Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is an attempt to compare the impact of the use of various types of limestone as the main constituent of cement on selected mortar properties. Four different limestones were added in amount of 15, 30, 40% to CEM I 42.5 R to obtain limestone cemens. Rheological properties (yield stress, plastic viscosity) of fresh mortar, tensile and compressive mortar strength, early shrinkage, and drying shrinkage were tested. Obtained results indicate that both tensile and compressive strength decreases with the increase of the limestone content in cement. Limestone can worsen or improve workability, depending on distribution of limestone grains. The addition of limestone increases the early shrinkage, but reduces the shrinkage after 28 days. Studies show that the granulation of limestone plays an important role in determining the influence of limestone on mortar properties.

Go to article

Authors and Affiliations

J. Gołaszewski
G. Cygan
M. Gołaszewska
Download PDF Download RIS Download Bibtex

Abstract

In this study, the results of experiment research on building mortars based on dry mixtures with the use of granite dust are given. It also shows the possibilities of their industrial release. In the conditions of energy resources shortage, gradual exhaustion of natural raw materials, aggravation of environmental problems, an important direction in the production of building mixtures is the development of mixes with waste materials from various industries. In particular, granite dust, which simultaneously allows to rationally use natural mineral material and solve environmental problems. Based on the obtained data, experimental and statistical models of physical and mechanical properties of fresh and hardened mortar are constructed and ways of optimizing their compositions and improving the properties of mortars are analyzed. It is established that the use of granite dust and some additives provides high standardized parameters for mortar mixture and bricklaying process, including plasticity, compressive strength and others at the low level of cement consumption. Fresh mortar mixtures have a prolonged slump retention.

Go to article

Authors and Affiliations

Grzegorz Prokopski
ORCID: ORCID
Vitaliy Marchuk
ORCID: ORCID
Andriy Huts
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, cubic and cylindrical cement mortar specimens were first subjected to high temperatures, then the cubic and cylindrical specimens were taken out and conducted with uniaxial compressive test and splitting tensile test, respectively. The effect of the length to side ratio on the uniaxial compressive properties and the effect of thickness-to-diameter ratio on the splitting tensile properties of cement mortar specimens after high temperature were studied. Test results show that: (1) With temperature increasing from 25°C (room temperature) to 400°C, the compressive strength and elastic modulus of cubic specimens with three kinds of side lengths decrease; the decreasing rates of compressive strength and elastic modulus of cubic specimen with side length of 70.7 mm is higher than those of cubic specimens with side length of 100 mm and 150 mm, and the strain at the peak stress of cubic specimens with three kinds of side lengths increase. (2) After the same temperature, the tensile strength of cylindrical specimen decreases with the thickness-to-diameter ratio increasing from 0.5 to 1.0. The decreasing rate of tensile strength of cylindrical specimen with thickness-to-diameter ratio is highest when the temperature is 25°C (room temperature), followed by that after the temperature of 200°C, and that after the temperature of 400°C is the lowest.

Go to article

Authors and Affiliations

L.X. Xiong
X.J. Zhang
Z.Y. Xu
D.X. Geng

This page uses 'cookies'. Learn more