Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.

Go to article

Authors and Affiliations

M. Superczyńska
A. Zbiciak
K. Józefiak
Download PDF Download RIS Download Bibtex

Abstract

The impacts of industrial wastewater contamination on the geotechnical properties of clayey soil have been studied in the research presented in this paper. The contaminant in question is industrial wastewater released from Thi-Qar oil refinery as a by-product of production, and the soil samples obtained from Thi-Qar oil refinery plant in Al-Nassyriah (a city located in the south of Iraq). The geotechnical properties of contaminated soil samples were compared with those of intact soil to measure the effects of such a contaminant. The soil samples were obtained from three locations in the study area; representing the highly contaminated area, the slightly contaminated area, and the intact area used as a reference for comparison of test results. The results of the tests showed that the contaminant causes an increase of natural moisture content, field unit weight, Atterberg’s limits, and maximum dry unit weight, as well as an increase of the compression index and the coefficient of vertical consolidation. Also, the contaminant causes a decrease in specific gravity, the optimum moisture content initial void ratio, the swelling index, the coefficient of permeability, and cohesion between soil particles.

Go to article

Authors and Affiliations

M.O. Karkush
T.A.A. Al-Taher
Download PDF Download RIS Download Bibtex

Abstract

The most common chemical’s spills in typical transportation accidents are those with petroleum products such as diesel fuel, the consequence of which is an extensive pollution of the soil. In order to plan properly fuel recovery from the soil, it is important to gain information about the soil depth which may be affected by pollutant and to predict the pollutant concentration in different soil layers. This study deals with the impact of basic atmospheric conditions, i.e. air temperature and humidity on the diesel fuel migration through the soil. The diesel fuel was spilled into columns (L = 30 cm; D = 4.6 cm) filled with sandy and clay soil samples, and its concentrations at various depths were measured after 11 days under various air temperature (20 and 40°C) and relative humidity (30–100%) conditions. The effects observed were explained by understanding physical processes, such as fuel evaporation, diffusion and adsorption on soil grains. The increase in temperature results in higher fuel evaporation loss and its faster vertical migration. The relative humidity effect is less pronounced but more complex, and it depends much on the soil type.

Go to article

Authors and Affiliations

Mladen Vuruna
Zlate Veličković
Sreten Perić
Jovica Bogdanov
Negovan Ivanković
Mihael Bučko
Download PDF Download RIS Download Bibtex

Abstract

Dyes and pigments are important organic pollutants of the water environment. Dyes may be removed from wastewater by using one of the most efficient methods for wastewater treatment-adsorption onto porous (natural and waste) minerals or organogenie substances. Feasibility of using smectite-clay, co-occurring in brown coal deposits, for removal of direct dyes was investigated. The Freundlich linear regression model was better in modeling of sorption direct dyes onto smectite-clay; it yielded better fit of the theoretical isotherm to the experimental data. The electrostatic interactions and hydrogen bonds were shown to play the most important role in adsorption of direct dyes onto smectite-clay.
Go to article

Authors and Affiliations

Joanna Kyzioł-Komosińska
Czesława Rosik-Dulewska
ORCID: ORCID
Marcin Jarzyna
Download PDF Download RIS Download Bibtex

Abstract

Casting quality depends on many factors including the quality of the input materials, technology, material securing and last but not least, the mould into which the casting is casted. By pouring into a single-shot mould, based mainly on 1st generation binders, is is a very important factor. Basically, a bentonite mixture represents either a three- or four-component system, but each component of the system is a heterogeneous substance. This heterogeneity punctuates mainly a non-stationary heat field, presented throughout the whole process of the casting production. The most important component is a binder and in the case of first generation binders mostly bentonites are used - clays that contain minimum of 80% of montmorillonite
Go to article

Authors and Affiliations

I. Vasková
D. Fecko
J. Malik
Download PDF Download RIS Download Bibtex

Abstract

The Jurassic kaolinite-illite clays in Rozwady (Opoczno region) were exploited for the needs of the chamotte fireclay refractories plant in Opoczno built in the years 1926–1928. Until the World War II, these clays were a major component of ceramic sets used for manufacturing quartz-chamotte refractories applicable to steel-making ladles in the Upper Silesian steel works. In the year 1990, due to a drastically low demand for chamotte refractories in Poland, both the plant in Opoczno and the Mroczków-Rozwady clay underground mine were shut down. However, recent years have brought about a renewed interest in exploiting the Opoczno clays for the domestic ceramic industry. Clay mining was initiated in 2014 in the new open pit in Borkowice and has also continued as of 2017 exploiting the Rozwady I deposit. In the clay raw material of Rozwady, kaolinite clearly predominates over illite, among the non-clay minerals quartz occurs in variable quantities, whereas the organic matter is a permanent but minor component. The quantity of the organic matter varies within the deposit and forms the basis to distinguish light and dark colored clays. Considering the petrographical reasons, the raw material of Rozwady represents rocks intermediate between claystones and mudstones. The Rozwady clays have been used by many plants producing tiles within the Opoczno region and it is predicted that their use will increase, as the prices of the clay raw materials imported from Ukraine is constantly growing and the cost of their transport is substantial.

Go to article

Authors and Affiliations

Piotr Wyszomirski
Download PDF Download RIS Download Bibtex

Abstract

This study deals with the behavior of composite blends constituted of rigid and impervious grainsincluded in saturated clay paste of kaolin, considered as permeable and deformable. Permeabilitytests performed during standard oedometr tests (before each load step) highlight the key role ofthe original and actual state of the clay paste, and show the existence of a threshold of sandgrain concentration above which a structuring effect influences its permeability. In the light ofthese experiments some usual homogenization methods (with simplifying assumptions to make theproblem manageable) are considered in order to model the mixture permeability. Qualitative andquantitative comparisons with experimental data point out their respective domain of interest andlimitations of such approaches.

Go to article

Authors and Affiliations

G. Kacprzak
C. Boutin
T. Doanh
Download PDF Download RIS Download Bibtex

Abstract

The study of herbicide dynamics in the soil and their interaction with the components of the environment makes it possible to ensure the selectivity of crops and the agronomical efficiency. The aim of this research was to evaluate the influence of soil physicochemical properties on the emergence and growth of soybean, with pre-emergence application of various saflufenacil rates. An experiment was carried out in a greenhouse with a completely randomized design, testing different soil types containing “Erechim”, “Santa Maria” and “Eldorado do Sul”, at different saflufenacil rates: 0, 12.5, 25, 50, 100, 200, 400 g a.i. · ha–1. The application was performed 1 day after soybean sowing, and analyzed variables were: the phytotoxicity emergence of seedlings, dry mass and height of the soybean. The saflufenacil effective dose of 50% response in soybean (ED50) and the characteristics of the soils showed that the soil contained clay and sand which were the components most related to the saflufenacil availability to the plants. A lower ED50 by phytotoxicity to the soybean was found in soil with lower and greater content of clay and sand, respectively. The physicochemical properties of soil influenced the saflufenacil activity, having greater potential of injury to soybean in the soil from Eldorado do Sul, due to its clay and sand content.
Go to article

Authors and Affiliations

Geovana Facco Barbieri
1
Cassiano Salin Pigatto
1
Glauco Pacheco Leães
2
Nelson Diehl Kruse
2
Dirceu Agostinetto
1
André da Rosa Ulguim
2

  1. Plant Protection Department, Federal University of Pelotas, Av. Eliseu Maciel, 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
  2. Plant Protection Department, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is to evaluate the self- healing properties of a commercially-available geosynthetic clay liner (GCL) using flexible-wall permeameter. The GCLs are produced by the same factory, but the contents of bentonite are different. Also the hydraulic conductivities (HC) of GCLs with no defect are different. In this study, specimens were completely saturated under the backpressure of 20 kPa before the test. Permeability tests were performed on GCL specimens with penetrating flaw and also on specimens permeated with distilled water and CaCl2 solutions. The test results were presented and discussed. Experimental results showed that the GCL with penetrating flaw did not exhibit complete self-healing in the case of flaw. After 120 days, the hydraulic conductivity increased by approximately an order of magnitude. In addition, CaCl2 solutions had a significant influence on the hydraulic conductivity. The research findings might be of interest to researchers and engineers who design liners for landfills and other liquid containment facilities

Go to article

Authors and Affiliations

Guang-Wei Zhang
Hu-Yuan Zhang
Jin-Fang Wang
Lang Zhou
Ping Liu
Xiao Jiang
Download PDF Download RIS Download Bibtex

Abstract

Many open-pit mines are gradually converted to underground mining, the problem of roadway surrounding rock damage caused by expansive soft rock is becoming increasingly problematic. To study the seasonal evolution of expansive rock mass containing clay minerals, an underground mine transferred from an open-pit was selected as the experimental mine. The experimental results of SEM electron microscopy and X-ray diffraction confirmed that the surrounding rock of the main haulage roadway contains a large number of expansive clay minerals. The expansive grade of the main transport roadway’s surrounding rock could then be identified as the medium expansive rock mass, which has a large amount of exchangeable cation and strong water absorption capacity, based on the combined test results of dry saturated water absorption and free expansion deformation. The water swelling can cause the roadway to considerably deform, and then the surrounding rock will have strong rheological characteristics. From the research results in the text, the seasonal evolution law of the main haulage roadway in the experimental mine was obtained, and the deformation law of the expansive rock mass under different dry and wet conditions was revealed. The research results provide a reference for studying the stability evolution law of expansive soft rocks in underground mines.
Go to article

Authors and Affiliations

Hongdi Jing
1 2
ORCID: ORCID
Fuming Qu
3
ORCID: ORCID
Xiaobo Liu
3
ORCID: ORCID
Guangliang Zhang
4
Xingfan Zhang
1 2
Xinbo Ma
4

  1. Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang 110016, China
  2. Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Shenyang110169, China
  3. University of Science and Technology Beijing, Beijing 100083, China
  4. Northeastern University, Shenyang 100083, China
Download PDF Download RIS Download Bibtex

Abstract

It is well known that if plastic wastes are not well managed, it has a negative impact on the environment as well as on human health. In this study, recycling plastic waste in form of strips for stabilizing weak subgrade soil is proposed. For this purpose, a weak clay soil sample was mixed with 0.2%, 0.3%, and 0.4% of plastic strips by weight of soil, and the experimental results were compared to the control soil sample with 0% plastic. Laboratory tests on the Standard compaction test, Unconfined compression test (UCS), and California bearing ratio (CBR) were conducted according to the American Society for Testing and Materials (ASTM). The results of the study reveal that there are significant improvements in the strength of weak soil stabilized with plastic waste strips. Accordingly, the Standard Proctor test shows that there is a small increment in the maximum dry density of the soil when it is mixed with plastic strips. The result from the CBR test shows that there is a significant increment of CBR value with the plastic strip content. The unconfined compressive strength test also shows that increasing the percentage of plastic strips from 0 to 0.4% resulted in increased strength of soil by 138% with 2 cm length plastic strips. Therefore, this study recommends the application of plastic strips for improvement of the strength of soft clay for subgrade construction in civil engineering practice as an alternative weak soil stabilization method.
Go to article

Authors and Affiliations

Worku Firomsa Kabeta
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The landslide is located in Wronki. It covers the southern side on the bank of the Warta River and occupy an area of 500 m in length. The landslide was once again activated on August 22-23, 2018, causing numerous failures. The Warta River slope in the area of mass movements is built by non-construction embankments, under which the Poznan Miocene–Pliocene of quasi-layered structure lie. There are horizontal interlayers of sandy silts in these clays. The Warta drains water from a large area, and the runoff takes place mainly on the roof of clays. The slide surface of the landslide was precisely the roof of the Poznan clays. Bearing in mind the properties of the Poznan clays, such as relaxation, block disintegration, expansiveness features, the following were considered the direct causes of the failure: heavy rainfall that occurred after a drought, loading of the slope with indiscriminate cubature buildings, construction of a linear sewage system and periodically repeated vibrations caused by the implementation of neighboring investments. In order to identify the area, test boreholes were made, samples were taken for laboratory tests, and geodetic measurements were taken. Based on the obtained results, slope stability calculations were made and a measurement network was developed for systematic monitoring of geodetic displacements of control points. It was recommended to perform drainage to drain the slope and side of the Warta River, plant bushes, and make changes to the land development plan in order to prohibit further development of the area in the endangered zone.
Go to article

Authors and Affiliations

Michalina Flieger-Szymanska
1
ORCID: ORCID
Jerzy Sobkowiak
2
ORCID: ORCID
Katarzyna Machowiak
1
ORCID: ORCID
Dorota Anna Krawczyk
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Environmental Engineering, Institute of Civil Engineering, Poznan, Poland
  2. Geomenos Jerzy Sobkowiak, Tomasz Sobkowiak Sp. j., Poznan, Poland; retired employee of Poznan University of Technology
Download PDF Download RIS Download Bibtex

Abstract

Zeolite has been successfully synthesized from clay and rice husk ash in the form of powder by using the hydrothermal method with variations in chemical compositions of alkaline solution and the amount of rice husk ash. The clay raw material was obtained from the Sidrap area of South Sulawesi and rice husk ash is obtained from the burning pile of rice husks. Sidrap clay and rice husk ash were activated using an alkaline solution of NaOH and varied rice husk ash and the addition of AlCl3. The addition of AlCl3, an alkaline solution of NaOH and H2O was used in the amount of 25.5 grams and variations of rice husk ash were 2.5 grams and 6.5 grams. Meanwhile, without the addition of AlCl3, an alkaline solution of NaOH and H2O was used for 20.5 grams and variations of rice husk ash from 2.5 grams and 6.5 grams. Then the mixture was then put into an autoclave with a temperature of 100°C for 3 hours. The basic material used in the manufacture of zeolite is carried out by X-ray Fluorescence (XRF) characterization to determine the constituent elements of basic material, which showed the content of SiO2 was 45.80 wt% in the clay and 93.40% in the rice husk ash. The crystalline structure of the zeolite formed was characterized by X-Ray Diffraction (XRD). It was found the resulting zeolite were identified as Zeolite-Y, Hydrosodalite, and ZSM-5. The microstructure properties of the resulting zeolite were determined by using Scanning Electron Microscopy (SEM).
Go to article

Authors and Affiliations

M. Armayani
1
ORCID: ORCID
Musdalifa Mansur
1
ORCID: ORCID
Reza Asra
1
ORCID: ORCID
Muh Irwan
1
ORCID: ORCID
Dhian Ramadhanty
1
ORCID: ORCID
Subaer Subaer
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Ikmal Hakem A. Aziz
3
ORCID: ORCID
B. Jeż
4
ORCID: ORCID
M. Nabiałek
4
ORCID: ORCID

  1. Universitas Muhammadiyah Sidenreng Rappang, Faculty of Sciences and Technology, Jl. Angkatan 45 lt. Salo No. 1A Macarowalie Rappang 91651, Indonesia
  2. Universitas Negeri Makassar, Faculty of Mathematics and Natural Sciences, Jl. Mallengkeri Raya Parang Tambung Kec Tamalate Kota Makassar 90224, Indonesia
  3. Universiti Malaysia Perlish (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  4. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The exploitation and processing of lignite in the Bełchatów region is connected with the formation of various mineral waste materials: varied in origin, mineral and chemical composition and raw material properties of the accompanying minerals, ashes and slags from lignite combustion and reagipsum from wet flue gas desulphurisation installations. This paper presents the results of laboratory tests whose main purpose was to obtain data referring to the potential use of fly ashes generated in the Bełchatów Power Plant and selected accompanying minerals exploited in the Bełchatów Mine in the form of self-solidification mixtures. The beidellite clays were considered as the most predisposed for use from the accompanying minerals , due to pozzolanic and sorption properties and swelling capacity. Despite the expected beneficial effects of clay minerals from the smectite group on the self-settling process as well as the stability of such blends after solidification, the results of physical-mechanical tests (compressive strength and water repellence) were unsatisfactory. It was necessary to use Ca (OH)2, obtained from the lacustrine chalk as an activator of the self-settling process It was necessary to use lacustrine chalk as an activator of the self-solidification process. The presence of calcium will allow the formation of cement phases which will be able to strongly bond the skeletal grains. Also, the addition of reagipsum to the composition of the mixture would contribute to the improvement of the physico-mechanical parameters. The elevated SO4 2– ion in the mixture during the solidification allows for the crystallization of the sulphate phases in the pore space to form bridges between the ash and clay minerals. The use of mixtures in land reclamation unfavourably transformed by opencast mining in the Bełchatów region would result in measurable ecological and economic benefits and would largely solve the problem of waste disposal from the from the operation and processing of lignite energy.

Go to article

Authors and Affiliations

Elżbieta Hycnar
Marek Waldemar Jończyk
Tadeusz Ratajczak
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the effects of modifications to clay-siliceous raw material from Dylągówka (Dynów foothills, SE Poland), which alter the rheological properties of its water suspensions. The investigations were carried out on three samples collected from various depths of the deposit as they considerably differ in their contents of smectite and other minerals. The samples were either modified with soda or activated with sulphuric (VI) acid and used to prepare their water suspensions with various contents of solids. The suspensions were subject to determinations of viscosity and flow curves. Dependencies of three variables of the suspensions (rheological properties, mineral composition of the solid phase, and the modifications introduced) were assessed on the basis of: the contents of the solid phase in the suspensions required to obtain a viscosity of 1000 mPas; hypothetical, calculated thixotropic energy. These show that the amount of solids in the water suspension required to obtain the required viscosity is considerably lower in samples with higher contents of smectite and in those activated with sodium. In turn, the acid activation that partially alters smectite towards a protonated silica gel decreases the viscosity and thixotropy of the suspensions, which was confirmed in the studies of mid-infrared spectroscopy. The conducted studies provide important information needed in designing the mineral composition of drilling fluids and others applications.
Go to article

Authors and Affiliations

Wojciech Panna
1
ORCID: ORCID
Joanna Mastalska
2
ORCID: ORCID
Sebastian Prewendowski
1
ORCID: ORCID
Łukasz Wójcik
2
ORCID: ORCID

  1. University of Applied Sciences in Tarnów, Poland
  2. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory tests concerning the possibility of utilizing activated carbons produced in Poland, as well as of non-conventional adsorbents, such as modified Clarion clay and clinoptylolite, for removing methylene blue from water. The objective of tests carried out was a quantitative formulation of the adsorption process, as well as the determination of the effects of various factors on its course. The attempt was taken to solve the tasks defined in the objective of the study using model experimental systems. The methylene blue solution in concentration 20 mg/dm', prepared on the basis of distilled water, was used as adsorbate. Adsorption processes, conducted in batch mode (in no-flow conditions), were best described by the Freundlich isotherms. On the basis of the isotherms the adsorptive capacity of tested adsorbents was calculated. The throughflow conditions were realized by a columnar filtration method. On the basis of obtained results the breakthrough curves (isoplanes) were plotted. The adsorptive capacities, determined on the basis of isoplanes reached 27--41 mg/g, 14.89 mg/g and 5.54 mg/g for activated carbons, modified Clarion clay and clinoptylolite, respectively. Exit curves (isoplanes) served for defining the mass transfer zone (the adsorption front height), a., well as for calculating the mass-exchange-zone moving rate. Despite their inferior adsorptive characteristics the modified Clarion clay and clinoptylolite may be taken into account as shielding materials in relation to activated carbons.
Go to article

Authors and Affiliations

Jadwiga Kaleta
Download PDF Download RIS Download Bibtex

Abstract

Bentonites and clays are included in the group of drilling fluids materials. The raw materials are mainly clay minerals, which are divided into several groups, like montmorillonite, kaolinite, illite, biotite, muscovite, nontronite, anorthoclase, microcline, sanidine or rutile, differing in chemical composition and crystal lattice structure. Clay minerals have a layered structure forming sheet units. The layers merge into sheets that build up to form the structure of the mineral.

The aim of the studies carried out in the ŁUKASIEWICZ Research Network - Foundry Research Institute is to explore the possibility of using minerals coming from Polish deposits.

The article outlines the basic properties of hybrid bentonites, which are a mixture of bentonite clay called beidellite, originating from overburden deposits of the Turoszów Mine, and foundry bentonite from one of the Slovak deposits. As part of the physico-chemical tests of minerals, measurements included in the PN-85/H-11003 standard, i.e. montmorillonite content, water content and swelling index, were carried out. Additionally, the loss on ignition and pH chemical reaction were determined. Based on the thermal analysis of raw materials, carried out in the temperature range from 0 to 1000oC, changes occurring in these materials during heating, i.e. thermal stability in contact with liquid metal, were determined.

Examinations of the sand mixture based on pure clay and bentonite and of the sand mixture based on hybrid bentonites enabled tracing changes in permeability, compressive strength and tensile strength in the transformation zone as well as compactability referred to the clay content in sand mixture. Selected technological and strength parameters of synthetic sands are crucial for the foundry, because they significantly affect the quality of the finished casting.

Based on the analysis of the results, the optimal composition of hybrid bentonite was selected.

Go to article

Authors and Affiliations

J. Kamińska
ORCID: ORCID
S. Puzio
ORCID: ORCID
M. Angrecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the qualitative and quantitative characteristics of microstructures of Neogene clays from Warsaw, Poland. Scanning Electron Microscope (SEM) studies were used for the microstructural analysis of natural clays and clay pastes. Qualitative microstructural changes were observed: from a honeycomb microstructure for the initial clay paste to a turbulent microstructure for the dried paste. It was also noticed that water loss caused by the increase of the suction pressure had a significant impact on the microstructural transformations. Significant changes in the quantitative values of the pore space parameters were also observed. Increase of suction pressure and water loss caused a decrease in porosity and changes in the values of morphometric parameters, such as pore distribution; for example, a significant increase of the number of pores of 0−10 μm size and changes in the geometric parameters of the pore space were noticed with the increase of suction pressure. The pore space with larger isometric pores was modified into a pore space with the dominance of small anisometric and fissure-like pores. The increased degree of anisotropy from a poorly-oriented to a highly-oriented microstructure was also observed. After rapid shrinkage the reduction in the number of pores, maximum pore diameter, and total pore perimeter was recorded. The process of rapid water loss induced the closure of very small pores. A similar effect was observed during the increase of the suction pressure, where the closure of pore space of the clay pastes was observed very clearly.

Go to article

Authors and Affiliations

Emilia Wójcik
Jerzy Trzciński
Katarzyna Łądkiewicz-Krochmal
Download PDF Download RIS Download Bibtex

Abstract

The pattern of pore water pressure dissipation from the one-dimensional consolidation test significantly affects the calculated value of the coefficient of consolidation. This paper discusses the interpretation methodology for laboratory dissipation data from the oedometer test with the pore water pressure measurements or Rowe cell test. In the analysis, the gradient-based algorithm for finding the optimal value of the coefficient of consolidation is used against experimental results, obtained for various fine-grained soils. The appropriate value of coefficient of consolidation is considered as one with the lowest associated error function, which evaluates fitness between the experimental and theoretical dissipation curves. Based on the experimental results, two different patterns of the pore water pressure dissipation are identified, and the saturation of the specimen was found to be the key factor in describing the change in the patterns. For the monotonically decreasing dissipation curve, an inflection point is identified. The values of degree of dissipation at the inflection point are close to the theoretical value of 53.4%.
Go to article

Authors and Affiliations

Bartłomiej Szczepan Olek
1
ORCID: ORCID

  1. Krakow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mineralogy and chemistry of Upper Cretaceous-Lower Paleocene claystone sediments from Mardin and Batman, southeastern Turkey, were analyzed. The main mineral paragenesis in the Upper Cretaceous member formed chlorite-smectite (C-S) and illite, while the Lower Paleocene member occurred of chlorite-vermiculite (C-V) and vermiculite minerals. The clays were silica-poor but indicated high values of Al, Fe, Mg, Cr, Ni, V, and Zr. Lower contents of the alkali elements (Na, Ca, Mg, K) of the clayey sediments suggests a relatively denser weathering of the source area. The mineralogical compositions, major element ratios, trace, and rare earth element (REE ) contents of the sediments show that the Upper Cretaceous member consists of materials with a mainly felsic source lithology, while relatively contributions from basic sources are found in the Lower Paleocene unit. A comparison of the major and trace element contents of the phyllosilicate/clay minerals with the members revealed that the patterns of the clays were different from each other, although the enrichments/ decreases varied depending on the origin (basement rocks or detrital) of the derived rocks, minerals, and elements. REE content of clays increased from detrital to phyllosilicate/clay minerals of chemical/diagenetic/neoformation origin during the Lower Paleocene. During the Cretaceous and Tertiary periods, local or regional geodynamic and diagenetic events largely governed the rock sedimentation processes and provenance variations amongst Germav Formation members.
Go to article

Authors and Affiliations

Sema Tetiker
1
ORCID: ORCID

  1. Batman University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The disposal of industrial steel mill sludge in landfills has frequently received significant concern as the sludge has a very notable potential to contaminate soil surface and groundwater in the long run. Recently, the incorporation of industrial steel mill sludge into fired clay brick has become one of the promising alternative methods as it could produce a lightweight product while minimizing the environmental impact of the waste used. In this study, fired clay bricks as the most common building material were incorporated with 0%, 5%, 10% and 15% of steel mill sludge and fired at 1050°C (heating rate of 1°C/min). The manufactured bricks were subjected to physical and mechanical properties such as firing shrinkage, dry density, and compressive strength while the Toxicity Characteristic Leaching Procedure (TCLP) was conducted to analyze leaching behavior from the manufactured bricks. The results demonstrated that incorporation up to 15% of steel mill sludge reduces the properties up to 27.3% of firing shrinkage, 8.1% of dry density and 67.3% of compressive strength. The leaching behavior of Zn and Cu from steel mill sludge was reduced up to 100% from 7414 to 9.22 ppm (Zn) and 16436 to 4.654 ppm (Cu) after 15% of sludge incorporation. It was observed that high temperature during the firing process would improve the properties of bricks while immobilizing the heavy metals from the waste. Therefore, recycling steel mill sludge into construction building materials could not only alleviate the disposal problems but also promote alternative new raw materials in building industries.
Go to article

Authors and Affiliations

Noor Amira Sarani
1
ORCID: ORCID
Azini Amiza Hashim
1
ORCID: ORCID
Aeslina Abdul Kadir
1
ORCID: ORCID
Nur Fatin Nabila Hissham
1
ORCID: ORCID
Mohd Ikhmal Haqeem Hassan
1
ORCID: ORCID
M. Nabiałek
2
ORCID: ORCID
B. Jeż
2
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Civil Engineering and Built Environment, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  2. Department of Physics, Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Al. Armii Krajowej 19,42-200 Częstochowa
Download PDF Download RIS Download Bibtex

Abstract

In this globalized era, building materials play an essential role in the civil engineering field. Nowadays, with the increase in population, the demand for construction activities is also increasing. Polyethylene (PET) bottles are among the most widely used materials and cause an abundance of non-degradable waste, at about 0.94 million tonnes in Malaysia. One of the alternatives to reduce this waste's environmental impact is to incorporate it inside building materials such as brick and concrete. As PET bottles' recycling is highly promoted, the physical and mechanical properties of building materials made from PET bottles have also been reviewed. The data analysis shows that the compressive strength, flexural strength, split tensile strength and density of building materials decreases as the percentage of PET waste increases. However, other properties such as water absorption, initial absorption rate, and firing shrinkage increase proportionally with the PET waste. Besides, heavy metals in these building materials comply with the United States Environmental Protection Agency (USEPA) standards. It can be concluded that the percentage of PET waste incorporated into brick and concrete must be less than 5% and 2%, respectively, to produce suitable materials to provide alternatives in reducing and recycling PET waste.
Go to article

Authors and Affiliations

Mohd Ikhmal Haqeem Hassan
1
ORCID: ORCID
Aeslina Abdul Kadir
1 2
ORCID: ORCID
Intan Seri Izzora Arzlan
1
ORCID: ORCID
Mohd Razali Md Tomari
3
ORCID: ORCID
Noor Azizi Mardi
3
ORCID: ORCID
Mohd Fahrul Hassan
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID
B. Jeż
5
ORCID: ORCID

  1. Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  2. Center of Excellent Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Malaysia
  3. Faculty of Electric and Electronic, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  4. Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  5. Department of Physics, Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, Al. Armii Krajowej 19,42-200 Częstochowa
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to investigate the possibility of using natural and bacteria-modified Erzurum clayey soil with Methylobacterium extorquens as an alternative to high cost commercial adsorbent materials for the removal of copper from aqueous solution. The copper concentrations in the samples of the polluted river water and CuCl2 solutions treated by the natural and bacteria-modified Erzurum clayey soil (ECS) have been determined by spectrophotometric method. Firstly, the surface of ECS was modified with M. extorquens and surface functionality was increased. Then, the adsorption of Cu (II) from solution phases was studied with respect to varying metal concentration, pH, and temperature and agitation time. The maximum adsorption of Cu (II) for natural and bacteria-modified Erzurum clayey soil was observed at pH: 5.0. At different copper concentrations, copper adsorption analysis was performed on 1 g using clay soil or modified clay soil. Maximum adsorption of Cu (II) was obtained as 45.7 and 48.1 mg g-1 at initial concentration (50 mg/50 mL) and optimal conditions by natural and bacteria-modified clay soil, respectively. The copper concentration was decreased in the substantial amount of the leachates solutions of natural and bacteria-modified clay soil. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of Cu (II) ions. The results showed that modified clay soil had a high level of adsorption capacity for copper ion. The various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were analyzed to observe the nature of adsorption. The structural properties of the natural and bacteria-modified-ECS have been characterized by SEM, FTIR and XRD techniques. Consequently, it was concluded that the bacteria-modified clay soil could be successfully used for the removal of the copper ions from the aqueous solutions.

Go to article

Authors and Affiliations

Neslihan Celebi
Hayrunnisa Nadaroglu
Ekrem Kalkan
Recep Kotan
Download PDF Download RIS Download Bibtex

Abstract

The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.

Go to article

Authors and Affiliations

Y.K. Tandel
C.H. Solanki
A.K. Desai

This page uses 'cookies'. Learn more