Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Municipal waste management has been an area of special interest of the European Commission (EC) for many years. In 2018, the EC pointed out issues related to municipal waste management as an important element of the monitoring framework for the transition towards a circular economy (CE), which is currently a priority in the economic policy of the European Union (EU). In the presented monitoring framework, 10 CE indicators were identified, among which issues related to municipal waste appear directly in two areas of the CE – in the field of production and in the field of waste management, and indirectly – un two other areas – secondary raw materials, and competitiveness and innovation. The paper presents changes in the management of municipal waste in Poland in the context of the implementation of the CE assumptions, a discussion of the results of CE indicators in two areas of the CE monitoring framework in Poland (production and waste management), and a comparison of the results against other European countries.

In Poland, tasks related to the implementation of municipal waste management from July 1, 2013 are the responsibility of the municipality, which is obliged to ensure the conditions for the system of selective collection and collection of municipal waste from residents, as well as the construction, maintenance and operation of regional municipal waste treatment installations (RIPOK). The municipality is also committed to the proper management of municipal waste, in accordance with the European waste management hierarchy, whose overriding objective is to prevent waste formation and limiting its amount, then recycling and other forms of disposal, incineration and safe storage. The study analyzed changes in the value of two selected CE indicators, i.e. (1) the municipal waste generation indicator, in the area of production and (2) the municipal waste recycling indicator, in the area of waste management. For this purpose, statistical data of the Central Statistical Office (GUS) and Eurostat were used. Data has been presented since 2014, i.e. from the moment of initiating the need to move to the CE in the EU. In recent years, there has been an increase in the amount of municipal waste generated in Poland as well as in the EU. According to Eurostat, the amount of municipal waste generated per one inhabitant of Poland increased from 272 kg in 2014 to 315 kg in 2017. It should be noted that the average amount of municipal waste generated in Poland in 2017 was one of the lowest in EU, with a European average of 486 kg/person. Poland has achieved lower levels of municipal waste recycling (33.9%) than the European average (46%). The reason for Poland’s worse results in the recycling of municipal waste may be, among others, the lack of sufficiently developed waste processing infrastructure, operating in other countries such as Germany and Denmark, and definitely higher public awareness of the issue of municipal waste in developed countries. Municipal waste management in Poland faces a number of challenges in the implementation of GOZ, primarily in terms of achieving the recycling values imposed by the EC, up to a minimum of 55% by 2025.

Go to article

Authors and Affiliations

Marzena Smol
Joanna Kulczycka
Agnieszka Czaplicka-Kotas
Dariusz Włóka
Download PDF Download RIS Download Bibtex

Abstract

The circular economy (CE) has been a European Union (EU) priority since 2014, when first official document on the CE was published. Currently, the EU is on the road to the transformation from a linear economy model to the CE model. In 2019, a new strategy was announced – the European Green Deal, the main goal of which is to mobilize the industrial sector for the CE implementation. The CE assumes that the generated waste should be treated as a secondary raw material. The paper presents an analysis of the possibility of using selected groups of waste for the production of fertilizers. Moreover, an identification of strengths and weaknesses, as well as market opportunities and threats related to the use of selected groups of waste as a valuable raw material for the production of fertilizers was conducted. The scope of the work includes characteristics of municipal waste (household waste, food waste, green waste, municipal sewage sludge, digestate), industrial waste (sewage sludge, ashes from biomass combustion, digestate) and agricultural waste (animal waste, plant waste), and a SWO T (strengths and weaknesses, opportunities and threats) analysis. The fertilizer use from waste is determined by the content of nutrients (phosphorus – P, nitrogen, potassium, magnesium, calcium ) and the presence of heavy metals unfavorable for plants (zinc, lead, mercury). Due to the possibility of contamination, including heavy metals, before introducing waste into the soil, it should be subjected to a detailed chemical analysis and treatment. The use of waste for the production of fertilizers allows for the reduction of the EU’s dependence on the import of nutrients from outside Europe, and is in line with the CE.
Go to article

Authors and Affiliations

Marzena Smol
1
ORCID: ORCID
Dominika Szołdrowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an application of Life Cycle Assessment (LCA) method for the environmental evaluation of the technologies for the fertilizers production. LCA has been used because it enables the most comprehensive identifi cation, documentation and quantifi cation of the potential impacts on the environment and the evaluation and comparison of all signifi cant environmental aspects. The main objective of the study was to assess and compare two technologies for the production of phosphorus (P) fertilizers coming from primary and secondary sources. In order to calculate the potential environmental impact the IMPACT 2002+ method was used. The fi rst part of the LCA included an inventory of all the materials used and emissions released by the system under investigation. In the following step, the inventory data were analyzed and aggregated in order to calculate one index representing the total environmental burden. In the scenario 1, fertilizers were produced with use of an integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and P fertilizer production. Samples of SSA collected from two Polish mono-incineration plants were evaluated (Scenario 1a and Scenario 1b). In the scenario 2, P-based fertilizer (reference fertilizer – triple superphosphate) was produced from primary sources – phosphate rock.

The results of the LCA showed that both processes contribute to a potential environmental impact. The overall results showed that the production process of P-based fertilizer aff ects the environment primarily through the use of the P raw materials. The specifi c results showed that the highest impact on the environment was obtained for the Scenario 2 (1.94899 Pt). Scenario 1a and 1b showed the environmental benefi ts associated with the avoiding of SSA storage and its emissions, reaching -1.3475 Pt and -3.82062 Pt, respectively. Comparing results of LCA of P-based fertilizer production from diff erent waste streams, it was indicated that the better environmental performance was achieved in the scenario 1b, in which SSA had the higher content of P (52.5%) in the precipitate. In this case the lower amount of the energy and materials, including phosphoric acid, was needed for the production of fertilizer, calculated as 1 Mg P2O5. The results of the LCA may play a strategic role for the decision-makers in the aspect of searching and selection of the production and recovery technologies. By the environmental evaluation of diff erent alternatives of P-based fertilizers it is possible to recognize and implement the most sustainable solutions.

Go to article

Authors and Affiliations

Marzena Smol
1
ORCID: ORCID
Joanna Kulczycka
2
ORCID: ORCID
Łukasz Lelek
1
Katarzyna Gorazda
3
Zbigniew Wzorek
3

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences
  2. AGH University of Science and Technology, Poland
  3. Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Life Cycle Assessment (LCA) is an important tool of Circular Economy (CE), which performs the analysis in a closed loop (“cradle-to-cradle”) of any product, process or technology. LCA assesses the environmental threats (climate change, ozone layer depletion, eutrophication, biodiversity loss, etc.), searches for solutions to minimize environmental burdens and together with CE contributes to reducing greenhouse gas emission, counteracts global climate crisis. The CE is a strategy for creating value for the economy, society and business while minimizing resource use and environmental impacts through reducing, re-using and recycling. In contrast, life cycle assessment is a robust and science-based tool to measure the environmental impacts of products, services and business models. Combining both the robustness of the LCA methodology and the principles of circular economy one will get a holistic approach for innovation. After a presentation of the LCA framework and methods used, 27 examples of case studies of comparative LCA analysis for replacement materials to reduce environmental load and their challenges as assessment methods for CE strategies are presented. It was concluded that there is a need for improvement of existing solutions, developing the intersection between the CE and LCA. Suggestions for developing a sustainable future were also made.
Go to article

Authors and Affiliations

Stanisław Ledakowicz
1
ORCID: ORCID
Aleksandra Ziemińska-Stolarska
1
ORCID: ORCID

  1. Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wólczańska Street, 90-924 Lodz, Poland

This page uses 'cookies'. Learn more