Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, we demonstrated a method of controllably synthesizing one-dimensional nanostructures having a dense or a hollow structure using fibrous sacrificial templates with tunable crystallinity. The fibrous Ga2O3 templates were prepared by calcining the polymer/gallium precursor nanofiber synthesized by an electrospinning process, and their crystallinity was varied by controlling the calcination temperature from 500oC to 900oC. GaN nanostructures were transformed by nitriding the Ga2O3 nanofibers using NH3 gas. All of the transformed GaN nanostructures maintained a one-dimensional structure well and exhibited a diameter of about 50 nm, but their morphology was clearly distinguished according to the crystallinity of the templates. When the templates having a relatively low crystallinity were used, the transformed GaN showed a hollow nanostructure, and as the crystallinity increased, GaN was converted into a denser nanostructure. This morphological difference can be explained as being caused by the difference in the diffusion rate of Ga depending on the crystallinity of Ga2O3 during the conversion from Ga2O3 to GaN. It is expected that this technique will make possible the tubular nanostructure synthesis of nitride functional nanomaterials.
Go to article

Bibliography

[1] X. Yia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003).
[2] L. Cao, J.S. White, J.-S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009).
[3] C.M. Hangarter, Y.‐I. Lee, S.C. Hernandez, Y.‐H. Choa, N.V. Myung, Angew. Chem. Int. Ed. 49, 7081 (2010).
[4] W. Han, S. Fan, Q.Q. Li, Y.D. Hu, Science 277, 1287 (1997).
[5] J .C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nat. Mater. 1, 106 (2002).
[6] X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li, P. Niu, X. Jiang, J. Mater. Chem. C 5, 4319 (2017).
[7] H. Wu, Y. Sun, D. Lin, R. Zhang, C. Zhang, W, Pan, Adv. Mater. 21, 227 (2009).
[8] F . Lu, L. Liu, J. Tian, Appl. Surf. Sci. 497, 143791 (2019).
[9] S.W. Eaton, A. Fu, A.B. Wong, C.-Z. Ning, P. Yang, Nat. Rev. Mater. 1, 16028 (2016).
[10] J . Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298 (2019)
[11] G .-D. Lim, J.-H. Yoo, M. Ji, Y.-I. Lee, J. Alloys Compd. 806, 1060 (2019).
[12] J . Xue, J. Xie, W. Liu, Y. Xia, Acc. Chem. Res. 50, 1976 (2017).
[13] Y. Sun, B. Mayers, Y. Xia, Adv. Mater. 15, 641 (2003).
[14] F . Caruso, R. A. Caruso, H. Mohwald, Science 282, 1111 (1998).
[15] Y.-I. Lee, Mater. Chem. Phys. 180, 104 (2016).
Go to article

Authors and Affiliations

Yun Taek Ko
1
ORCID: ORCID
Mijeong Park
2
ORCID: ORCID
Jingyeong Park
1
ORCID: ORCID
Jaeyun Moon
3
ORCID: ORCID
Yong-Ho Choa
1
ORCID: ORCID
Young-In Lee
2
ORCID: ORCID

  1. Hanyang University, Dept. of Advanced Materials Science and Engineering, Ansan 15588, Republic of Korea
  2. Seoul National University of Science and Technology, Dept. of Materials Science and Engineering, Seoul 01811, Republic of Korea
  3. University of Nevada , Dept. of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, Nv 89154, United States
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide is considered an outstanding photocatalyst candidate, but its low photo-corrosion resistance is a problem to be solved. In the ZnO-ZnS core-shell structure, ZnS acts as a protective layer for the ZnO core, and thus, it can enhance stability and long-term performance. The ZnO-ZnS core-shell structure is synthesized into various nanoscale morphologies with high specific surface areas to improve photocatalytic efficiency. However, they are easily agglomerated and are hard to separate from reaction media. In this study, micro-sized bumpy spheres of ZnO-ZnS core-shell structure were prepared via facile chemical transformation of as-prepared ZnO. After sulfurization of the ZnO template, it was confirmed through SEM, TEM, EDS, and XPS analysis that a uniform ZnS shell layer was formed without significant change in the initial ZnO morphology. The ZnO-ZnS core-shell microsphere has shown superior efficiency and stability in the photocatalytic degradation of Rhodamine B compared with pristine ZnO microspheres
Go to article

Authors and Affiliations

Hee Yeon Jeon
1
ORCID: ORCID
Mijeong Park
1
ORCID: ORCID
Seungheon Han
1
ORCID: ORCID
Dong Hoon Lee
1
ORCID: ORCID
Young-In Lee
2
ORCID: ORCID

  1. Seoul National University Of Science and Technology, Department Of Materials Science and Engineering, Seoul 01811, Republic Of Korea
  2. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea

This page uses 'cookies'. Learn more