Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Pre-treatment techniques employed for exhaust emission control of compression ignition engines were found to reduce the emission levels by small percentage only, failing to meet the required emission regulations. Post-treatment technique including diesel particulate filtration, diesel oxidation catalysis and selective catalytic reduction is found to be an effective solution. While the fuel-based regeneration of diesel particulate filter leads to uncontrolled combustion affecting the durability of the filter. Development of an effective regeneration system is one of the major technical challenges faced by automotive industry for meeting emission norms. A composite regeneration system with the application of microwave energy is proposed in this paper. As an initial phase, a three-dimensional model of the system is developed and its flow analysis is carried out by considering the case of single channel flow. Simulation of the regeneration process is also done by developing a Simulink model. The results of simulation showed that an engine running continuously for a period of 24 hours would require three regenerations.
Go to article

Authors and Affiliations

Caneon Kurien
Ajay Kumar Srivastava
Joris Naudin
Download PDF Download RIS Download Bibtex

Abstract

Catalytic reforming is an important intermediate in the processing of crude (naphtha in particular) to obtain gasoline. The catalyst used in the process (platinum) is quite expensive and may negatively impact the business if not used judiciously. The aforesaid not only refers to the reduction in loss of the catalyst per unit of gasoline produced but also to the manufacturing of an environmentally friendlier product alongside which is the need of the planet and also a necessity to meet the increasingly strict government norms. In order to meet the above requirements, various refineries around the world use various well-known conventional methods which depend on the quality and quantity of crude manufactured by them.
This paper focuses on highlighting recent advancements in methods of catalytic regeneration (CR) in the reforming unit of petroleum industries to produce high octane gasoline, without any major replacements in their existing setup. Research papers formulated by the application of methodologies involving non-linear models and real-time refinery data have only been considered to avoid any deviations/errors in practical applications. In-depth analysis of these papers has led to the origin of some ideas which have been included as suggestions and can be considered as subjects of further research. In all, the objective of the paper is to serve as a reference for researchers and engineers working on devising optimum methods to improve the regeneration of reforming catalysts.
Go to article

Authors and Affiliations

Aviral Gupta
1
S.K. Gupta
1

  1. Harcourt Butler Technical University, Department of Chemical Engineering, Kanpur-208002, India
Download PDF Download RIS Download Bibtex

Abstract

A passive autocatalytic hydrogen recombiner (PAR) is a self-starting device, without operator action or external power input, installed in nuclear power plants to remove hydrogen from the containment building of a nuclear reactor. A new mechanistic model of PAR has been presented and validated by experimental data and results of Computational Fluid Dynamics (CFD) simulations. The model allows to quickly and accurately predict gas temperature and composition, catalyst temperature and hydrogen recombination rate. It is assumed in the model that an exothermic recombination reaction of hydrogen and oxygen proceeds at the catalyst surface only, while processes of heat and mass transport occur by assisted natural and forced convection in non-isothermal and laminar gas flow conditions in vertical channels between catalyst plates. The model accounts for heat radiation from a hot catalyst surface and has no adjustable parameters. It can be combined with an equation of chimney draft and become a useful engineering tool for selection and optimisation of catalytic recombiner geometry.

Go to article

Authors and Affiliations

Antoni Rożeń
Download PDF Download RIS Download Bibtex

Abstract

A detailed comparison of catalytic properties of two different ruthenium-based catalysts in the reaction of homogeneous hydrogenation of acetophenone was performed. Additionally, methods of synthesis of both catalysts were tested and optimized in order to achieve the best possible quality and purity of the final catalysts.

NMR analysis was used to analyze and identify the composition of ruthenium compounds and gas chromatography was used to analyze the conversion rate of hydrogenation reactions.

It was determined that RuCl2(PPh3)3 obtained with a modified method described by Shaw’s group (Shawet al., 2007) had the best catalytic properties in the reaction performed under conditions described in Liang Wang’s publication (Wang et al., 2014). It was also determined that for concentration ratio of substrate to RuCl2(PPh3)3 amounting to 250:1 the conversion rate was much higher than that of the reaction performed with a double dose of the catalyst. Results of experiments also show that samples of the post-reaction solution should be analyzed right after the reaction, because even if they are stored in low temperature the amount of product can change up to 3–5% compared to the base sample and this change is not predictable.

These findings have significant implications for further research of the reaction of homogeneous transfer hydrogenation of ketones. With the right catalysts and methods of their synthesis other parameters of this reaction can be optimized. The most important one is a change of solvent from isopropyl alcohol to a less toxic substance like water. This may increase the value of the reaction in green chemistry and chemical industry.

Go to article

Authors and Affiliations

Filip Mikołajczyk
Kamil Kamiński

This page uses 'cookies'. Learn more