Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 56
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Calcium Sulfoaluminate cements (CSA) may be an alternative to Portland cements due to their very high early strength and more environmentally friendly production technology, however they are characterized by a short setting time and high cost. A possible solution to these problems is to mix CSA cement with other binders or additives. In order to test this possibility, CSA cement was mixed with Portland cement and limestone in the amount of 10, 20 and 30 wt. %. A hydration heat test was carried out in the first 72 hours after the components were mixed, measured were compressive and flexural strength after 1, 2, 7 and 28 days, and rheological properties, including early shrinkage. A negative interaction between CSA and CEM I 42.5R was observed, leading to deterioration of mechanical properties of the mortars. The study did not indicate a similar negative interaction between CSA cement and limestone.
Go to article

Authors and Affiliations

Jacek Gołaszewski
1
ORCID: ORCID
Małgorzata Gołaszewska
2
ORCID: ORCID

  1. Prof., DSc., PhD., Eng., Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
  2. PhD., Eng., Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents test results of cement paste and binders with admixture of hydrophilic or hydrophobic nanosilica. The aim of the study was to determine the influence of nanosilica type and mixing method on compressive strength, porosity, and bulk density of cement paste, also on hydration heat of cement binders. The binder compounds were mixed in high speed mixer in order to provide the highest possible dispersion of nanoparticles in the binder before adding it to mixing water. Two mixing methods were studied. The admixtures increased the reactivity of cement binders. Both nanosilica types increased early compressive strength by 25% in comparison with control series. The increase in 28-day compressive strength was observed with the admixture of hydrophilic nanosilica. The differences in dynamics of binders rate of hydration and development of cement pastes compressive strength denote different reaction mechanisms of both types of nanosilica. Application of higher rotation speeds does not guarantee satisfactory mixing of the binder components. For compressive strength enhancement of cement paste prolonged mixing time occurred to be more important.

Go to article

Authors and Affiliations

J. Popławski
M. Lelusz
Download PDF Download RIS Download Bibtex

Abstract

Simulation is used today in many contexts, such as simulating technology to tune or optimize performance, safety engineering, testing, training, education, and entertainment. In some industries, simulations are commonly used, but in heat treatment this is rather an exception. The paper compares the simulation of carburization and nitrocementation of 16MnCr5 steel with a practical application. The aim was to determine the applicability of chemical heat treatment simulation. We were looking for an answer to the question: to what extent can we rely on the technological design of heat treatment? The software designed the heat treatment technology. He drew the technological process of chemical-thermal treatment of 16MnCr5 steel. The thickness of the cementite layer was 1 mm and the nitrocementation 1.2 mm. Changes in mechanical properties were observed. Cementing, nitrocementing, hardness, microhardness, metallography, and spectral analysis were practically performed. This article describes the benefits of simulation, speed and accuracy of the process. The only difference was in determining the carbon potential. The simulation confirmed the practical use and its contribution in the technological process.
Go to article

Bibliography

[1] Atraszkiewicz, R., Januszewicz, B., Kaczmarek, Ł., Stachurski, W., Dybowski, K., Rzepkowski, A. (2012). High pressure gas quenching: Distortion analysis in gears after heat treatment. Materials Science & Engineering A. 558, 550-557.
[2] Mallener, H. (1990). Maß- Und Formänderungen beim Einsatzhärten. Journal of Heat Treatment and Materials. 45(1), 66-72. (in German)
[3] Jurči, P., Stolař, P. (2006). Distortion behavior of gear parts due to carburizing and quenching with different quenching media. BHM Berg - und Hüttenmännische Monatshefte. 151, 437–441. DOI: 10.1007/BF03165203
[4] Rajan, T.V., Sharma, C.P., Sharma, A. (2001). Heat treatment Principles and Techniques. New Delhi.
[5] Farokhzadeh, K., Edrisy A. (2017). Surface Hardening by Gas Nitriding. Materials Science and Materials Engineering. 2, 107-136. https://doi.org/10.1016/B978-0-12-803581-8.09163-3
[6] NITREX. (2021). Simulation software for carburizing, carbonitriding, nitriding, & nitrocarburizing processes. Retrieved September 2021 from https://www.nitrex.com/en/solutions/process-flow-controls/products/production-software/ht-tools-pro-simulator/
[7] EN 10084. 1.7131/1.7139. Cr-Mn-legierter Einsatzstahl. (2011)
[8] Parrish, G. (1999). Carbuzing: Microstructures and Properties. (pp. 55-57). ASM International.
[9] Somers, M., Christiansen, T. (2020). Nitriding of Steels. Encyclopedia of Materials: Metals and Alloys. 2, 173-189. https://doi.org/10.1016/B978-0-12-819726-4.00036-3
[10] Llewellyn, D.T. & Cook, W.T. (1977). Heat-treatment distortion in case-carburizing steels. Metals Technology. 4(1), 265-278. https://doi.org/10.1179/030716977803292385
[11] Bepari M.M.A. (2017). Carburizing: A method of case hardening of steel. Materials Science and Materials Engineering. 2, 71-106. https://doi.org/10.1016/B978-0-12-803581-8.09187-6
[12] Skočovský, P., Bokůvka, O., Konečná, R., Tillová, E. (2014). Materials science. Edis – vydavateľstvo Žilinskej university, 343. ISBN 978-80-554-0871-2. (in Slovak).

Go to article

Authors and Affiliations

E. Kantoríková
1
ORCID: ORCID
P. Fabian
1
M. Sýkorová
1

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to evaluate the effects of blended binders on the development of strength in moraine soils by optimising the proportion of several binders. We tested three types of soil as a mixture of moraine soils: A (sandy clay), B (clayey silt) and C (silty clay), collected in southern Sweden. The soil was compacted using a modified Proctor test using the standard SS-EN 13286-2:2010 to determine optimum moisture content. The particle size distribution was analysed to determine suitable binders. The specimens of types A, B and C, were treated by six different binders: ordinary Portland cement (OPC); hydrated lime (Ca(OH)2); ground granulated blast furnace slag (GGBFS) and their blends in various proportions. The strength gain in soil treated by binders was evaluated by the test for Unconfined Compressive Strength (UCS) against curing time. For soil type A, the strength increase is comparable for most of the binders, with the difference in behaviour in the UCS gain. The OPC/lime, GGBFS and hydrated lime showed a direct correlation, while OPC, OPC/GGBFS and GGBFS/hydrated lime – a quick gain in the UCS by day 28th. After that, the rate of growth decreased. Compared to soil type A, Ca(OH)2 performs better on the stabilisation of soil type B. Besides, the hydrated lime works better on the gain of the UCS compared to other binders. The GGBFS/Ca(OH)2 blend shows a notable effect on soil type A: the UCS of soil treated by Ca(OH)2 performs similarly to those treated by OPC with visible effects on day 90th. Cement and a blend of slag/hydrated lime demonstrated the best results for soil type B. An effective interaction was noted for the blends GGBFS and hydrated lime, which is reflected in the UCS development in soils type A and B. Blended binder GGBFS/hydrated lime performs better compared to single binders.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Department of Investments Technology and Environment, Neptunigatan 52, Box 366, SE-201-23 Malmö, Sweden
  2. Lund University, Lunds Tekniska Högskola (LTH), Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Sweden
  3. Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA) Belgium
Download PDF Download RIS Download Bibtex

Abstract

The leachability of pollutants from asbestos-containing waste, previously used for roofing was investigated. Laboratory tests were performed under static conditions (tests 1–20) in accordance with the TCLP methodology (with the use of acetic acid as the leaching medium, initial pH = 3.15). The maintaining of constant leaching conditions proved to be impossible at the experimental stage. Following the stabilization of conditions, the pH range for the obtained solutions increased to an average value of 8.3. Aluminum, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were identified in the eluate. The low leachability of individual metals under the planned conditions was observed. In general, no leaching of such metals as cadmium, nickel, and lead was observed. The mercury content in the eluates is below the quantification limit, but the obtained values fall to around the limit of detection for the element. As compared with leaching with the use of distilled water (Klojzy-Karczmarczyk et al. 2021), zinc and boron additionally appear in eluates. The determined value of leachability for the individual analyzed elements increases from double to a few times with the use of the TCLP method. The value of leaching for barium is on average 5.56 mg/kg, for chromium it is 1.10 mg/kg, for copper 0.26 mg/kg, and for iron 0.80 mg/kg. In addition, the leaching of boron of around 3.00 mg/kg and of zinc 1.84 mg/kg was found. Higher leachability values were found only for strontium and aluminum. The leaching of strontium is on average around 62 mg/kg. While the leaching of aluminum is lower than values identified in the previous tests with the use of distilled water and is around 2.76 mg/kg. Products of leaching contain mainly pollutants characteristic of cement (aluminum, strontium, and iron).
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article is an attempt to compare the impact of the use of various types of limestone as the main constituent of cement on selected mortar properties. Four different limestones were added in amount of 15, 30, 40% to CEM I 42.5 R to obtain limestone cemens. Rheological properties (yield stress, plastic viscosity) of fresh mortar, tensile and compressive mortar strength, early shrinkage, and drying shrinkage were tested. Obtained results indicate that both tensile and compressive strength decreases with the increase of the limestone content in cement. Limestone can worsen or improve workability, depending on distribution of limestone grains. The addition of limestone increases the early shrinkage, but reduces the shrinkage after 28 days. Studies show that the granulation of limestone plays an important role in determining the influence of limestone on mortar properties.

Go to article

Authors and Affiliations

J. Gołaszewski
G. Cygan
M. Gołaszewska
Download PDF Download RIS Download Bibtex

Abstract

The general standards and guidelines recommendations for PCC suggest alternating conditions of curing: starting with wet conditions for effective hydration of Portland cement followed by air-dry conditions for polymer hardening. The often accepted curing regime of PCC covers 5 days of wet curing and then the air-dry curing but it is not the optimum one. The aim of the investigation was to find the best scenario for PCC with two types of polymer modifiers: two-component epoxy resin and water dispersion of polyacrylates. The following exploitation properties were accepted as the criteria of evaluation of PCC curing effectiveness: compressive strength, tensile splitting strength, surface tensile strength (by pull-off method), wear resistance, water penetration under pressure and resistance to carbonation. The optimum time of PCC wet curing is possibly between 7 and 14 days, however, it have to be verified experimentally for specific PCC composition.

Go to article

Authors and Affiliations

P. Woyciechowski
Download PDF Download RIS Download Bibtex

Abstract

Background: Studies on the effect of root canal rinsing protocols on fiber post bonding to dentin are inconclusive. This study reports investigation of this topic. Objectives: to determine effects of irrigation protocol by means of a push-out test on the strength of adhesion between the post and dentin in an in vitro study.
Materials and Method: Thirty human single-rooted teeth were prepared using hand instruments and the step-back technique, filled with gutta-percha, sealed with AH Plus (Dentsply), and divided into three groups: A: rinsed with NaCl; B: rinsed with 2% chlorhexidine (CHX); C: not rinsed before cementa-tion of posts. The fiber posts were set using RelyX and Built-it. The tooth roots were sliced and the push- out test was performed. The area of contact between the post and dentin was calculated and the destroying force was established. The results were statistically analyzed.
Results: The mean adhesive strength was 10.69 MPa in group A, 16.33 MPa in group B, and 16.72 MPa in C. The adhesive strength in group B and C was statistically significantly higher than in group A (p = 0.0016, ANOVA).
Conclusion: Rinsing root canals with CHX seems to be the most effective method prior to setting a fiber post.
Go to article

Bibliography

1. Asmussen E., Peutzfeldt A., Heitmann T.: Stiffness, elastic limit, and strength of newer types of endodontic posts. Journal of Dentistry. 1999; 27: 275–278.
2. Bateman G., Ricketts D.N., Saunders W.P.: Fibre-based post systems: a review. Br Dent J. 2003; 195: 43–48.
3. Schwartz R.S., Robbins J.W.: Post placement and restoration of endodontically treated teeth: a literature review. J Endod. 2004; 30: 289–301.
4. Skupien A., Sarkis-Onofre R., Cenci S., Morales R., Pereira-Cenci T.: A sys.ematic review of factors associated with the retention of glass fiber posts. Braz Oral Res. 2015; 29: 1–8.
5. Ryniewicz W., Ryniewicz A.M., Bojko Ł.: The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Meas. 2016; 91: 620–627.
6. Bitter K., Aschendorff L., Neumann K., Blunck U., Sterzenbach G.: Do chlorhexidine and ethanol improve bond strength and durability of adhesion of fiber posts inside the root canal? Clin Oral Investig. 2014; 18: 927–934.
7. Haragushiku G.A., Back E.D., Tomazinho P.H., Baratto Filho F., Furuse A.Y.: Influence of antimicrobial solutions in the decontamination and adhesion of glass-fiber posts to root canals. J Appl Oral Sci. 2015; 23: 436–441.
8. Stape T.H.S., de Souza Menezes M., Aguiar F.H.B., Quagliatto P.S., Soares C.J., Martins L.R.M.: Long- term effect of chlorhexidine on the dentin microtensile bond strength of conventional and self- adhesive resin cements: A two-year in vitro study. Int J Adhes Adhes. 2014; 50: 228–234.
9. Toman M., Toksavul S., Tamac E., Sarikanat M., Karagozoglu I.: Effect of chlorhexidine on bond strength between glass-fiber post and root canal dentine after six month of water storage. Eur J Prosthodont Restor Dent. 2014; 22: 29–34.
10. Cecchin D., Farina A.P., Souza M.A., Da Cunha Pereira C.: Effect of root-canal sealer on the bond strength of fiberglass post to root dentin. Acta Odontol Scand. 2011; 69: 95–100.
11. Cecchin D., de Almeida J.F., Gomes B.P., Zaia A.A., Ferraz C.C.: Influence of chlorhexidine and ethanol on the bond strength and durability of the adhesion of the fiber posts to root dentin using a total etching adhesive system. J Endod. 2011; 37: 1310–1315.
12. Cecchin D., Farina A.P., Giacomin M., Vidal C. de M., Carlini-Junior B., Ferraz C.C.: Influence of chlorhexidine application time on the bond strength between fiber posts and dentin. J Endod. 2014; 40: 2045–2048.
13. Cecchin D., Giacomin M., Farina A.P., Bhering C.L., Mesquita M.F., Ferraz C.C.: Effect of chlorhexidine and ethanol on push-out bond strength of fiber posts under cyclic loading. J Adhes Dent. 2014; 16: 87–92.
14. Ekambaram M., Yiu C.K., Matinlinna J.P., Chang J.W., Tay F.R., King N.M.: Effect of chlorhexidine and ethanol-wet bonding with a hydrophobic adhesive to intraradicular dentine. J Dent. 2014; 42: 872–882.
15. Gomes Franca F.M., Vaneli R.C., Conti C. de M., Basting R.T., do Amaral F.L., Turssi C.P.: Effect of Chlorhexidine and Ethanol Application on Long-term Push-out Bond Strength of Fiber Posts to Dentin. J Contemp Dent Pract. 2015; 16: 547–553.
16. Leitune V.C., Collares F.M., Werner Samuel S.M.: Influence of chlorhexidine application at longitudinal push-out bond strength of fiber posts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 110: e77–81.
17. Lindblad R.M., Lassila L.V., Salo V., Vallittu P.K., Tjaderhane L.: Effect of chlorhexidine on initial adhesion of fiber-reinforced post to root canal. J Dent. 2010; 38: 796–801.
18. Kang H.-J., Moon H.-J., Shin D.-H.: Effect of different chlorhexidine application times on microtensile bond strength to dentin in Class I cavities. Restor Dent Endod. 2012; 37: 9–15.
19. Goracci C., Grandini S., Bossu M., Bertelli E., Ferrari M.: Laboratory assessment of the retentive potential of adhesive posts: a review. J Dent. 2007; 35: 827–835.
20. Baldea B., Furtos G., Antal M., Nagy K., Popescu D., Nica L.: Push-out bond strength and SEM analysis of two self-adhesive resin cements: An in vitro study. J Dental Sci. 2013; 8: 296–305.
21. Bitter K., Hambarayan A., Neumann K., Blunck U., Sterzenbach G.: Various irrigation protocols for final rinse to improve bond strengths of fiber posts inside the root canal. Eur J Oral Sci. 2013; 121: 349–354.
22. Casselli D.S., Borges M.G., Menezes M.S., Faria-e-Silva A.L.: Effect of cementation protocol on push- out bond strength of fiber posts to root canal. Appl Adhes Sci. 2014; 2: 15.
23. Cecchin D., de Almeida J.F., Gomes B.P., Zaia A.A., Ferraz C.C.: Effect of chlorhexidine and ethanol on the durability of the adhesion of the fiber post relined with resin composite to the root canal. J Endod 2011; 37: 678–683.
24. Kim Y.H., Shin D.H.: Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity. Restor Dent Endod. 2012; 37: 207–214.
25. Lima J.F., Lima A.F., Humel M.M., Paulillo L.A., Marchi G.M., Ferraz C.C.: Influence of irrigation protocols on the bond strength of fiber posts cemented with a self-adhesive luting agent 24 hours after endodontic treatment. Gen Dent. 2015; 63: 22–26.
26. Wang L., Pinto T.A., Silva L.M., et al.: Effect of 2% chlorhexidine digluconate on bond strength of a glass-fibre post to root dentine. Int Endod J. 2013; 46: 847–854.
27. de Araujo D.F., Chaves L.P., Bim O. Jr., et al.: Influence of 2% chlorhexidine digluconate on bond strength of a glass-fibre post luted with resin or glass-ionomer based cement. J Dent. 2014; 42: 735– 741.
28. Sahinkesen G., Erdemir U., Oktay E.A., Sancakli H.S.: The effect of post surface silanization and luting agents on the push-out bond strengths of adhesively inserted fiber reinforced posts. Int J Adhes Adhes 2011; 31: 265–270.
29. Lindblad R.M., Lassila L.V., Salo V., Vallittu P.K., Tjaderhane L.: One year effect of chlorhexidine on bonding of fibre-reinforced composite root canal post to dentine. J Dent. 2012; 40: 718–722.


Go to article

Authors and Affiliations

Bartosz Ciapała
1
Krzysztof Górowski
2
Wojciech I. Ryniewicz
2
Andrzej Gala
2
Jolanta E. Loster
2

  1. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Dental Prosthetics and Orthodontics, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of Portland cement and ground granulated blast furnace slag (GGBFS) added in changed proportions as stabilising agents on soil parameters: uniaxial compressive strength (UCS), Proctor compactness and permeability. The material included dredged clayey silts collected from the coasts of Timrå, Östrand. Soil samples were treated by different ratio of the stabilising agents and water and tested for properties. Study aimed at estimating variations of permeability, UCS and compaction of soil by changed ratio of binders. Permeability tests were performed on soil with varied stabilising agents in ratio H WL B (high water / low binder) with ratio 70/30%, 50/50%, and 30/70%. The highest level of permeability was achieved by ratio 70/30% of cement/slag, while the lowest - by 30/70%. Proctor compaction was assessed on a mixture of ash and green liquor sludge, to determine optimal moisture content for the most dense soil. The maximal dry density at 1.12 g/cm 3 was obtained by 38.75% of water in a binder. Shear strength and P-wave velocity were measured using ISO/TS17892-7 and visualised as a function of UCS. The results showed varying permeability and UCS of soil stabilised by changed ratio of CEM II/GGBS.
Go to article

Bibliography

[1] J.-M. Bian and B.-T. Wang. Study on shear strength of unsaturated soils based on the saturated soils. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 2656–2659, 2011. doi: 10.1109/ICETCE.2011.5775686.
[2] J. Jin. Research of soil compactness tested by instant vibration method. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 585–588, 2011. doi: 10.1109/ICETCE.2011.5774579.
[3] J. Wu, G. Yang, X. Wang, and W. Li. PZT-based soil compactness measuring sheet using electromechanical impedance. IEEE Sensors Journal, 20(17):10240–10250, 2020. doi: 10.1109/JSEN.2020.2991580.
[4] X. Wang, X. Dong, Z. Zhang, J. Zhang, G. Ma, and X. Yang. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning. Transportation Geotechnics, 32:100703, 2022. doi: 10.1016/j.trgeo.2021.100703.
[5] Z. Gao and J. Chai. Method for predicting unsaturated permeability using basic soil properties. Transportation Geotechnics, 34:100754, 2022. doi: 10.1016/j.trgeo.2022.100754.
[6] C.E. Choong, K T.Wong, S.B. Jang, J.-Y. Song, S.-G. An, C.-W. Kang, Y. Yoon, and M. Jang. Soil permeability enhancement using pneumatic fracturing coupled by vacuum extraction for in-situ remediation: Pilot-scale tests with an artificial neural network model. Journal of Environmental Chemical Engineering, 10(1):107075, 2022. doi: 10.1016/j.jece.2021.107075.
[7] L. Pohl, A. Kölbl, D. Uteau, S. Peth, W. Häusler, L. Mosley, P. Marschner, R. Fitzpatrick, and I. Kögel-Knabner. Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined μCT and NanoSIMS analysis. Geoderma, 399:115124, 2021. doi: 10.1016/j.geoderma.2021.115124.
[8] W. Zhang, R. Bai, X. Xu, and W. Liu. An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model. International Communications in Heat and Mass Transfer, 129:105738, 2021. doi: 10.1016/j.icheatmasstransfer.2021.105738.
[9] F.R.A. Ziegler-Rivera, B. Prado, A. Gastelum-Strozzi, J. Márquez, L. Mora, A. Robles, and B. González. Computed tomography assessment of soil and sediment porosity modifications from exposure to an acid copper sulfate solution. Journal of South American Earth Sciences, 108:103194, 2021. doi: 10.1016/j.jsames.2021.103194.
[10] B.C. Ball. Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities. European Journal of Soil Science, 32(4):483–498, 1981. doi: 10.1111/j.1365-2389.1981.tb01724.x.
[11] S. Deviren Saygin, F. Arı, Ç. Temiz, S. Arslan, M.A. Ünal, and G. Erpul. Analysis of soil cohesion by fluidized bed methodology using integrable differential pressure sensors for a wide range of soil textures. Computers and Electronics in Agriculture, 191:106525, 2021. doi: 10.1016/j.compag.2021.106525.
[12] Y. Kim, A. Satyanaga, H. Rahardjo, H. Park, and A.W.L. Sham. Estimation of effective cohesion using artificial neural networks based on index soil properties: A Singapore case. Engineering Geology, 289:106163, 2021. doi: 10.1016/j.enggeo.2021.106163.
[13] V. Marzulli, C.S. Sandeep, K. Senetakis, F. Cafaro, and T. Pöschel. Scale and water effects on the friction angles of two granular soils with different roughness. Powder Technology, 377:813–826, 2021. doi: 10.1016/j.powtec.2020.09.060.
[14] J. Zou, G. Chen, and Z. Qian. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106:1–17, 2019. doi: 10.1016/j.compgeo.2018.10.014.
[15] A. Kaya. Relating equal smectite content and basal spacing to the residual friction angle of soils. Engineering Geology, 108(3):252–258, 2009. doi: 10.1016/j.enggeo.2009.06.013.
[16] Y. Wang and O.V. Akeju. Quantifying the cross-correlation between effective cohesion and friction angle of soil from limited site-specific data. Soils and Foundations, 56(6):1055–1070, 2016. doi: 10.1016/j.sandf.2016.11.009.
[17] E. Stockton, B.A. Leshchinsky, M.J. Olsen, and T.M. Evans. Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Engineering Geology, 249:31–44, 2019. doi: 10.1016/j.enggeo.2018.12.016.
[18] J. Ye. 3D liquefaction criteria for seabed considering the cohesion and friction of soil. Applied Ocean Research, 37:111–119, 2012. doi: 10.1016/j.apor.2012.04.004.
[19] M. Ohno and K. Fukai. Pavement construction work of a road surface by soil cement concrete that used construction remainder soil. In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pages 638–641, 1999. doi: 10.1109/ECODIM.1999.747690.
[20] J. Ling,Y.Yang, Z. Ma, and G.Yang. Engineering properties and treatment of hydraulically reclaimed saline soil in coastal area. In 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, pages 275–278, 2014. doi: 10.1109/ICMTMA.2014.69.
[21] P.P. Kulkarni and J.N. Mandal. Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material. Construction and Building Materials, 314:125363, 2022. doi: 10.1016/j.conbuildmat.2021.125363.
[22] T. Zhang, S. Liu, H. Zhan, C. Ma, and G. Cai. Durability of silty soil stabilized with recycled lignin for sustainable engineering materials. Journal of Cleaner Production, 248:119293, 2020. doi: 10.1016/j.jclepro.2019.119293.
[23] R.W. Day. Soil Testing Manual: Procedures, Classification Data, and Sampling Practices. McGraw Hill Inc., New York, U.S., 2001.
[24] T. Davis. Geotechnical Testing, Observation, and Documentation. American Society of Civil Engineers, Reston, Virginia, U.S., 2 edition, 2008.
[25] D. Hillel. Fundamentals of Soil Physics. Academic Press, New York, U.S., 1 edition, 1980.
[26] L.A.P. Barbosa, K.M. Gerke, and H.H. Gerke. Modelling of soil mechanical stability and hydraulic permeability of the interface between coated biopore and matrix pore regions. Geoderma, 410:115673, 2022. doi: 10.1016/j.geoderma.2021.115673.
[27] I.I. Obianyo, E.N. Anosike-Francis, G.O. Ihekweme, Y. Geng, R. Jin, A.P. Onwualu, and A.B. O. Soboyejo. Multivariate regression models for predicting the compressive strength of bone ash stabilized lateritic soil for sustainable building. Construction and Building Materials, 263:120677, 2020. doi: 10.1016/j.conbuildmat.2020.120677.
[28] L. Bakaiyang, J. Madjadoumbaye, Y. Boussafir, F. Szymkiewicz, and M. Duc. Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15:e00626, 2021. doi: 10.1016/j.cscm.2021.e00626.
[29] Z. Han, S.K. Vanapalli, J-P. Ren, and W-L. Zou. Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5):1187–1199, 2018. doi: 10.1016/j.sandf.2018.06.003.
[30] I. Kamal and Y. Bas. Materials and technologies in road pavements - an overview. Materials Today: Proceedings; 3rd International Conference on Materials Engineering & Science, 42:2660–2667, 2021. doi: 10.1016/j.matpr.2020.12.643.
[31] R. Jauberthie, F. Rendell, D. Rangeard, and L. Molez. Stabilisation of estuarine silt with lime and/or cement. Applied Clay Science, 50(3):395–400, 2010. doi: 10.1016/j.clay.2010.09.004.
[32] P. Lindh and P. Lemenkova. Resonant frequency ultrasonic P-waves for evaluating uniaxial compressive strength of the stabilized slag–cement sediments. Nordic Concrete Research, 65:39–62, 2021. doi: 10.2478/ncr-2021-0012">10.2478/ncr-2021-0012">10.2478/ncr-2021-0012.
[33] M. Arabi and S. Wild. Property changes induced in clay soils when using lime stabilization. Municipal Engineer, 6:85–99, 1989.
[34] P. Lindh. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD thesis, Lund University, Lund, Sweden, 2004.
[35] C. Liu and R.D. Starcher. Effects of curing conditions on unconfined compressive strength of cement- and cement-fiber-improved soft soils. Journal of Materials in Civil Engineering, 25(8):1134–1141, 2013. doi: 10.1061/(ASCE)MT.1943-5533.0000575.
[36] P.J. Venda Oliveira, A.A.S. Correia, and M.R. Garcia. Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil. Journal of Materials in Civil Engineering, 24(7):868–875, 2012. doi: 10.1061/(ASCE)MT.1943-5533.0000454.
[37] H. Ghasemzadeh, A. Mehrpajouh, M. Pishvaei, and M. Mirzababaei. Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite. Journal of Materials in Civil Engineering, 32 (8):04020212, 2020. doi: 10.1061/(ASCE)MT.1943-5533.0003287.
[38] A. Aldaood, M. Bouasker, and M. Al-Mukhtar. Effect of the temperature and curing time on the water transfer of lime stabilized gypseous soil. In Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pages 2325–2333, 2013. doi: 10.1061/9780784412992.272.
[39] H. Yu, J. Yin, A. Soleimanbeigi, and W.J. Likos. Effects of curing time and fly ash content on properties of stabilized dredged material. Journal of Materials in Civil Engineering, 29(10):04017199, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0002032.
[40] W.-S. Oh and Ta-H. Kim. Dependence of the material properties of lightweight cemented soil on the curing temperature. Journal of Materials in Civil Engineering, 26(7):06014008, 2014. doi: 10.1061/ (ASCE)MT.1943-5533.0000940.
[41] I.L. Howard and B.K. Anderson. Time-dependent properties of very high moisture content fine grained soils stabilized with portland and slag cement. In Geotechnical Frontiers 2017, pages 891–899, 2017. doi: 10.1061/9780784480472.095.
[42] N.C. Consoli, R.C. Cruz, and M.F. Floss. Variables controlling strength of artificially cemented sand: Influence of curing time. Journal of Materials in Civil Engineering, 23(5):692–696, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000205.
[43] A.T.M.Z. Rabbi and J.Kuwano. Effect of curing time and confining pressure on the mechanical properties of cement-treated sand. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, pages 996–1005, 2012. doi: 10.1061/9780784412121.103.
[44] S. Chaiyaput, N. Arwaedo, N. Kingnoi, T. Nghia-Nguyen, and J. Ayawanna. Effect of curing conditions on the strength of soil cement. Case Studies in Construction Materials, 16:e01082, 2022. doi: 10.1016/j.cscm.2022.e01082.
[45] P. Lindh and P. Lemenkova. Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica, 35(1):47–59, 2022. doi: 10.5200/baltica.2022.1.4.
[46] A.A. Amadi and A.S. Osu. Effect of curing time on strength development in black cotton soil – quarry fines composite stabilized with cement kiln dust (CKD). Journal of King Saud University - Engineering Sciences, 30(4):305–312, 2018. doi: 10.1016/j.jksues.2016.04.001.
[47] D.Wang, R. Zentar, and N.E. Abriak. Temperature-accelerated strength development in stabilized marine soils as road construction materials. Journal of Materials in Civil Engineering, 29(5):04016281, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0001778.
[48] B. Rekik, M. Boutouil, and A. Pantet. Geotechnical properties of cement treated sediment: influence of the organic matter and cement contents. International Journal of Geotechnical Engineering, 3(2):205–214, 2009. doi: 10.3328/IJGE.2009.03.02.205-214.
[49] E.O. Tastan, T.B. Edil, C.H. Benson, and A.H. Aydilek. Stabilization of organic soils with fly ash. Journal of Geotechnical and Geoenvironmental Engineering, 137(9):819–833, 2011. doi: 10.1061/ (ASCE)GT.1943-5606.0000502.
[50] H. Hasan, H. Khabbaz, and B. Fatahi. Impact of quicklime and fly ash on the geotechnical properties of expansive clay. In Geo-China 2016: Advances in Pavement Engineering and Ground Improvement, pages 93–100, 2016. doi: 10.1061/9780784480014.012.
[51] P. Solanki, N. Khoury, and M. Zaman. Engineering behavior and microstructure of soil stabilized with cement kiln dust. In Geo-Denver 2007: Soil Improvement, pages 1–10, 2007. doi: 10.1061/40916(235)6.
[52] P. Lindh and P. Lemenkova. Evaluation of different binder combinations of cement, slag and CKD for s/s treatment of TBT contaminated sediments. Acta Mechanica et Automatica, 15(4):236–248, 2021. doi: 10.2478/ama-2021-0030.
[53] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk. Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 152:999–1007, 2017. doi: 10.1016/j.conbuildmat.2017.07.070.
[54] X. Bian, L. Zeng, X. Li, X. Shi, S. Zhou, and F. Li. Fabric changes induced by super-absorbent polymer on cement–lime stabilized excavated clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(5):1124–1135, 2021. doi: 10.1016/j.jrmge.2021.03.006.
[55] S. Andavan and V.K. Pagadala. A study on soil stabilization by addition of fly ash and lime. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:1125–1129, 2020. doi: 10.1016/j.matpr.2019.11.323.
[56] P. Indiramma, Ch. Sudharani, and S. Needhidasan. Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment – an experimental study. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:694–700, 2020. doi: 10.1016/j.matpr.2019.09.147.
[57] C.A. Mozejko and F.M. Francisca. Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag. Construction and Building Materials, 239:117901, 2020. doi: 10.1016/j.conbuildmat.2019.117901.
[58] M.P. Durante Ingunza, K.L. de Araújo Pereira, and O F. dos Santos Junior. Use of sludge ash as a stabilizing additive in soil-cement mixtures for use in road pavements. Journal of Materials in Civil Engineering, 27(7):06014027, 2015. doi: 10.1061/(ASCE)MT.1943-5533.0001168.
[59] M.M. Al-Sharif and M.F. Attom. The use of burned sludge as a new soil stabilizing agent. In National Conference Environmental and Pipeline Engineering 2000, pages 378–388, 2000. doi: 10.1061/40507(282)42.
[60] P. Lindh. Optimizing binder blends for shallow stabilisation of fine-grained soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 5(1):23–34, 2001. doi: 10.1680/grim.2001.5.1.23.
[61] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[62] P. Lindh and M.G. Winter. Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology, 36(4):321–330, 2003. doi: 10.1144/1470-9236/03-018.
[63] P. Xu, Q. Zhang, H. Qian, M. Li, and F. Yang. An investigation into the relationship between saturated permeability and microstructure of remolded loess: A case study from Chinese Loess Plateau. Geoderma, 382:114774, 2021. doi: 10.1016/j.geoderma.2020.114774.
[64] A. Anagnostopoulos, G. Koukis, N. Sabatakakis, and G. Tsiambaos. Empirical correlations of soil parameters based on Cone Penetration Tests (CPT) for Greek soils. Geotechnical and Geological Engineering, 21:377–387, 2003. doi: 10.1023/B:GEGE.0000006064.47819.1a.
[65] H. Källén, A. Heyden, K. Åström, and P. Lindh. Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84:56–67, 2016. doi: 10.1016/j.measurement.2016.02.007.
[66] V. Lemenkov and P. Lemenkova. Measuring equivalent cohesion Ceq of the frozen soils by compression strength using kriolab equipment. Civil and Environmental Engineering Reports, 31(2):63–84, 2021. doi: 10.2478/ceer-2021-0020.
[67] X. Huang, R. Horn, and T. Ren. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma, 406:115452, 2022. doi: 10.1016/j.geoderma.2021.115452.
[68] W. Kongkitkul, T. Saisawang, P. Thitithavoranan, P. Kaewluan, and T. Posribink. Correlations between the surface stiffness evaluated by light-weight deflectometer and degree of compaction. In Geo-Shanghai 2014: Tunneling and Underground Construction, pages 65–75, 2014. doi: 10.1061/9780784413449.007.
[69] K. Lee, M. Prezzi, and N. Kim. Subgrade design parameters from samples prepared with different compaction methods. Journal of Transportation Engineering, 133(2):82–89, 2007. doi: 10.1061/ (ASCE)0733-947X(2007)133:2(82).
[70] M. Bryk. Resolving compactness index of pores and solid phase elements in sandy and silt loamy soils. Geoderma, 318:109–122, 2018. doi: 10.1016/j.geoderma.2017.12.030.
[71] W. l. Zou, Z. Han, S.K. Vanapalli, J.-F. Zhang, and G.-T. Zhao. Predicting volumetric behavior of compacted clays during compression. Applied Clay Science, 156:116–125, 2018. doi: 10.1016/j.clay.2018.01.036.
[72] S.J.Wasman, M.C. McVay, K. Beriswill, D. Bloomquist, J. Shoucair, and D. Horhota. Study of laboratory compaction system variance using an Automatic Proctor Calibration Device. Journal of Materials in Civil Engineering, 25(4):429–437, 2013. doi: 10.1061/(ASCE)MT.1943- 5533.0000599.
[73] L. Di Matteo, F. Bigotti, and R. Ricco. Best-fit models to estimate modified Proctor properties of compacted soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(7):992– 996, 2009. doi: 10.1061/(ASCE)GT.1943-5606.0000022.
[74] O. Boudlal and B. Melbouci. Study of the behavior of aggregates demolition by the Proctor and CBR tests. In GeoHunan International Conference 2009: Material Design, Construction, Maintenance, and Testing of Pavements, pages 75–80, 2009. doi: 10.1061/41045(352)12.
[75] L. Barden and G.R. Sides. Engineering behavior and structure of compacted clay. Journal of the Soil Mechanics and Foundations Division, 96(4):1171–1200, 1970. doi: 10.1061/JSFEAQ.0001434.
[76] M. Jibon and D. Mishra. Light weight deflectometer testing in Proctor molds to establish resilient modulus properties of fine-grained soils. Journal of Materials in Civil Engineering, 33(2):06020025, 2021. doi: 10.1061/(ASCE)MT.1943-5533.0003582.
[77] A. Aragón, M.G. García, R.R. Filgueira, and Ya.A. Pachepsky. Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content. Soil and Tillage Research, 56(3):197–204, 2000. doi: 10.1016/S0167-1987(00)00144-6.
[78] H. Bayat, S. Asghari, M. Rastgou, and G.R. Sheykhzadeh. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. CATENA, 189:104467, 2020. doi: 10.1016/j.catena.2020.104467.
[79] A.B.J.C. Nhantumbo and A.H. Cambule. Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil and Tillage Research, 87(2):231–239, 2006. doi: 10.1016/j.still.2005.04.001.
[80] A. Alaoui, J. Lipiec, and H.H. Gerke. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116:1–15, 2011. doi: 10.1016/j.still.2011.06.002.
[81] ASTM Standard D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken, PA, U. S., ICS Code: 93.020 edition, 2007. doi: 10.1520/D0698-07E01.
[82] ASTM Standard D1557. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International,West Conshohocken, PA, U. S., 2009. doi: 10.1520/D1557-09.
[83] L. Wang, X. Xie, and H. Luan. Influence of laboratory compaction methods on shear performance of graded crushed stone. Journal of Materials in Civil Engineering, 23(10):1483–1487, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000323.
[84] A. Alaoui and A. Helbling. Evaluation of soil compaction using hydrodynamic water content variation: Comparison between compacted and non-compacted soil. Geoderma, 134(1):97– 108, 2006. doi: 10.1016/j.geoderma.2005.08.016.
[85] M. Livneh and N.A. Livneh. Use of the one-point Proctor modified compaction method in family compaction curves possessing a limited trend characteristic. In Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, pages 1304–1315, 2013. doi: 10.1061/9780784413005.110.
[86] A.F. Elhakim. Estimation of soil permeability. Alexandria Engineering Journal, 55(3):2631– 2638, 2016. doi: 10.1016/j.aej.2016.07.034.
[87] Y. Yu, J.A. Huisman, A. Klotzsche, H. Vereecken, and L. Weihermüller. Coupled fullwaveform inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: A synthetic study. Journal of Hydrology, 610:127817, 2022. doi: 10.1016/j.jhydrol.2022.127817.
[88] J. Zhou, S. Laumann, and T.J. Heimovaara. Applying aluminum-organic matter precipitates to reduce soil permeability in-situ:Afield and modeling study. Science of The Total Environment, 662:99–109, 2019. doi: 10.1016/j.scitotenv.2019.01.109.
[89] A. Takai, T. Inui, and T. Katsumi. Evaluating the hydraulic barrier performance of soilbentonite cutoff walls using the piezocone penetration test. Soils and Foundations, 56(2):277– 290, 2016. doi: 10.1016/j.sandf.2016.02.010.
[90] Y.X. Lim, S.A. Tan, and K.-K. Phoon. Interpretation of horizontal permeability from piezocone dissipation tests in soft clays. Computers and Geotechnics, 107:189–200, 2019. doi: 10.1016/j.compgeo.2018.12.001.
[91] Y. Liu, S.J. Chen, K. Sagoe-Crentsil, andW. Duan. Predicting the permeability of consolidated silty clay via digital soil reconstruction. Computers and Geotechnics, 140:104468, 2021. doi: 10.1016/j.compgeo.2021.104468.
[92] T. Shibi and Y. Ohtsuka. Influence of applying overburden stress during curing on the unconfined compressive strength of cement-stabilized clay. Soils and Foundations, 61(4):1123–1131, 2021. doi: 10.1016/j.sandf.2021.03.007.
[93] N. Kardani, A. Zhou, S.-L. Shen, and M. Nazem. Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transportation Geotechnics, 29:100591, 2021. doi: 10.1016/j.trgeo.2021.100591.
[94] F. Mousavi, E. Abdi, S. Ghalandarayeshi, and D.S. Page-Dumroese. Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. CATENA, 196:104890, 2021. doi: 10.1016/j.catena.2020.104890.
[95] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[96] J.B. Burland. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329–378, 1990. doi: 10.1680/geot.1990.40.3.329.
[97] S.M. Rao and P. Shivananda. Compressibility behaviour of lime-stabilized clay. Geotechnical and Geological Engineering, 23:301–311, 2005. doi: 10.1007/s10706-004-1608-2.
[98] M. Al-Mukhtar, S. Khattab, and J.-F. Alcover. Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139-140:17–27, 2012. doi: 10.1016/j.enggeo.2012.04.004.
[99] A. al-Swaidani, I. Hammoud, and A. Meziab. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5):714–725, 2016. doi: 10.1016/j.jrmge.2016.04.002.
[100] C. Phetchuay, S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, and A. Udomchai. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Applied Clay Science, 127-128:134–142, 2016. doi: 10.1016/j.clay.2016.04.005.
[101] V. Lemenkov and P. Lemenkova. Testing deformation and compressive strength of the frozen fine-grained soils with changed porosity and density. Journal of Applied Engineering Sciences, 11(2):113–120, 2021. doi: 10.2478/jaes-2021-0015.
[102] V. Lemenkov and P. Lemenkova. Using TeX markup language for 3D and 2D geological plotting. Foundations of Computing and Decision Sciences, 46(3):43–69, 2021. doi: 10.2478/fcds-2021-0004.
[103] P.K. Robertson, S. Sasitharan, J.C. Cunning, and D.C. Sego. Shear-wave velocity to evaluate in-situ state of Ottawa sand. Journal of Geotechnical Engineering, 121(3):262–273, 1995. doi: 10.1061/(ASCE)0733-9410(1995)121:3(262).
[104] K. Komal, S. Bawa, and S. KantSharma. Laboratory investigation on the effect of polypropylene and nylon fiber on silt stabilized clay. Materials Today: Proceedings; International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering, 52:1368–1376, 2021. doi: 10.1016/j.matpr.2021.11.123.
[105] H. Källén, A. Heyden, and P. Lindh. Estimation of grain size in asphalt samples using digital image analysis. In Proceedings: Applications of Digital Image Processing XXXVII, volume 9217, pages 292–300, 2014. doi: 10.1117/12.2061730.
[106] Swedish Institute for Standards. SIS: Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017), 2017. ISO 17892- 7:2017.
[107] Swedish Institute for Standards. SIS: Earthworks – Part 4: Soil treatment with lime and/or hydraulic binders. online, 2018. SS-EN 16907-4:2018.
[108] Swedish Institute for Standards. Geotechnical investigation and testing - Laboratory testing of soil - Part 11: Permeability tests (ISO 17892-11:2019). online, 2019. Article no: STD- 80010356.
[109] BSI Standards Publication. Cement part 1: Composition, specifications and conformity criteria for common cements. European Standard (English version), 2011. BS EN 197-1:2011. ISBN: 978 0 580 68241 4.
[110] Thomas Concrete Group. Teknisk Information. Slagg Bremen Mald granulerad masugnsslagg för användning i betong och bruk enligt SS 137003. https://thomasconcretegroup.com/us/, 2014. Retrieved 2014-01-16 from Thomas Concrete Group.
[111] N.Ryden,U. Dahlen, P. Lindh, and A. Jakobsson. Impact non-linear reverberation spectroscopy applied to non-destructive testing of building materials. The Journal of the Acoustical Society of America, 140(4):3327–3327, 2016. doi: 10.1121/1.4970601.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Malmö, Sweden
  2. Lund University (Lunds Tekniska Högskola, LTH), Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Engineering activity may lead to uncontrolled changes in the geological environment. This paper presents an example of structural changes in fluvial sand of the Praski terrace (in Warsaw) caused by the activity of a temporary concrete batching plant. Our investigations made it possible to identify the material responsible for the structural anomalies observed in the bottom of the trench excavation. The compound responsible for the cementation phenomenon was identified as ettringite – hydrated calcium aluminosulphate: Ca 6Al 2[(OH) 12(SO 4) 3]·26H 2O. The source of ettringite were most probably significant volumes of contaminants coming from the temporary concrete batching plant (e.g., from the rinsing of concrete mixers and/or installations for concrete storage and transportation). While penetrating into the ground, ettringite caused extensive cementation of the soil mass, mainly in the saturation zone. As a result, the mineral (chemical) composition of the inter-grain space changed and the structure of the sand was strengthened. The estimated zone of volumetric changes in soil properties was about 6 thousand m 3. However, analysis of the chemical composition of groundwater for its potential sulphate contamination, did not reveal any anomalous concentrations of sulphates.
Go to article

Authors and Affiliations

Piotr Zbigniew Zawrzykraj
ORCID: ORCID
Paweł Rydelek
1
Anna Bąkowska
1
ORCID: ORCID
Krzysztof Cabalski
1

  1. University of Warsaw, Faculty of Geology, Department of Environmental Protection and Natural Resources, Żwirki i Wigury 93, 02-089 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

Bamboo Ash is a safer and more sustainable building material. It is possible to use bamboo ash as a partial cement replacement as an alternative to cement application and also to reduce pollution. For this study, the main purpose is to determine the compressive strength and water absorption of cement sand brick containing bamboo ash. Laboratory tests such as compression tests and water absorption tests on cement sand brick with bamboo ash as a partial replacement for cement have been conducted. The mixes with various ratios using bamboo ash are 5%, 7%, and 10%. The specimen size for cement sand brick is 215 mm long, 102.5 mm wide, and 65 mm deep according to BS3921:1985. The results from the specimens containing Bamboo Ash have been compared to the control specimens. The water absorption test results increase as the percentage of Bamboo Ash increases due to particle size and air void, but the compressive strength decreases at 28 days.
Go to article

Authors and Affiliations

Suraya Hani Adnan
1
ORCID: ORCID
S.N.S.M. Satti
1
ORCID: ORCID
Aqerul Safea'ai
1
ORCID: ORCID
Mohamad Hairi Osman
1
ORCID: ORCID
Wan Jusoh Wan Amizah
1
ORCID: ORCID
Zalipah Jamellodin
2
ORCID: ORCID
Peniel Soon Ern Ang
1
ORCID: ORCID
Wan Ibrahim Wan Mastura
3
ORCID: ORCID
Justyna Garus
4
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology,Department of Civil Engineering Technology, 84600 Pagoh, Muar Johor,Malaysia
  2. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Built Engineering, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer& Green Technology (CEGeoGTech), 01000 Perlis, Malaysia
  4. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentalsof Machinery Design, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The properties of expansive concretes made of two types of cement: Portland cement CEM I and blast furnace slag cement CEM III were tested. The expansion of the concrete was caused by using an expansive admixture containing aluminium powder added in an amount of 0.5; 1 and 1.5% of cement mass. It was found that the compressive strength of concrete with CEM I decreased after using an expansive admixture in the amount of more than 0.5% of the cement mass. The compressive strength of concrete with CEM III decrease after addition of admixture in the entire range of dosages used. On the basis of electrochemical measurements, it was found no influence of an expansive admixture on corrosion of reinforcing steel. The use of an expansive admixture causes a slight increase in the effective diffusion coefficient of chloride ions in concrete.

Go to article

Authors and Affiliations

W. Jackiewicz-Rek
J. Kuziak
B. Jaworska
Download PDF Download RIS Download Bibtex

Abstract

The main energy source in Poland is still hard coal and lignite. The coal combustion process produces large quantities of by-products, e.g. fly ashes, slag furnace and harmful chemical gases (CO2, NOx, sulfur compounds) which enter the atmosphere. Fly ashes, due to their being fine grained (cement-like), chemical and phase compound and reactivity, have also been widely used in various technological solutions e.g. in the production of ordinary cement, hydro-technical cement and the new generation of cements. The adequate amount of fly ashes additive has a positive effect on fresh and hardened cement slurry properties. What is more, it allows for the pro-ecological and economic production of cement mix The exploitation of natural resources is connected with performance mining excavations at different depths. After a certain period of time, those voids break down which, in turn, leads to the slip of upper layers and the so-called landslides forming on the surface. This situation imposes the necessity of basis and sealing rock mass reinforcement. To minimize the risk connected to geotechnical problems on the mining areas, there is a need to use engineering solutions which could improve soil bearing in a universal, economical and efficient way. This leads to the development of new cement slurry recipes used during geoengineering works, especially in the mining areas. Moreover, economic requirements are forcing engineers to use less expensive technical and technological solutions simultaneously maintaining strength properties. An example of such a solution is to use suitable additives to cement slurry which could reduce the total unit cost of the treatment.

Go to article

Authors and Affiliations

Małgorzata Formela
Stanisław Stryczek
Download PDF Download RIS Download Bibtex

Abstract

The rheological behaviour of cemented paste backfill (CPB) has an important influence on the stability of its transportation in pipelines. In the present study, the time-dependent rheological behaviour of CPB was investigated to elucidate the effects of time and solid content. Experimental results showed that when CPB is subjected to a constant shear rate, the shear stress gradually decreases with time before finally stabilis ing. When the solid content was 60%~62%, a liquid network structure was the main factor that influenced the thixotropy of CPB, and the solid content had less influence. When the solid content was 64%~66%, a floc network structure was the main factor that influenced the thixotropy of CPB, and the solid content had a more significant influence on the thixotropy than the shear rate. The initial structural stability of CPB increased with the solid content, and this relationship can be described by a power function. Based on the experimental results, a calculation model of pipeline resistance considering thixotropy was proposed. The model was validated by using industrial experimental data. The current study can serve as a design reference for CPB pipeline transportation.
Go to article

Authors and Affiliations

Yingjie Chang
1
ORCID: ORCID
Youzhi Zhang
1
ORCID: ORCID
Deqing Gan
1
ORCID: ORCID
Xinyi Wang
1
ORCID: ORCID
Shuangcheng Du
1
ORCID: ORCID

  1. North China University of Science and Technology, College of Mining Engineering, China
Download PDF Download RIS Download Bibtex

Abstract

The growth of the global population, urbanization as well as economic and industrial development, affect the continuously increasing demand for mineral aggregates. The current assessed global production of mineral aggregates amounts to 50 billion Mg/year, which statistically approximates 6.5 Mg per an inhabitant of the globe. In terms of consumption volume, water is the only raw material ahead of aggregates. Despite such a great scale, in many countries and regions the extraction and production of aggregates belong to the least regulated sector of human activity. This refers particularly to the countries of A sia, A frica, and North A merica, where both the resources and the extraction of aggregates, particularly of sand and gravels, are either not monitored and registered. It significantly increases the negative impact on the natural environment, due to the destruction of riverbeds and oxbows, coastal erosion, drying up cultivation areas, etc. In the reports, local terminology of aggregates often functions, which makes it difficult to compare them and prepare appropriate balances. In order to regulate the unfavorable situation, one of the main conclusions of the Report (UNEP 2019) is the need of implementing a common requirement to plan and monitor the process of extraction of natural resources. The paper presents the possibility of forecasting the extraction and producing aggregates based on the consumption of cement, i.e. the basic building material. A lthough the analyzed coefficient of mineral aggregate production per unit of cement consumption (production) varies, its advantage is the fact that the production of cement is identified and taken into account in balances of industrial production of the majority of countries, whereas such identification for mineral aggregate production are still lacking.

Go to article

Authors and Affiliations

Ireneusz Ryszard Baic
ORCID: ORCID
Wiesław Kozioł
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The cement industry has been using waste as a raw material for many years. Waste is also used as alternative fuel. Cement plants are an important element of the waste management system and fit the idea of a circular economy. When waste is recovered in the cement production process, direct and indirect CO 2 emissions are partially avoided. This article discusses the cement industry in Poland. The current situation in terms of the use of alternative fuels and raw materials in Poland, the different types of waste and the amount of waste used is discussed. The article discusses changes in the amount of waste (the increase in the amount of waste used as raw materials from the year 2006 to the year 2019) and the types of waste recovered in the cement production process and the possibility of closing material cycles on the plant scale (recycling to the primary process – cement kiln dust) and industry (using waste from other industries: metallurgy – granulated blast furnace slag, iron bearings; energy production – fly ash, reagypsum/phosphogypsum, fluidized bed combustion fly ash, and fluidized bed combustion bottom ash; wastewater treatment plants – sewage sludge, etc.). The analysis shows that the role of cement plants in waste management and the circular economy in Poland is important. Industrial waste from metallurgy, power plants, heat and power plants, wastewater treatment plants, and municipal waste is used as the raw material for the cement industry, leading to an industrial symbiosis.
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Eugeniusz Mokrzycki
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The asbestos removal in Poland is carried out based on the Programme of Country Cleaning from Asbestos for the Years 2009–2023. Pursuant to this document asbestos-containing materials should be removed from the territory of the whole country by the end of 2032. The pace of asbestoscontaining products removal was estimated and also the time necessary to implement this process. These figures were estimated using two resources of data. The data gathered in the Asbestos Database (Asbestos Database... 2022) were analysed, and the analysis of detailed stocktaking and its update for 20 selected communes of various nature was carried out. The pace of removing in the analysed communes is definitely diversified. The obtained values generally range from 0.28 to 6.35 kg/R/y (kg per resident/year). An averaged pace of asbestos removal for the entire country is from 2.24 to 3.65 kg/R/y, depending on the adopted method of calculations. The analysis has shown that considering the current pace of asbestos-containing products removing, these materials will not be removed from the area of Poland by the set date, i.e. by the end of 2032. In individual provinces the amount of asbestos and the pace of removal are drastically different. Retaining the current pace of asbestoscontaining products removing, such products will disappear from Poland only within 27–193 years, depending on the province. An average pace of removal, given for the country scale, allows to state that 83 years are needed for the total removal of asbestos products.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Jarosław Staszczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Asbestos cement sheets on building roofs and façades as well as asbestos cement water and sewerage pipes are the most frequently existing elements that contain asbestos in Poland. During removal from a specific building such a material automatically becomes hazardous waste. The presented paper covers studies carried out on leachability of pollutants from asbestos-containing waste, previously used for roofing. Laboratory tests under static conditions were carried out (1:10 test, pursuant to rules of the PN-EN 12457/1-4 standard) using distilled water as the leaching medium. Aluminium, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were determined in the eluate. Low leachability of individual metals under the planned conditions was observed. In general, such metals as cadmium, nickel, lead, zinc, boron and mercury were not observed in solutions. The other analysed metals were observed in eluates, but their concentrations were usually low. The low leachability was found for barium (0.019 to 0.419 mg/dm3), chromium (0.019 to 0.095 mg/dm3), copper (0.006 to 0.019 mg/dm3), and iron (<0.01 to 0.017 mg/dm3). Increased leachability values were found only for strontium, between 0.267 and 4.530 mg/dm3, and aluminium, ranging from 0.603 to 3.270 mg/dm3. The analysed asbestos and cement materials feature a low percentage content of asbestos in flat and corrugated asbestos cement sheets (10–15%). Because of that it is possible to presume that pollutants characteristic of cement will be mainly present in products of leaching.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID
Jarosław Staszczak
2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The alternative waste fuels have a significant share in the fuel mix of the cement industry in Poland. The conditions inside cement kilns are favorable enough for environmentally-friendly use of waste fuels. In the article, the authors discuss the current situation concerning the use of alternative fuels in Poland, from difficult beginning in the 1990s to the present time, different kinds of fuels, and the amounts of used fuels. The use of fuels in Poland is presented against the global and EU consumption (including Central European countries and companies). The increased use of waste-derived fuels, from the level of about 1% at the end of the 1990s to the present level of about 70%, allowed for the limitation of waste storage, including avoidance of greenhouse gas emissions and consumption of conventional energy sources; those effects also contributed to the implementation of the sustainable development and circular economy conceptions. The experiences of the cement plants worldwide prove that the use of waste fuels is ecological and economical. The examples showed in the article confirm that cement plants are greatly interested in using waste fuels from waste, as they invest in the infrastructure allowing to store bigger amounts of waste and dose them more efficiently. Thus, the cement industry has become an important element of the country’s energy economy and waste management system.
Go to article

Bibliography

  1. Aranda Usón, A., López-Sabirón, A.M., Ferreira, G. & Llera Sastresa, E. (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options, Renewable & Sustainable Energy Reviews, 23, pp. 242–260.
  2. Bąblewski, P. (2012). Co-combustion of alternative fuels in the cement plants Cemex-Poland, in: Proceedings of Conference – Waste to Energy – Warszawa, 14th June 2012. (in Polish)
  3. Beer, J. de, Cihlar, J. & Hensing, I. (2017a). Status and prospects of co-processing of waste in EU cement plants. (https://cembureau.eu/media/ldfdotk0/12950-ecofys-co-processing-waste-cement-kilns-case-studies-2017-05.pdf (16.07.2021)).
  4. Beer, J. de, Cihlar, J., Hensing, I. & Zabeti, M. (2017b). Status and prospects of co- processing of waste in EU cement plants. (https://cembureau.eu/media/2lte1jte/11603-ecofys-executive-summary_cembureau-2017-04-26.pdf (16.07.2021)).
  5. Bieniek, J., Domaradzka, M., Przybysz, K. & Woźniakowski, W. (2011). Use of alternative fuels based on selected fraction of communal and industrial waste in Gorazdze Cement, Acta Agrophysica, 17, pp. 277−288. (in Polish)
  6. Buzzi Unicem (2014–2020). Sustainability Report 2014, 2015, 2016, 2017, 2018, 2019, 2020. (https://www.dyckerhoff.pl/raporty-zr (16.07.2021)).
  7. Cao, Y. & Pawłowski, L. (2012). Lublin experience with co-incineration of muncipal solid wastes in cement industry, Annual Set the Environment Protection, 14, pp. 132−145.
  8. CEMBUREAU (2020). Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050. (https://cembureau.eu/media/w0lbouva/cembureau-2050-roadmap_executive-summary_final-version_web.pdf (16.07.2021)).
  9. Cement Ożarów (2019). http://ozarow.com.pl/o-nas/zrownowazony-rozwoj/ (16.08.2021)). (in Polish)
  10. Cemex (2016). Alternative fuels at CEMEX Polska. (https://www.cemex.pl/documents/46481509/46532590/CX_Paliwa_Alternatywne.pdf/97cc39f5-fa6f-fe04-8a58-6d0f23d1f928 (16.07.2021)). (in Polish))
  11. Cemex (2002–2020). Annual Report. Global Reports, Cemex, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. (https://www.cemex.com/sustainability/reports/global-reports (16.07.2021)).
  12. Cemex Polska (2017–2019). Chełm Cement Plant. Environmental Statement 2016, 2017, 2018, 2019. (https://www.cemex.pl/zarzadzanie-wplywem-na-srodowisko.aspx (16.07.2021)). (in Polish)
  13. Cemex Polska (2010–2016) Sustainability Report 2010, 2011–2012, 2013–2014, 2015–2016. (https://www.cemex.pl/nasze-raporty (16.07.2021)). (in Polish)
  14. Change of municipal waste management system in Poland in 2012–2016, 2017. (https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/zmiana-systemu-gospodarki-odpadami-komunalnymi-w-polsce-w-latach-2012-2016,6,1.html (16.07.2021)). (in Polish)
  15. CRH (2018). Creating a Sustainable Built Environment. CRH Sustainbility Report 2017. (https://www.crh.com/media/1022/crh-sustainability-report-2018.pdf (16.07.2021)).
  16. Czech Cement Association (2017–2019). Data 2017, 2018, 2019. Svaz výrobců cementu České republiky Czech Cement Association. (https://www.svcement.cz/data/data-2020/ (16.07.2021)).
  17. Ecofys (2016). Market opportunities for use of alternative fuels in cement plants across the EU Assessment of drivers and barriers for increased fossil fuel substitution in three EU member states: Greece, Poland and Germany. (https://coprocessamento.org.br/wp-content/uploads/2019/09/Ecofys_Report_Market_Opportunities_Coprocessing_20160501.pdf (16.07.2021)).
  18. Fyffe, J.R., Breckel, A.C., Townsend, A.K. & Webber, M.E. (2016). Use of MRF residue as alternative fuel in cement production, Waste Management, 47, pp. 276–284.
  19. Genon, G. & Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF, Waste Management, 28, pp. 2375–2385.
  20. Górażdże Group, 2016. Sustainable Report 2014–2015. Górażdże Group. (https://www.gorazdze.pl/pl/raport-zrownowazonego-rozwoju-2014-2015 (16.07.2021)). (in Polish)
  21. Hasanbeigi, A., Lu., L., Williams, Ch. & Price. L., (2012). International best practices for pre-processing and co-processing municipal solid waste and sewage sludge in the cement industry. Lawrence Berkeley Laboratory (LBL) for the U.S. Environmental Protection Agency. (https://www.osti.gov/servlets/purl/1213537 (16.08.2021)).
  22. HeidelbergCement (20042020) Sustainability Report 2004/2005, 2006, 2009/2010, 2011/2012, 2013/2014, 2015, 2016, 2017, 2018, 2019, 2020. https://www.heidelbergcement.com/en/sustainability-reports (16.07.2021)).
  23. Holt, S.P. & Berge, N.D. (2018). Life-cycle assessment of using liquid hazardous waste as an alternative energy source during Portland cement manufacturing: A United States case study, Journal of Cleaner Production, 195, pp. 1057–1068.
  24. Husillos Rodríguez, N., Martínez-Ramírez, S., Blanco-Varela, M.T., Donatello, S., Guillem, M., Puig, J., Fos, C., Larrotcha, E. & Flores, J. (2013). The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production, 52, pp. 94–102.
  25. Kookos, I.K., Pontikes, Y., Angelopoulos, G.N. & Lyberatos, G. (2011). Classical and alternative fuel mix optimization in cement production using mathematical programming. Fuel, 90, pp. 1277–1284.
  26. LafargeHolcim (2019). Sustainability Report Lafarge in Poland 2017-2018. (https://www.lafarge.pl/sites/poland/files/atoms/files/lafarge-zrownowazony-rozwoj-raport-broszury-2017-2018.pdf (16.07.2021)).
  27. LafargeHolcim (2017–2020). Sustainability Report 2017, 2018, 2020.(https://www.holcim.com/sustainability-reports (16.07.2021)).
  28. Lechtenberg, D. (2008). Alternative fuels – history and outlook, Global Fuels Magazine, pp. 28–30.
  29. Liu, X., Yuan, Z., Xu, Y. & Jiang, S. (2017). Greening cement in China: A cost-effective roadmap, Applied Energy, 189, pp. 233–244.
  30. Mauschitz, G. (2009 - 2019). Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2009, 2011, 2014, 2017, 2018, 2019. (https://www.zement.at/service/publik.ationen/emissionsberichte (16.07.2021)). (in German)
  31. Mokrzycki, E. & Uliasz-Bocheńczyk, A. (2009). Management of primary energy carriers in Poland versus environmental protection, Annual Set the Environment Protection, 11, pp. 103–131. (in Polish)
  32. Mokrzycki, E., Uliasz-Bocheńczyk, A. & Sarna, M. (2003). Use of alternative fuels in the Polish cement industry, Applied Energy, 74, pp. 101–111.
  33. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2018. (https://emas.gdos.gov.pl/files/artykuly/24009/Cementownia-Odra-DEKLARACJA-SRODOWISKOWA-ZA-ROK-2018_icon.pdf (16.08.2021)). (in Polish)
  34. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2019. (http://emas.gdos.gov.pl/files/artykuly/24009/50.-DEKLARACJA-SRODOWISKOWA-ZA-ROK-2019_icon.pdf (16.08.2021)). (in Polish)
  35. Olkuski, T. (2013). Analysis of domestic reserves of steam coal in the light of its use in power industry. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 29, pp. 25-38. (in Polish)
  36. Rahman, A., Rasul, M.G., Khan, M.M.K. & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process, Fuel, 145, pp. 84–99.
  37. Regulation of the Minister of Economy of 16 July 2015 on the acceptance of waste to landfills. Journal of Laws, 2015, item 1277).
  38. Schakel, W., Hung, C.R., Tokheim, L.A., Strømman, A.H., Worrell, E. & Ramírez, A. (2018). Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant, Applied Energy, 210, pp. 75–87.
  39. Schorcht, F., Kourti, I., Scalet, B.M , Roudier, S., Sancho, L.D. (2013) Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide. Manufacturing Industries (May 2010). European Commission. European Integrated Pollution Prevention and Control Bureau. http://eippcb.jrc.es/reference/cl.html (16.08.2021)).
  40. The Plan…(2016)a. Waste Management Plan for Lublin Voivodeship 2022. (https://www.lubelskie.pl/file/2018/11/WPGO-2022.pdf (16.07.2021)). (in Polish)
  41. The Plan…(2016)b. Waste Management Plan for the Opole Voivodeship 2016-2022 taking into account the years 2023-2028 – project. (http://m.opolskie.pl/docs/plik_22.pdf (16.07.2021)). (in Polish)
  42. The Plan…(2016)c. Waste Management Plan for the Świętokrzyskie Voivodeship 2016-2022 - project. (http://bip.sejmik.kielce.pl/237-departament-rozwoju-obszarow-wiejskich-i-srodowiska/4460-plan-gospodarki-odpadami-dla-wojewodztwa-swietokrzyskiego-2016-2022/23107.html (16.07.2021)). (in Polish)
  43. The Polish Cement Association (2006–2021). Bulletin of The Polish Cement Association 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. (in Polish)
  44. Uliasz-Bocheńczyk, A.& Mokrzycki, E. (2015). Biomass as a fuel in power industry. Annual Set the Environment Protection, 17, pp. 900–913. (in Polish)
  45. Verein Deutscher Zementwerke (2014–2019). Environmental Data of the German Cement Industry, 2014, 2015, 2016, 2017, 2018, 2019. (https://www.vdz-online.de/en/ (16.07.2021)).
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Jan Deja
2
ORCID: ORCID
Eugeniusz Mokrzycki
3
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Poland
  2. AGH University of Science and Technology, Faculty of Materials Science, and Ceramics, Poland
  3. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this research project, the measurements of the ultrasonic P- and S-waves and seismic cone penetration testing (CPT) were applied to identify subsurface conditions and properties of clayey soil stabilized with lime/cement columns in the Stockholm Norvik Port, Sweden. Applied geophysical methods enabled to identify a connection between the resistance of soil and strength in the stabilized columns. The records of the seismic tests were obtained in the laboratory of Swedish Geotechnical Institute (SGI) through estimated P- and S-wave velocities using techniques of resonance frequency measurement of the stabilized specimens. The CPT profiles were used to evaluate the quality of the lime/cement columns of the reinforced soil by the interpretation of signals. The relationship between the P- and S-waves demonstrated a gain in strength during soil hardening. The quality of soil was evaluated by seismic measurements with aim to achieve sufficient strength of foundations prior to the construction of the infrastructure objects and industrial works. Seismic CPT is an effective method essential to evaluate the correct placement of the CPT inside the column. This work demonstrated the alternative seismic methods supporting the up-hole technology of drilling techniques for practical purpose in civil engineering and geotechnical works.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Department of Investments, Technology and Environment, Swedish Transport Administration, Malmö, Sweden
  2. Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Lund University, Lund, Sweden
  3. École Polytechnique de Bruxelles, Laboratory of Image Synthesis and Analysis (LISA), Université Libre de Bruxelles (ULB), Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

Research in additive manufacturing of tungsten carbide-cobalt has intensified over the last few years due to the increasing need for products designed using topology optimisation and multiscale structures (lattice). These products result in complex shapes and contain inner structures that are challenging to produce through conventional techniques, thus involving high costs. The present work addresses this problem using a two-step approach to 3D print parts with complex shapes and internal structures by employing indirect selective laser sintering (SLS) and tungsten carbide-cobalt sintering. The paper takes further our research in this field [1] to improve the part density by using high bulk density tungsten carbide-cobalt powders. Mechanically mixing tungsten carbide-cobalt with the sacrificial binder, polyamide 12, results in a homogenous powder successfully used by the selective laser sintering process to produce green parts. By further processing, the green parts through a complete sintering cycle, an average final part density of 11.72 g/cm3 representing more than 80% of the theoretical density is achieved.
Go to article

Authors and Affiliations

R.V. Gădălean
1 2
ORCID: ORCID
O.-D. Jucan
3
ORCID: ORCID
H.F. Chicinaş
2 3
ORCID: ORCID
N. Bâlc
1
ORCID: ORCID
C.O. Popa
3
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Department of Manufacturing Engineering, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
  3. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
Download PDF Download RIS Download Bibtex

Abstract

WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Go to article

Authors and Affiliations

ManFeng Gong
1 2
GuangFa Liu
1 2
Meng Li
1 3
XiaoQun Xia
1
Lei Wang
1
ORCID: ORCID
JianFeng Wu
1 2
ShanHua Zhang
1 2
Fang Mei
1

  1. Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  2. Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  3. Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
Download PDF Download RIS Download Bibtex

Abstract

Evaluating soil strength by geophysical methods using P-waves was undertaken in this study to assess the effects of changed binder ratios on stabilization and compression characteristics. The materials included dredged sediments collected in the seabed of Timrå region, north Sweden. The Portland cement (Basement CEM II/A-V, SS EN 197-1) and ground granulated blast furnace slag (GGBFS) were used as stabilizers. The experiments were performed on behalf of the Svenska Cellulosa Aktiebolaget (SCA) Biorefinery Östrand AB pulp mill. Quantity of binder included 150, 120 and 100 kg. The properties of soil were evaluated after 28, 42, 43, 70, 71 and 85 days of curing using applied geophysical methods of measuring the travel time of primary wave propagation. The P-waves were determined to evaluate the strength of stabilized soils. The results demonstrated variation of P-waves velocity depending on stabilizing agent and curing time in various ratios: Low water/High binder (LW/HB), High water/Low binder (HW/LB) and percentage of agents (CEM II/A-V/GGBFS) as 30%/70%, 50%/50% and 70%/30%. The compression characteristics of soils were assessed using uniaxial compressive strength (UCS). The P-wave velocities were higher for samples stabilized with LW/HB compared to those with HW/LB. The primary wave propagation increased over curing time for all stabilized mixes along with the increased UCS, which proves a tight correlation with the increased strength of soil solidified by the agents. Increased water ratio gives a lower strength by maintained amount of binder and vice versa.

Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
  2. Lund University, Division of Building Materials, Box 118, SE- 221-00, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA). Campus de Solbosch - CP 165/57, Avenue Franklin D. Roosevelt 50, B-1050 Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The fiber-cement and cellulose boards are materials commonly used in architectural engineering for exterior and interior applications such as building facades or as wall and roof covering materials. The aim of the study was to present the ultrasonic non-contact method of testing fiber-cement boards with Lamb waves and to discuss the results and limitations of the method in context of quality control of the material. The experiments were performed for the corrugated boards using a laboratory non-contact ultrasonic scanner. Lamb waves were generated in the tested materials by a transmitter excited by a chirp signal with a linearly modulated frequency. Waves transmitted through the tested material are acquired by the receiver and registered by the PC based acquisition system. The tests were done on reference plate board and the corrugated boards. As the main descriptor to assess the quality of tested boards the maximum amplitude of transmitted Lamb waves was selected. The significant role of boundary effects and frequency of waves was noticed. The obtained results have confirmed the usefulness of the applied ultrasonic method for testing macroscopic inhomogeneity of corrugated fiber-cement boards.
Go to article

Bibliography

  1.  Z. Su, L. Ye, and Y. Lu, “Guided Lamb waves for identification of damage in composite structures: A review”, J. Sound Vibr. 295, 753–780 (2006).
  2.  J.K. Agrahari and S. Kapuria, “Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves”, Ultrasonics 70, 147–157 (2016).
  3.  R. Kędra and M. Rucka, “Preload monitoring in a bolted joint using Lamb wave energy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(6), 1161–1169 (2019).
  4.  S. Vázquez, J. Gosálbez, I. Bosch, A. Carrión, C. Gallardo, and J. Payá, “Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates”, Sensors (Basel) 19(19), 4068 (2019).
  5.  L. Yu, Z. Tian, and C.A.C. Leckey, “Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods”, Ultrasonics 62, 203–212 (2015).
  6.  M. Radzieński, P. Kudela, W. Ostachowicz, P. Bolimowski, R. Kozera, and A. Boczkowska, “Lamb-wave-based method in the evaluation of self-healing efficiency”, Appl. Sci. 10, 2585 (2020).
  7.  K. Imielińska, M. Castaingsc, R. Wojtyrab, J. Harasa, E. Le Clezioc, and B. Hosten, “Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites”, J. Mat. Process. Techn. 157–158, 513–522 (2004).
  8.  H.B. Kichou, J.A. Chavez, A. Turo, J. Salazar, and M.J. Garcia-Hernandez, “Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT”, Ultrasonics 44, e1077–e1082 (2006).
  9.  S. Yashiro, J. Takatsubo, and N. Toyama, “An NDT technique for composite structures using visualized Lamb-wave propagation”, Compos. Sci. Technol. 67, 3202–3208 (2007).
  10.  Ł. Ambrozinski, B. Piwakowski, T. Stepinski, and T. Uhl, “Application of air-coupled ultrasonic transducers for damage assessment of composite panels”, 6th European Workshop on Structural Health Monitoring, 2014, pp. 1‒8.
  11.  R. Drelich, T. Gorzelańczyk, M. Pakuła, and K. Schabowicz, “Automated control of cellulose fibre cement boards with a non-contact ultrasound scanner”, Autom. Constr. 57, 55–63 (2015).
  12.  M.S. Harb and F.G. Yuan, “Non-contact ultrasonic technique for Lamb wave characterization in composite plates”, Ultrasonics 64, 162–169 (2016).
  13.  S. Talberg and T.F. Johansen, “Acoustic measurements above a plate carrying Lamb waves”, Proceedings of the 39th Scandinavian Symposium on Physical Acoustics, Geilo, Norway, 2016.
  14.  T. Marhenke, J. Neuenschwander, R. Furrer, J. Twiefel, J. Hasener, P. Niemz, and S.J. Sanabria, “Modeling of delamination detection utilizing air-coupled ultrasound in wood-based composites”, NDT E Int. 99, 1–12 (2018).
  15.  K.J. Vössing, M. Gaal, and E. Niederleithinger, “Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood- based materials”, Wood Sci. Technol. 6, 1527–1538 (2018).
  16.  N. Toyama, J. Ye, W. Kokuyama, and S. Yashiro, “Non-contact ultrasonic inspection of impact damage in composite laminates by visualization of lamb wave propagation”, Appl. Sci. 9, 46 (2019).
  17.  A. Römmeler, P. Zolliker, J. Neuenschwander, V. van Gemmeren, M. Weder, and J. Dual,“Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion”, Ultrasonic 100, 105984 (2020).
  18.  M. Kaczmarek, B. Piwakowski, and R. Drelich, “Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering”, J. Infrastruct. Syst. 23(1), 45–56an (2017).
  19.  B. Yilmaz, A. Asokkumar, E. Jasiuniene, and R. J. Kazys, “Air-coupled, contact, and immersion ultrasonic non-destructive testing: Comparison for bonding quality evaluation”, Appl. Sci. 10, 6757 (2020).
  20.  J. Liu and N.F. Declerq, “Ultrasonic geometrical characterization of periodically corrugated surfaces”, Ultrasonics 53, 853–861 (2013).
  21.  J.D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, Amsterdam, 1973.
  22.  O. Abraham, B. Piwakowski, G. Villain, and O. Durand, “Non-contact, automated surface wave measurements for the mechanical characterization of concrete”, Constr. Build. Mater. 37, 904–915 (2012).
  23.  R. Drelich, B. Piwakowski, and M. Kaczmarek, “Identification of inhomogeneous cover layer by non-contact ultrasonic method – studies for model materials”, Annales du Bâtiment et des Travaux Publics 66(1–3), 47–52 (2014).
  24.  Ł. Amboziński, B. Piwakowski, T. Stepinski, and T. Uhl, “Evaluation of dispersion characteristics of multimodal guided waves using slant stack transform”, NDT E Int. 68, 88–97 (2014).
  25.  W. Ke, M. Castaings, and C. Bacon, “3D finite element simulations of an air-coupled ultrasonic NDT system”, NDT E Int. 42, 524–533 (2009).
  26.  A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bull. Pol. Acad. Sci. Tech. Sci. 65(6), 791‒798 (2017).
  27.  M. Cieszko, R. Drelich, and M. Pakuła, “Wave dispersion in randomly layered materials”, Wave Motion 64, 52–67 (2016).
Go to article

Authors and Affiliations

Radosław Drelich
1
ORCID: ORCID
Michał Rosiak
1
Michał Pakula
1
ORCID: ORCID

  1. Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland

This page uses 'cookies'. Learn more