Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland’s base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej – Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The accuracy of determining the location of the various map contents has been estimated at 0.02-0.03 m. The map was developed in conformity with the applicable laws and regulations as well as with best practice requirements.
Go to article

Authors and Affiliations

Przemysław Klapa
Bartosz Mitka
Download PDF Download RIS Download Bibtex

Abstract

This article analyzes the technology of creating and updating a digital topographic map using the method of mapping (generalization) on an updated map with a scale of 1 : 25;000 based on the source cartographic material. The main issue in the creation of digital maps is the study of map production accuracy and error analysis arising from the process of map production. When determining the quality of a digital map, the completeness and accuracy of object and terrain mapping are evaluated. The correctness of object identification, the logical consistency of the structure, the and representation of objects are assessed. The main and the most effective method, allowing to take into account displacement errors for the relief during image processing, is orthotransformation, but the fragment used to update the digital topographic map needs additional verification of its compliance with the scale requirements of the map. Instrumental survey will help to clearly identify areas of space image closer to nadir points and to reject poor quality material. The software used for building geodetic control network should provide stable results of accuracy regardless on the scale of mapping, the physical and geographical conditions of the work area or the conditions of aerial photography.
Go to article

Authors and Affiliations

Vera Yartseva
Olga Besimbaeva
Elena Khmyrova

This page uses 'cookies'. Learn more