID
O.-D. Jucan
3
ORCID: ORCID
H.F. Chicinaş
2 3
ORCID: ORCID
N. Bâlc
1
ORCID: ORCID
C.O. Popa
3
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Department of Manufacturing Engineering, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
  3. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
Download PDF Download RIS Download Bibtex

Abstract

Internal cracking surrounding primary carbides in high carbon steel as-cast blooms induced by soft reduction is investigated to elucidate their influence of internal cracking on carbide precipitation and the resulting segregated band in hot-rolled wire rods. The primary carbides precipitation in high carbon steel has been investigated using both experimental observations and finite element simulations for as-cast blooms induced by soft reduction. It is found that the carbides precipitation in the vicinity of existing internal cracks is often located midway between the surface and centreline of the bloom, further increases the occurrence of the segregated bands in the hot-rolled wire rods. In addition, the growth of primary carbides surrounding the internal cracking are based on the chemical driving force and high density precipitate zones have been clarified in continuous casting bloom induced by soft reduction. It clearly shows that the spatial distribution of internal cracking surrounding primary carbides that play a key role in the formation of the segregated bands in the final steel products.
Go to article

Authors and Affiliations

Nanfu Zong
1 2
ORCID: ORCID
Tao Jing
2
ORCID: ORCID
Yang Liu
3
ORCID: ORCID

  1. R&D Institute of Bengang Steel Plates Co., Ltd., Benxi 117000, China
  2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  3. Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
Download PDF Download RIS Download Bibtex

Abstract

This paper describes successfully formed ohmic contacts to p-type 4H-SiC based on titanium-aluminum alloys. Four different metallization structures were examined, varying in aluminum layer thickness (25, 50, 75, 100 nm) and with constant thickness of the titanium layer (50 nm). Structures were annealed within the temperature range of 800°C - 1100°C and then electrically characterized. The best electrical parameters and linear, ohmic character of contacts demonstrated structures with Al layer thickness equal or greater than that of Ti layer and annealed at temperatures of 1000°C or higher.
Go to article

Bibliography

[1] T. Ohshima, S. Onoda, N. Iwamoto, T. Makino, M. Arai, and Y. Tanak, “Radiation Response of Silicon Carbide Diodes and Transistors,” in Physics and Technology of Silicon Carbide Devices, 2012. DOI: 10.5772/51371.
[2] Y. Zhang, T. Guo, X. Tang, J. Yang, Y. He, and Y. Zhang, “Thermal stability study of n-type and p-type ohmic contacts simultaneously formed on 4H-SiC,” J. Alloys Compd., vol. 731, pp. 1267–1274, 2018. DOI: 10.1016/j.jallcom.2017.10.086.
[3] Y. Huang, J. Buettner, B. Lechner, and G. Wachutka, “The impact of non-ideal ohmic contacts on the performance of high-voltage SIC MPS diodes,” Mater. Sci. Forum, vol. 963 MSF, pp. 553–557, 2019. DOI: 10.4028/www.scientific.net/MSF.963.553.
[4] F. Roccaforte et al., “Ti/Al-based contacts to p-type SiC and GaN for power device applications,” Phys. Status Solidi Appl. Mater. Sci., vol. 214, no. 4, 2017. DOI: 10.1002/pssa.201600357.
[5] M. Rambach, A. J. Bauer, and H. Ryssel, “Electrical and topographical characterization of aluminum implanted layers in 4H silicon carbide,” Phys. Status Solidi Basic Res., vol. 245, no. 7, pp. 1315–1326, 2008. DOI: 10.1002/pssb.200743510.
[6] F. Roccaforte, F. Giannazzo, and V. Raineri, “Nanoscale transport properties at silicon carbide interfaces,” J. Phys. D. Appl. Phys., vol. 43, no. 22, 2010. DOI: 10.1088/0022-3727/43/22/223001.
[7] T. Abi-Tannous et al., “A Study on the Temperature of Ohmic Contact to p-Type SiC Based on Ti3SiC2 Phase,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2462–2468, 2016. DOI: 10.1109/TED.2016.2556725.
[8] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New Jersey: John Wiley & Sons, Inc., Hoboken, 2006.
[9] K. Buchholt et al., “Ohmic contact properties of magnetron sputtered Ti3SiC2 on n- and p-type 4H-silicon carbide,” Appl. Phys. Lett., vol. 98, no. 4, pp. 2–5, 2011. DOI: 10.1063/1.3549198.
[10] T. Abi-Tannous et al., “Thermally stable ohmic contact to p-type 4H-SiC based on Ti3SiC2 phase,” Mater. Sci. Forum, vol. 858, pp. 553–556, 2016. DOI: 10.4028/www.scientific.net/MSF.858.553.
[11] F. Roccaforte et al., “Metal/semiconductor contacts to silicon carbide: Physics and technology,” Mater. Sci. Forum, vol. 924 MSF, pp. 339–344, 2018. DOI: 10.4028/www.scientific.net/MSF.924.339.
[12] G. S. Marlow and M. B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,” Solid State Electron., vol. 25, no. 2, pp. 91–94, 1982. DOI: 10.1016/0038-1101(82)90036-3.
[13] G. K. Reeves, “Specific contact resistance using a circular transmission line model,” Solid State Electron., vol. 23, no. 5, pp. 487–490, 1980. DOI: 10.1016/0038-1101(80)90086-6.
[14] Z. Wang, W. Liu, and C. Wang, “Recent Progress in Ohmic Contacts to Silicon Carbide for High-Temperature Applications,” J. Electron. Mater., vol. 45, no. 1, pp. 267–284, 2016. DOI: 10.1007/s11664-015-4107-8.
[15] M. Vivona, G. Greco, C. Bongiorno, R. Lo Nigro, S. Scalese, and F. Roccaforte, “Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC,” Appl. Surf. Sci., vol. 420, pp. 331–335, 2017. DOI: 10.1016/j.apsusc.2017.05.065.
[16] S. Rao, G. Pangallo, and F. G. Della Corte, “Highly Linear Temperature Sensor Based on 4H-Silicon Carbide p-i-n Diodes,” IEEE Electron Device Lett., vol. 36, no. 11, pp. 1205–1208, 2015. DOI: 10.1109/LED.2015.2481721.
[17] L. Lanni, B. G. Malm, M. Ostling, and C. M. Zetterling, “500°C bipolar integrated OR/NOR Gate in 4H-SiC,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1091–1093, 2013. DOI: 10.1109/LED.2013.2272649.
[18] W. Sung and B. J. Baliga, “Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme,” IEEE Electron Device Lett., vol. 37, no. 12, pp. 1605–1608, 2016. DOI: 10.1109/LED.2016.2618720.
[19] C. Han et al., “An Improved ICP Etching for Mesa-Terminated 4H-SiC p-i-n Diodes,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1223–1229, 2015. DOI: 10.1109/TED.2015.2403615.
Go to article

Authors and Affiliations

Agnieszka Martychowiec
1
Norbert Kwietniewski
1
Kinga Kondracka
1
Aleksander Werbowy
1
Mariusz Sochacki
1

  1. Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract


Austenitic chromium-nickel cast steel is used for the production of machine parts and components operating under corrosive conditions combined with abrasive wear. One of the most popular grades is the GX2CrNi18-9 grade, which is used in many industries, and mainly in the chemical, food and mining industries for tanks, feeders, screws and pumps.
To improve the abrasion resistance of chromium-nickel cast steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content and adding titanium, which after alloy solidification yielded the test castings with the microstructure consisting of an austenitic matrix and primary carbides evenly distributed in this matrix.
The measured hardness of the samples in both as-cast conditions and after solution heat treatment was from 300 to 330HV0.02 and was higher by about 40-70 units compared to the reference GX2CrNi18-9 cast steel, which had the hardness of 258HV0.02.
The abrasive wear resistance of the tested chromium-nickel cast steel, measured in the Miller test, increased by at least 20% (with the content of 1.3 wt% Ti). Increasing the Ti content in the samples to 5.3 and 6.9 wt% reduced the wear 2.5 times compared to the common GX2CrNi18-9 cast steel.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings –applications. Kraków: Fotobit. (in Polish).
[2] Calliari, L., Brunelli, K., Dabala, M., & Ramous, E. (2009). Measuring secondary phases in duplex stainless steel. The Journal of The Minerals, Metals & Materials Society. JOM. 61, 80-83.
[3] Chen, T.H., & Yang, J.R. (2001). Effects of solution treatment and continuous cooling on σ phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A. 313(1-2), 28-41.
[4] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[5] Jimenez, J.A., Carsi, M., Ruano, A. & Penabla, F. (2000). Characterization of a δ/γ duplex stainless steel. Journal of Materials Science. 35, 907-915.
[6] Voronenko, B.I. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39, 428-437.
[7] Pohl, M., Storz, O. & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 58(1), 65-71.
[8] Gunn, R. N. (1999). Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing.
[9] Patil, A., Tambrallimath, V. & Hegde, A. (2014). Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites. International Journal of Engineering Research & Technology. 3(12), 14-17.
[10] PN-EN 10088-1/2005(U).
[11] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[12] Głownia, J., Kalandyk, B. & Camargo, M. (2002). Wear resistance of high Cr-Ni alloys in iron ore slurry conditions. Inżynieria Materiałowa (Material Engineering). 5, 694-697.
[13] Tęcza, G. (2019). Selected wear resistant cast steels with Ti, Nb, V, W and Mo carbides. Katowice-Gliwice: Wydawnictwo Komisja Odlewnictwa PAN. (in Polish).
[14] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[15] Charchalis, A., Dyl, T., Rydz, D., Stradomski, G. (2018). The effect of burnishing process on the change of the duplex cast steel surface properties. Inżynieria Materiałowa. 6(226), 223-227.
[16] Dyja, D., Stradomski, Z., Kolan, C. & Stradomski, G. (2012). Eutectoid Decomposition of δ-Ferrite in Ferritic-Austenitic Duplex Cast Steel - Structural and Morphological Study. Materials Science Forum. 706-709, 2314-2319.
Go to article

Authors and Affiliations

Grzegorz Tęcza
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Go to article

Authors and Affiliations

ManFeng Gong
1 2
GuangFa Liu
1 2
Meng Li
1 3
XiaoQun Xia
1
Lei Wang
1
ORCID: ORCID
JianFeng Wu
1 2
ShanHua Zhang
1 2
Fang Mei
1

  1. Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  2. Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  3. Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of studies concerning the production and characterization of Al-SiC/W and Cu-SiC/W composite materials with a 30% volume fraction of reinforcing phase particles as well as the influence of corrosion and thermal shocks on the properties of selected metal matrix composites. Spark plasma sintering method (SPS) was applied for the purpose of producing these materials. In order to avoid the decomposition of SiC surface, SiC powder was coated with a thin tungsten layer using plasma vapour deposition (PVD) method. The obtained results were analysed by the effect of the corrosion and thermal shocks on materials density, hardness, bending strength, tribological and thermal properties. Qualitative X-ray analysis and observation of microstructure of sample surfaces after corrosion tests and thermal shocks were also conducted. The use of PVD technique allows us to obtain an evenly distributed layer of titanium with a constant thickness of 1.5 µm. It was found that adverse environmental conditions and increased temperature result in a change in the material behaviour in wear tests.

Go to article

Authors and Affiliations

A. Strojny-Nędza
P. Egizabal
K. Pietrzak
R. Zieliński
K. Kaszyca
A. Piątkowska
M. Chmielewski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, aluminium alloy of grade ADC-12 was considered as a base metal and chromium carbide (Cr3C2) particles were reinforced through friction stir process. A detailed analysis of mechanical property and metallurgical characterization studies were performed to evaluate the surface composite. Remarkable changes were observed in the developed composite due to the mechanical force produced by the stir tool with an increase in hardness. The metallurgical investigation infers that the presence of silica in ADC-12 alloys has undergone mechanical fracture and long needle structure changed to reduced size. On the other hand, at higher tool rotational speed, the uniform distribution of hard particles was confirmed through SEM micrographs. Thus the modified surface composite has produced good mechanical property with high metallurgical qualities.

Go to article

Authors and Affiliations

J. Satheeshkumar
M. Jayaraman
G. Suganya Priyadharshini
ORCID: ORCID
C.S. Sathya Mukesh
Download PDF Download RIS Download Bibtex

Abstract

High manganese steel, also called Hadfield steel, is an alloy essentially made up of iron, carbon, and manganese. This type of steel occupies an important place in the industry. It possesses high impact toughness and high resistance against abrasive wear and hardens considerably during work hardening. The problem with this kind of steel is the generation of carbides at the grain boundaries after the casting. However, heat treatment at the high-temperature range between 950°C and 1150°C followed by rapid quenching in water is proposed as a solution to remove carbides and obtain a fully austenitic structure. Under the work hardening effects, the hardness of Hadfield steel increases greatly due to the transformation of the austenite γ to martensite ε or α and mechanical twinning, which acts as an obstacle for sliding dislocations. Hot machining is the only solution to machine Hadfield steel adequately without damage of tools or changing the mechanical characteristics of the steel. The choice of welding parameters is important to prevent the formation of carbides and obtain welded steel with great characteristics. This paper aims to give an overview about Hadfield steel, element addition effect, microstructure, heat treatments, work hardening, machinability and welding processes.
Go to article

Authors and Affiliations

R. Zellagui
1
ORCID: ORCID
L. Hemmouche
2
ORCID: ORCID
H. Ait-Sadi
2
ORCID: ORCID
A. Chelli
2
ORCID: ORCID

  1. Direction de recherche scientifique et technologique, École supérieure du matériel, Algieria
  2. Polytechnic Military School, Materials Engineering Laboratory, Bordj El Bahri, Alger, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article shows the effect of the increased carbon content on the microstructure and properties of two-phase titanium alloy Ti-6Al-4V. Alloys with different carbon content (0.2 and 0.5 wt.%) were produced in vacuum induction furnace with cooper crucible. It was shown that the addition of carbon at the level of 0.2 wt.% increases hardness and strength properties, affects structural stability, results in grain refinement as well as improves creep and oxidation resistance. However, it has a negative effect on plastic deformation. Increasing the carbon content to the 0.5 wt.% causes the further improvement in the creep and oxidation resistance and microstructure refinement of the tested alloys, resulting also in decrease such properties as plasticity, hot deformability and in case of the susceptibility to cold plastic deformation to unacceptable level.

Go to article

Authors and Affiliations

A. Szkliniarz
W. Szkliniarz
Download PDF Download RIS Download Bibtex

Abstract

The research aims to develop a novel and safer milling route to produce Hard Metals. Considering the risks associated with milling fine particles under organic solvents, especially the increased fire and explosion risks, we propose milling under aqueous milling media to diminish the risks associated with fire hazards, while maintaining the oxidation level at a minimum. The samples were sintered in an industrial sintering oven under vacuum at 1380°C subsequent to milling and drying. The characterisation of the materials has been done by X-ray diffraction, scanning electron microscopy, particle size analysis, optical microscopy, and a magnetometer. The obtained results indicate that appropriate properties of the powders after milling and drying as well as the desired biphasic (Co-WC) phases were obtained after sintering, thus proving the feasibility of such a route and diminishing specific fire hazards.
Go to article

Authors and Affiliations

H.-F. Chicinas
1 2
ORCID: ORCID
L.-E. Marton
1 2
ORCID: ORCID
C.-O. Popa
1
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. SC Gühring SRL, 32 Constructorilor Street, 407035 Apahida, Romania
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of research on the development of composite zones in castings based on the intermetallic phase of Ni3Al. Composite zones were obtained by placing packets with substrates for the reaction of titanium carbide in a foundry mould. To provide a variable carbides content in the composite zone, two compositions of the packets were prepared. The first packet contained only substrates for the reaction of TiC synthesis; the second one also contained a filler. The resulting composite zones in castings were examined for the filler effect on changes in the volume fraction, size and morphology of carbides in the zone. In addition, the effect of filler on the mechanical properties of the zone was verified, observing changes of Vickers hardness in this area. It was found that the presence of filler in the composition of the packet for synthesis reduced the content of carbides, as well as their size and morphology. Lower surface content of carbides reduced hardness of the zone, which enabled smooth control of the mechanical properties. At the same time, the use of the selected filler did not disturb the course of the TiC carbide synthesis.

Go to article

Authors and Affiliations

E. Olejnik
T. Tokarski
A. Janas
G. Sikora
J. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Cast Hadfield steel is characterised by high abrasion resistance, provided, however, that it is exposed to the effect of dynamic loads.

During abrasion without loading, e.g. under the impact of loose sand jet, its wear resistance drops very drastically. To increase the abrasion

resistance of this alloy under the conditions where no pressure is acting, primary vanadium carbides are formed in the metallurgical

process, to obtain a composite structure after the melt solidification. The primary, very hard, carbides uniformly distributed in the

austenitic matrix are reported to double the wear resistance of samples subjected to the effect of a silicon carbide-water mixture.

Go to article

Authors and Affiliations

G. Tęcza
J. Głownia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of studies on the effect of the nodular cast iron metal matrix composition on the abrasive and adhesive wear resistance. Nodular cast iron with different metal matrix obtained in the rough state and ADI were tested. To research of abrasive and adhesive wear the pearlitic and bainitic cast iron with carbides and without this component were chosen. The influence of the carbides amount for cast iron wear resistance was examined. It was found, that the highest abrasive and adhesive wear resistance under conditions of dry friction has a nodular cast iron with carbides with upper and lower bainite. Carbides in bainitic and pearlitic cast iron significantly increase the wear resistance in these conditions. In terms of fluid friction the largest wear resistance had cast iron group with the highest hardness.

Go to article

Authors and Affiliations

G. Gumienny

This page uses 'cookies'. Learn more