Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

I n t r o d u c t i o n: Infective endocarditis (IE) is a potentially life-threatening condition. According to current ESC (European Society of Cardiology) guidelines, the use of antibiotic prophylaxis should only be reserved for specific dental procedures with interruption of consistency of the oral mucosa such as extractions and should be reserved for patients with the highest risk of developing IE. The aim of this study was to assess the knowledge of need for IE prophylaxis in defi ned clinical settings among Polish dentists.

Ma t e r i a l a n d Me t h o d s: A specially self-designed internet questionnaire was created concerning the topic of infective endocarditis prophylaxis in specifi c clinical scenarios for patients undergoing dental extractions during outpatient visits. Th e survey was made available to the dentists via internet and was active in March 2018.

R e s u l t s: There were 352 Polish dentists who completed the survey. Antibiotic prophylaxis for IE during dental extractions was used in 93% of cases with prior IE, 89% with artifi cial heart valve, 69% with biological valve, 28% with pacemaker, 54% with coronary stent, 73% with cyanotic heart defect, 58% with diabetes mellitus, 20% after prior myocardial infarction and 54% with heart valve disease. There was a significant relationship between the time of working as a physician (>15 years) and more outdated or improper IE prophylaxis (p = 0.04).

C on c l u s i o n s: The management of patients for infective endocarditis prophylaxis undergoing dental extractions is suboptimal. Antibiotic therapy is overused in some clinical scenarios and on the other hand underutilized in those recommended by the current ESC guidelines.

Go to article

Authors and Affiliations

Magdalena Homaj
Michał Szotek
Karol Sabatowski
Michał Zabojszcz
Bartłomiej W. Loster
Marcin Sadowski
Zbigniew Siudak
Download PDF Download RIS Download Bibtex

Abstract

Zoonoses are frequently associated with wild animals. Research on reptiles either living in their natural habitat or kept as pet animals has shown that these animals frequently serve as the asymptomatic hosts of bacterial zoonotic agents, including Salmonella spp. and Escherichia coli. Studies have shown the potential of reptiles to transmit these pathogens to humans and other animals. Epidemiological research on the herpetofauna of various regions has demonstrated the high potential of reptiles as a reservoir of Salmonella spp. In the present study, Salmonella spp. were not isolated or identified from the snake-eyed lizard. Out of 150 cloacal swab samples of snake-eyed lizard 25 (16.7%) E. coli were isolated and out of these 4 (2.7%) were identified to be E. coli O157:H7 by PCR. The results suggest that Ophisops elegans could be involved in the transmission of E. coli, rather than Salmonella spp. This study demonstrates for the first time that the snake-eyed lizard acts as a cloacal carrier of E. coli O157:H7 and presents data that may aid in preventing the transmission of this strain to humans.
Go to article

Bibliography

References:

Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, Breit N, Olival KJ, Daszak P (2017) Global hotspots and correlates of emerging zoonotic diseases. Nat Commun 8: 1124.
Antaki-Zukoski EM, Li X, Pesavento PA, Nguyen THB, Hoar BR, Atwill ER (2018) Comparative pathogenicity of wildlife and bovine Escherichia coli O157:H7 strains in experimentally inoculated neonatal Jersey calves. Vet Sci 5: 88.
Babacan O (2023) Investigating the presence and antibiotic susceptibilities of Escherichia coli O157 and Listeria monocytogenes in ruminant feces and feed in Balıkesir province. Ankara Univ Vet Fak Derg, 70: 1-30.
Bakaloudis DE, Iezekiel S, Vlachos CG, Bontzorlos VA, Papakosta M, Birrer S (2012) Assessing bias in diet methods for the Long-legged Buzzard Buteo rufinus. J Arid Environ 77: 59-65.
Bautista-Trujillo GU, Gutiérrez-Miceli FA, Mandujano-Garcia L, Oliva-Llaven MA, Ibarra-Martinez C, Mendoza-Nazar P, Ruiz-Sesma B, Tejeda-Cruz C, Pérez-Vázquez LC, Pérez-Batrez JE, Vidal JE, Gutiérrez-Jiménez J (2020) Captive Green iguana carries diarrheagenic Escherichia coli pathotypes. Front Vet Sci 7: 99.
Bender JB, Shulman SA (2004) Reports of zoonotic disease outbreaks associated with animal exhibits and availability of recommendations for preventing zoonotic disease transmission from animals to people in such settings. J Am Vet Med Assoc 224: 1105-1109.
Chambers DL, Hulse AC (2006) Salmonella serovars in the herpetofauna of Indiana County, Pennsylvania. Appl Environ Microbiol 72: 3771-3773.
Dec M, Stepien-Pysniak D, Szczepaniak K, Turchi B, Urban-Chmiel R (2022) Virulence profiles and antibiotic susceptibility of Escherichia coli strains from pet reptiles. Pathogens 11: 127.
Dróżdż M, Małaszczuk M, Paluch E, Pawlak A (2021) Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 11: 1975530.
Ebani VV (2017) Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac J Trop Med 10: 723-728.
Eekhout X (2010) Sampling amphibians and reptiles. In: Eymann J, Degreef J, Hauser C, Monje JC, Samyn Y, Vandenspiegel D (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories. Belgium: Belgian National Focal Point to The Global Taxonomy Initiative, 8, pp 530-557.
Engdaw TA, Temesgen W (2016) O157:H7 serotype of Escherichia coli as an important emerging zoonosis. Int J Microbiol Res 7: 9-17.
Gambi L, Rossini R, Menandro ML, Franzo G, Valentini F, Tosi G, D’Incau M, Fiorentini L (2022) Virulence factors and antimicrobial resistance profile of Escherichia coli isolated from laying hens in Italy. Animals (Basel) 12: 1812.
Geue L, Löschner U (2002) Salmonella enterica in reptiles of German and Austrian origin. Vet Microbiol 84: 79-91.
Goldwater PN, Bettelheim KA (2012) Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med 10:12.
Gyles CL (2007) Shiga toxin-producing Escherichia coli: An overview. J Anim Sci 85: E45-62.
Hanson R, Kaneene JB, Padungtod P, Hirokawa K, Zeno C (2003) Prevalence of Salmonella and E. coli, and their resistance to antimicrobial agents, in farming communities in northern Thailand. Southeast Asian J Trop Med Public Health 33: 120-126.
Hawwas HA, Aboueisha AM, Fadel HM, El-Mahallawy HS (2022) Salmonella serovars in sheep and goats and their probable zoonotic potential to humans in Suez Canal Area, Egypt. Acta Vet Scand 64: 17.
İnci A, Doğanay M, Özdarendeli A, Düzlü Ö, Yildirim A (2018) Overview of zoonotic diseases in Turkey: The one health concept and future threats. Turkiye Parazitol Derg 42: 39-80.
Kar J, Barman TR, Sen A, Nath SK (2017) Isolation and identification of Escherichia coli and Salmonella sp. from apparently healthy turkey. Int J Adv Res Biol Sci 4: 72-78.
Lupolova N, Dallman TJ, Holden NJ, Gally DL (2017) Patchy promiscuity: Machine learning applied to predict the host specificity of Salmo-nella enterica and Escherichia coli. Microb Genom 3: e000135.
Mermin J, Hutwagner L, Vugia D, Shallow S, Daily P, Bender J Koehler J, Marcus R, Angulo FJ, Emerging Infections Program FoodNet Working Group (2004) Reptiles, amphibians, and human Salmonella infection: A population‐based, case‐control study. Clin Infect Dis 38: S253-S261.
Middleton DM, Minot EO, Gartrell BD (2010) Salmonella enterica serovars in lizards of New Zealand’s offshore islands. N Z J Ecol 34: 247-252.
Moxley RA (2004) Escherichia coli 0157:H7: An update on intestinal colonization and virulence mechanisms. Anim Health Res Rev 5: 15-33.
Nielsen TP, Bull CM (2016) Impact of foxes digging for the pygmy bluetongue lizard (Tiliqua adelaidensis). Trans R Soc S Aust 140: 228-233.
Ogunleye AO, Ajuwape AT, Alaka OO, Adetosoye AI (2013) Characterization of a Salmonella enterica serotype pullorum isolated from a lizard co-habitating with poultry. Afr J Microbiol Res 7: 1215-1221.
Oraie H, Rahimian H, Rastegar-Pouyani N, Rastegar-Pouyani E, Ficetola GF, Yousefkhani SS, Khosravani A (2014) Distribution pattern of the Snake-eyed Lizard, Ophisops elegans Ménétriés, 1832 (Squamata: Lacertidae), in Iran. Zool Middle East 60: 125-132.
Poulin B, Lefebvre G, Ibanez R, Jaramillo C, Hernendez C, Rand AS (2001) Avian predation upon lizards and frogs in a neotropical forest understorey. J Trop Ecol 17: 21-40.
Pui CF, Wong WC, Chai LC, Tunung R, Jeyaletchumi P, Noor Hidayah MS, Ubong A, Farinazleen MG, Cheah YK, Son R (2011) Salmonella: A foodborne pathogen. Int Food Res J 18: 465-473.
Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galán JE, Ginocchio C, Curtiss R 3rd, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6: 271-279.
Ramos CP, Santana JA, Morcatti Coura F, Xavier RG, Leal CA, Oliveira CA Jr, Heinemann MB, Lage AP, Lobato FC, Silva RO (2019) Identification and characte-rization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile isolates from reptiles in Bra-zil. Biomed Res Int 2019:9530732.
Spickler AR. (2013) Reptile-Associated Salmonellosis. Retrieved from http://www.cfsph.iastate.edu/DiseaseInfo/ /factsheets.php
Şahan Ö, Aral EM, Aden MM, Aksoy A, Yılmaz Ö, Jahed R, Akan M (2016) Distribution and antibiotic resistance of Salmonella isolates from broiler enterprices in Turkey. Ankara Univ Vet Fak Derg 63: 1-6.
Thaller MC, Migliore L, Marquez C, Tapia W, Cedeño V, Rossolini GM, Gentile G (2010) Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: No man, no resistance. PLoS One 5: e8989.
Trochimchuk T, Fotheringham J, Topp E, Schraft H, Leung KT (2003) A comparison of DNA extraction and purification methods to detect Escherichia coli O157:H7 in cattle manure. J Microbiol Methods 54: 165-175.
Valdez JW (2021) Using google trends to determine current, past, and future trends in the reptile pet trade. Animals (Basel) 11: 676.
Walters SP, Gannon VPJI, Field KG (2007) Detection of Bacteroidales fecal indicators and the zoonotic pathogens E. coli O157:H7, Salmo-nella, and Campylobacter in river water. Environ Sci Technol 41: 1856-1862.
Wang RF, Cao WW, Cerniglia CE (1997) A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol 83: 727-736.
Wheeler E, Hong PY, Bedon LC, Mackie RI (2012) Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles. J Wildl Dis 48: 56-67.
Wooley RE, Ritchie BW, Currin MF, Chitwood SW, Sanchez S, Crane MM, Lamberski N (2001) In vitro inhibition of Salmonella organisms isolated from reptiles by an inactivated culture of microcin-producing Escherichia coli. Am J Vet Res 62: 1399-1401.
Zając M, Wasyl D, Różycki M, Bilska-Zając E, Fafiński Z, Iwaniak W, Krajewska M, Hoszowski A, Konieczna O, Fafinska P, Szulowski K (2016) Free-living snakes as a source and possible vector of Salmonella spp. and parasites. Eur J Wildl Res 62: 161-166.
Go to article

Authors and Affiliations

S. Tarhane
1
E. Bozkurt
1
F. Büyük
2

  1. Veterinary Department, Eldivan Vocational School of Health Services, Çankırı Karatekin University, 18100, Çankırı, Turkey
  2. Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Helicobacter species have been reported in animals, some of which are of zoonotic importance. This study aimed to detect Helicobacter species among human and animal samples using conventional PCR assays and to identify their zoonotic potentials. Helicobacter species was identified in human and animal samples by genus-specific PCR assays and phylogenetic analysis of partial sequencing of the 16S ribosomal RNA gene. The results revealed that Helicobacter species DNA was detected in 13 of 29 (44.83%) of the human samples. H. pylori was identified in 2 (15.38%), and H. bovis was detected in 4 (30.77%), whereas 7 (53.85%) were unidentified. H. bovis and H. heilmannii were prevalent among the animal samples. Phylogenetic analysis revealed bootstrapping of sequences with H. cinaedi in camel, H. rappini in sheep and humans, and Wollinella succinogenes in humans. In conclusion, the occurrence of non-H. pylori infections among human and animal samples suggested zoonotic potentials.
Go to article

Bibliography


Amorim I, Smet A, Alves O, Teixeira S, Saraiva AL, Taulescu M, Reis C, Haesebrouck F Gartner F (2015) Presence and significance of Helicobacter spp. in the gastric mucosa of Portuguese dogs. Gut Pathog 7: 12.
Buczolits S, Hirt R, Rosengarten R, Busse HJ (2003) PCR-based genetic evidence for occurrence of Helicobacter pylori and novel Helico-bacter species in the canine gastric mucosa. Vet Microbiol 95: 259-270.
Chong SK, Lou Q, Fitzgerald JF, Lee CH (1996) Evaluation of 16S rRNA gene PCR with primers Hp1 and Hp2 for detection of Helicobacter pylori. J Clin Microbiol 34: 2728-2730.
De Groote D, Van Doorn LJ, Van den Bulck K, Vandamme P, Vieth M, Stolte M, Debongnie JC, Burette A, Haesebrouck F, Ducatelle R (2005) Detection of non-pylori Helicobacter species in “Helicobacter heilmannii”-infected humans. Helicobacter 10: 398-406.
Fox JG (2002) The non-H pylori helicobacters: their expan- ding role in gastrointestinal and systemic diseases. Gut 50: 273-283.
Germani Y, Dauga C, Duval P, Huerre M, Levy M, Pialoux G, Sansonetti P, Grimont PA (1997) Strategy for the detection of Helicobacter species by amplification of 16S rRNA genes and identification of H. felis in a human gastric biopsy. Res Microbiol 148: 315-326.
Goodwin CS, Armstrong JA, Chilvers T, Peter M, Colins MD, Sly L, Mcconnell W, Harper WES (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. Respectively. Int J Syst Bacteriol 39: 397-405.
Harper CM, Xu S, Feng Y, Dunn JL, Taylor NS, Dewhirst FE, Fox JG (2002) Identification of novel Helicobacter spp. from a beluga whale. Appl Environ Microbiol 68: 2040-2043.
Hong S, Chung Y, Kang WG, Choi YS, Kim O (2015) Comparison of three diagnostic assays for the identification of Helicobacter spp. in laboratory dogs. Lab Anim Res 31: 86-92.
Jankowski M, Spuzak J, Kubiak K, Glinska-Suchocka K, Biernat M (2016) Detection of gastric Helicobacter spp. in stool samples of dogs with gastritis. Pol J Vet Sci 19: 237-243.
Makristathis A, Hirschl AM, Megraud F, Bessede E (2019) Review: Diagnosis of Helicobacter pylori infection. Helicobacter 24 (Suppl 1): e12641.
Mladenova-Hristova I, Grekova O, Patel A (2017) Zoonotic potential of Helicobacter spp. J Microbiol Immunol Infect 50: 265-269.
Momtaz H, Dabiri H, Souod N, Gholami M (2014) Study of Helicobacter pylori genotype status in cows, sheep, goats and human beings. BMC Gastroenterol 14: 61.
Neiger R, Dieterich C, Burnens A, Waldvogel A, Corthesy- -Theulaz I, Halter F, Lauterburg B, Schmassmann A (1998) Detection and preva-lence of Helicobacter infection in pet cats. J Clin Microbiol 36: 634-637.
Sabry MA, Abdel-Moein KA, Seleem A (2016) Evidence of zoonotic transmission of Helicobacter canis between sheep and human contacts. Vector Borne Zoonotic Dis. 16: 650-653.
Solnick JV (2003) Clinical significance of Helicobacter species other than Helicobacter pylori. Clin Infect Dis 36: 349-354.
Van den Bulck K, Decostere A, Baele M, Driessen A, Debongnie JC, Burette A, Stolte M, Ducatelle R, Haesebrouck F (2005) Identification of non-Helicobacter pylori spiral organisms in gastric samples from humans, dogs, and cats. J Clin Microbiol 43: 2256-2260.
Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio succinogenes, sp. n. J Bacteriol 81: 911-917.
Go to article

Authors and Affiliations

A.I. Youssef
1
A. Afifi
2
S. Abbadi
3
A. Hamed
4
M. Enany
2

  1. Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, 41522, 4.5 Km Ring Road, Ismailia, Egypt
  2. Microbiology and Immunology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
  3. Microbiology and Immunology Department, Faculty of Medicine, Suez University, 43512, Alsalam City, Suez, Egypt
  4. Biotechnology Department, Animal Health Research Institute, P.O. Box 264, Dokki, Giza 12618, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The term peritonitis is relatively new in medical language, however some of its symptoms were observed and noted even in antiquity. The proper recognition of peritonitis as a distinct pathological entity was made possible when progress in the clinical and experimental sciences give birth to the methodology needed for the investigation of the etiology and mechanism of peritoneal inflammation. Research con-cerning this clinical topic began to yield significant results in the second half of 19th century. This paper aims to give some insight into this pioneering period of scientific investigation focused on the etiology and pathology of peritonitis. From the work of von Recklinghausen in the 1860s, through the later research of Wegner and Gravitz, the next major step in this field was made by the Polish experimental pathologist and pathophysiologist Karol Klecki.
Go to article

Bibliography

1. Hau T.: The History of Peritonitis. Acta Chirurgica Austriaca. 2000; 32: 157–161.
2. Hau T.: Biology and treatment of peritonitis: the historic development of current concepts. J Am Coll Surg 1998; 186: 475–484.
3. Recklinghausen F.v.: Zur Fettresorption. Archiv f pathol Anat. 1863; 26: 172–208. https://doi.org/10.1007/BF01930770.
4. Wegner G.: Chirurgische Bermekungen über die Peritonealhöle, mit besonderer Berucksichtigung der Ovariotomie. Arch Klin Chir. 1877; 20: 51–145.
5. Curtis B.F.: I. The Pathology of Peritonitis. Ann Surg. 1887; 5 (2): 120–124. doi: 10.1097/00000658-188701000-00026.
6. Dubar L., Remy Ch.: Sur l’absorption par le péritoine. Journal de l’anatomie et de la physiologie normales et pathologiques de l’homme et des animaux. 1882; 18: 60–106, 342–372.
7. Grawitz P.: Statistischer und experimentell-pathologischer Beitrag zur Kenntnis der Peritonitis. Charité-Annalen. 1886; 11: 770–823.
8. Grawitz P.: Beitrag zur Theorie der Eiterung. Virchows Archiv. 1889; 116: 116–153.
9. Guzek J.W.: Karol Klecki (1866–1931). Acta Phisiologica Polonia. 1987; 38: 272–278.
10. Klecki C.: Recherches sur la pathogénie de la péritonite d’origine intestinale; étudo de la virulence du coli bacille. Annales de l’Institut Pasteur. Paris. 1895; 9: 710–735.
11. Laruelle L.: Etude bacteriologique sur les peritonitis par perforation. Le Cellule. 1889; 5: 61–122.
12. Pawlowsky A.D.: Zur Lehre von der Aetiologie, der Entstehungsweise und den Formen der acuten Peritonitis. Virchows Archiv. 1889; 117: 469–530.
13. Barbacci O.: Sulla etiologia e patogenesi delle peritonite da perforatione. Studio anatomico e sperimentale. La Sperimentale. 1893: 4, 15.
14. Malvoz E.: Le bacterium coli commune comme agent habituel des peritonitis d’origine intestinale. Archive de medicine Experimentale et d’anatomie Pathologique. 1891; 3: 593–614.
15. Ziegler P.: Studien ueber die intestiale Form der Peritonitis. Munich 1893. 16. Treves F.: An Address On Some Rudiments Of Intestinal Surgery. BMJ 1898; 2 (1975): 1385–1390. https://www.jstor.org/stable/20256576.
17. Neisser M.: Ueber die Durchgängigkeit der Darmwand für Bakterien. Zeitschr f Hygiene. 1896; 22: 12–32. https://doi.org/10.1007/BF02288370.
18. Weil S.: Die akute freie Peritonitis [in:] E. Payr et al. (eds.) Ergebnisse der Chirurgie und Orthopädie. 1911; 2: 278–357.
19. Lartigau A.J.: The Bacillus Coli Communis in Human Infections. Journal AMA. 1902; 38 (15): 930– 937.
20. Dudgeon L., Sargant P.: The Bacteriology of Peritonitis. London 1905.
21. Hertzler A.: The Peritoneum. St Louis: Mosby. 1912; 2: 36.
22. Meleney F.L., Harvey H.D., Jern H.Z.: Peritonitis: I. The Correlation of The Bacteriology of The Peritoneal Exudate and The Clinical Course of The Disease in One Hundred and Six Cases of Peritonitis. Arch Surg. 1931; 22 (1): 1–66.
23. Haas W.: Über den Bakteriengehalt des Pfortaderblutes und die Entstehung von Leberabszessen. Deutsche Zeitschrift f Chirurgie. 1922; 173: 239–293.
24. Dieulafoy G.: A Text-book of medicine. New York. 1912; 1: 780.
Go to article

Authors and Affiliations

Ryszard W. Gryglewski
1

  1. Department of the History of Medicine, Jagiellonian University Medical College
Download PDF Download RIS Download Bibtex

Abstract

A total of 704 fishes representing 39 species were examined. Twenty five digenean species were recognized. Only one species previously found by the present author in a fiord of this area was absent in the material. Pelagic species were usually not parasitized by digeneans, while demersal fishes were normally found to be infected. Results of the present study are compared to those from fiords. Seven species were found to be widely distributed. Two of them, Macvicaria pennelli and Genolinea bowersi, were associated with an inshore fiord environment and could be used as biological tags indicating the association of hosts with this kind of environment. Three of widely distributed species, Lepidapedon garrardi, Elytrophalloides oatesi and Lecilhaster macrocotyle, were not clearly associated with any environment.

Gonocerca phycidis, Neolebouria antarctica and other less widely distributed species, with the exception of Postmonorchis variabilis, were associated with deep part of fiords and/or open sea shelf environment. The level of infection of open sea fish at the South Shetlands was low. Many fish species living at South Georgia were massively infected; the dominant species in this area is E. oatesi, which was rare off the South Shetland Islands. A total of 45 digenean species occurring in the Antarctic fish were listed. Eleven of them were not endemic.

Go to article

Authors and Affiliations

Krzysztof Zdzitowiecki
Download PDF Download RIS Download Bibtex

Abstract

Thirty four specimens of bony fishes (5 species) and four specimens of skates (2 species) were examined. Skates were infected with adult representatives of Phyllobothrium sp. (Tetraphyllidea) and Macrobothridium sp. (Diphyllidea). Bony fishes were infected with three morphological forms of tetraphyllidean cercoids (with mono- and bilocular bothridia, and bothridia undivided with hook-like projections), diphyllobothrid plerocercoids and one pseudophyllidean species, Bothriocephalus antarcticus sp.n. This species, as well as two species found in skates, seems to be endemic for the Kerguelen subregion.

Go to article

Authors and Affiliations

Anna Wojciechowska
Eva Pisano
Krzysztof Zdzitowiecki
Download PDF Download RIS Download Bibtex

Abstract

In the beginnings of COVID-19 pandemic outbreak public opinion has been con-centrated on the tragic events taking place at the cruise ships, where the new virus has spread substantially. It is not the first outbreak of the infectious disease at a cruise ship. The following article aims at presenting the relevant case law of the British courts that have considered carrier’s liability for passengers’ claims in relation to personal injury caused by the outbreak of gastrointestinal illnesses caused by the norovirus. Fur-thermore, the readers will be familiarized with the legal situation of injured passengers under the American law.
Go to article

Authors and Affiliations

Zuzanna Pepłowska-Dąbrowska
1

  1. Katedra Prawa Handlowego i Morskiego, Wydział Prawa i Administracji Uniwersytetu Mikołaja Kopernika w Toruniu
Download PDF Download RIS Download Bibtex

Abstract

The epidemic process of COVID-19 in the world developed rapidly. The situation with mor-bidity, despite the establishment of quarantine, the introduction of restrictive anti-epidemic measures, and vaccination, remains difficult. The results of research on the influence of meteorological factors on the dynamics of the incidence of COVID-19, hospitalization, and mortality are ambiguous and contradictory. The purpose of this study is to analyze the indicators of morbidity, hospitalization, and mortality from COVID-19 in Ukraine, and to establish the level of influence of meteorological factors on them. A high variation in morbidity, hospitalization, and mortality rates was observed in Ukraine, in 2020–2021. A total of 3 waves of disease growth were established. The curve of hospitalization indicators of patients with COVID-19 had a correlation dependence on the incidence curve r = 0.766 (р <0.05), the maximum rates of hospitalization and mortality were registered in September–December 2021. A direct strong correlation was established between the frequency of registration of cases of COVID-19 and mortality — r = 0.899 (р <0.05). Most cases of COVID-19 were registered in the cold season, the least in June–August. Inverse correlations of moderate strength were established between the indicators of morbidity, hospitalization, and mortality and air temperature levels (–0.370< r <–0.461). Direct correlations of average strength (0.538< r <0.632) were established with the levels of relative air humidity.
Go to article

Authors and Affiliations

Alla Podavalenko
1
Nina Malysh
2
Viktoriya Zadorozhna
3
Kateryna Zhuk
2
Galina Zaitseva
4
Inna Chorna
2

  1. Department of Hygiene, Epidemiology, Disinfectology and Occupational Diseases of Kharkiv National Medical University, Kharkiv, Ukraine
  2. Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine
  3. State Institution “Institute of Epidemiology and Infectious Diseases named after L.V. Gromashevsky National Academy of Medical Sciences of Ukraine”, Kyiv, Ukraine
  4. State Institution “Sumy Regional Center for Disease Control and Prevention of the Ministry of Health of Ukraine”
Download PDF Download RIS Download Bibtex

Abstract

In total, 18 species and larval forms of endoparasitic worms were found in 19 newly examined notothenioid fishes of three species, Trematomus hansom, Notothenia coriiceps and Chionodraco hamatus, caught off Adelie Land. One digenean species, Neolepidapedon trema-tomi, was recorded in this area for the first time. A total list of endoparasitic worms prepared by Zdzitowiecki etal. (1998) increased from 20 to 21 species and larval forms and concerns 11 deter­mined and one determined species of Digenea (the most diverse group), three larval forms of Cestoda, three species (one identified only to genus) of Acanthocephala, two species (one in the larval stage) and one larval form of Nematoda. All these species and forms, with the exception of the indetcrmined digenean, occur also in the deep Antarctica, in the Ross Sea and/or in the Weddell Sea. The prevalence and relative density of infection with each parasite in three host species is given based on summarized previous and new data.

Go to article

Authors and Affiliations

Krzysztof Zdzitowiecki
Download PDF Download RIS Download Bibtex

Abstract

The infections of four fish species, Trematomus newnesi, T. bernacchii, Lindbergichthys nudifrons and Harpagifer antarcticus with parasitic worms, in the coastal zone off the Vernadsky Station (Argentine Islands, West Antarctica) are described. Data on infections are compared with previous results from Admiralty Bay at the South Shetland Islands. Indices of infection are for each host-parasite relationship. In total, 16 taxa of parasites were recorded: 6 digeneans, 3 larval cestodes, 4 (adult and cystacanth) acanthocephalans, and 3 (adult and larval) nematodes. Fifteen of them have been previously recorded in Notothenia coriiceps from this area. Hence, the number of parasitic taxa recorded in this region increased from 21 to 22. Either the digenean Macvicaria georgiana or acanthocephalan Corynosoma pseudohamanni were dominants in different hosts. Trematomus bernacchii was the most strongly infected, especially with M. georgiana (prevalence 100%, mean abundance 113.7). The infection parameters of the majority of parasites were lower at the Vernadsky Station than in the Admiralty Bay, especially for host-parasite relations with larval cestodes and nematodes. The presently reported study have confirmed that the southern range of distribution of two acanthocephalans, Aspersentis megarhynchus and Corynosoma hamanni extends south to the area near the Argentine Islands.

Go to article

Authors and Affiliations

Zdzisław Laskowski
Krzysztof Zdzitowiecki
Download PDF Download RIS Download Bibtex

Abstract

Straw is a valuable by-product of crop production which can be used for various purposes (livestock feed and bedding, bioenergy). However, it should primarily be retained on farmlands to prevent soil organic matter (SOM) losses. Straw retained on the field is usually incorporated into the soil when conventional (with ploughing) and reduced tillage systems are used or left on the soil surface (mulching) when a no-tillage system is practiced. The aim of this study was to determine how different straw management practices (straw removal, straw incorporation and straw mulching) affected the incidence of Cephalosporium gramineum on two winter wheat cultivars, the grain yield of these cultivars and selected soil properties based on a long-term micro-plot experiment. Cephalosporium stripe disease was absent or occurred at very low levels (0–2.4%) when straw was removed or incorporated every second year. The disease was most severe, 24–33% tillers infected, in the SM(N) treatment with yearly straw mulching and cv. Bogatka was more tolerant to C. gramineum infection than cv. Bamberka. Importantly, yearly straw incorporation into the soil in contrast to straw mulching resulted in low disease levels (5–8% tillers infected) in both cultivars. Only in the case of cv. Bamberka was the grain yield significantly reduced in the SM(N) treatment compared to other treatments. The soil in this experiment contained the lowest level of soil SOM, which amounted to 21.0 g ∙ kg –1 soil dry matter (DM), when each year wheat straw was removed (SR). Straw incorporation every second year resulted in 24.2 g of SOM ∙ kg –1 soil and the largest amounts of SOM (26.0–26.1 g ∙ kg –1 soil) were found with yearly straw incorporation into the soil. Yearly straw mulching was inferior in this respect and the soil in this treatment contained 23.8 g of SOM ∙ kg –1 soil DM.
Go to article

Authors and Affiliations

Janusz Smagacz
1
ORCID: ORCID
Stefan Martyniuk
2
ORCID: ORCID

  1. Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation State Research Institute, Puławy, Poland
  2. Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objectives of this study were to determine the genetic relatedness, antibiogram and virulence factors of Staphylococcus aureus (S. aureus) isolated from bovine mastitis, associated farm workers, dairy cow farm veterinarians (private veterinarians), veterinary students, and non-veterinary university students. A total of 84 S. aureus isolates (27 from mastitis, 11 from farm workers, 9 from private veterinarians, 22 from veterinary students, and 16 from non-veterinary university students) were used to determine antimicrobial sensitivity patterns using disk diffusion test, virulence factors using PCR technique and phylogenic analysis using pulsed field gel electrophoresis. All S. aureus isolates were resistant to 2 or more commonly used antibiotics. All isolates from mastitis, farm workers, and veterinary students carried the genes encoding coagulase and thermonuclease factors while isolates from non-veterinary university students carried the genes encoding coagulase, clumping, and thermonuclease factors. The mecA gene was detected in 22.2%, 81.8%, 100%, 95.5% and 100% of isolates from mastitis, farm workers, private veterinarians, veterinary students, and non-veterinary university students, respectively. In the phylogenic analysis, 10 (45.5%), 6 (66.7%) and 8 (72.7%) isolates from veterinary students, private veterinarians and farm workers, respectively were more than 80% similar to isolates from mastitis. Results of this study indicate that S. aureus isolates from mastitis milk and those from related dairy cow personnel and veterinarians share similar antimicrobial sensitivity patterns and virulence factors, therefore a common source of bacteria may exist. Furthermore, possible transmission of S. aureus between cows and cow-related personnel and vice versa could also exist.

Go to article

Authors and Affiliations

M.O. Alekish
Z. Bani Ismail
M. Gharaibeh
L. Abu-Qatous
Download PDF Download RIS Download Bibtex

Abstract

Bovine tuberculosis (BTB) is a dangerous zoonosis which presents a serious problem for endangered species such as European bison ( Bison bonasus). Little is known about the influence of parasitic co-infections on the course and diagnosis of tuberculosis in animals. The best known co-infection in cattle is Fasciola hepatica and Mycobacterium bovis. The aim of this study was to review the most recent literature regarding tuberculosis and parasite co-infection in ungulates and relate the results to European bison. Our findings indicate that any comprehensive diagnosis of BTB should include parasitological monitoring, and the possible impact of such invasions on cellular response-based tuberculosis tests should be taken into account. The diagnosis of BTB is complex, as is its pathogenesis, and parasitic infestations can have a significant impact on both. This should be taken into account during further research and monitoring of tuberculosis in European bison.
Go to article

Authors and Affiliations

M. Gałązka
1 2
A. Didkowska
1
K. Anusz
1
A. Pyziel-Serafin
1

  1. Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Municipal Zoological Garden in Warsaw, Ratuszowa 1/3 03-461, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The combination of the functional disorders of urination and defecation constitutes the Dys-functional Elimination Syndrome (DES). DES refers to an abnormal pattern of elimination of unknown etiology characterized by bowel and bladder incontinence and withholding, with no underlying anatomic or neurologic abnormalities. Essential precondition for a child to be subsumed under this entity is the exclusion of either anatomical or neurological causative factors. In the present review study the individual entities of dysfunctional filling, such as the unstable or lazy bladder, or dysfunctional urination, such as the detrusor sphincter dyssynergia and the functional constipation are being described comprehensively. Subsequently, the analysis of the pathophysiological effects of the dysfunctional elimination syndrome such as incontinence, urinary tract infections and the conservation or the deterioration of vesicoureteric reflux, is being accentuated. With the documentation of DES, the therapeutic strategy should aim at treating both the functional disorder of the vesicourethral unit and the functional constipation. The first part does not specify depending on the type of this disorder. Rarely, surgical treatment of functional urinary disorders may be required.
Go to article

Bibliography

1. Shaikh N., Hoberman A., Wise B., et al.: Dysfunctional elimination syndrome: is it related to urinary tract infection or vesicoureteral reflux diagnosed early in life? Pediatrics. 2003 Nov; 112 (5): 1134–1137.
2. Halachmi S., Farhat W.A.: Interactions of constipation, dysfunctional elimination syndrome, and vesicoureteral reflux. Adv Urol. 2008; 2008: 828275.
3. Aydoğdu O., Burgu B., Teber S., et al.: A challenging review of childhood incontinence: rare complications of dysfunctional elimination syndrome in an epileptic boy. Turk J Pediatr. 2011 Jan– Feb; 53 (1): 100–103.
4. Von Gontard A., Hollmann E.: Comorbidity of functional urinary incontinence and encopresis: somatic and behavioral associations. J Urol. 2004 Jun; 171 (6 Pt 2): 2644–2647.
5. Curran M.J., Kaefer M., Peters C., Logigian E., Bauer S.B.: The overactive bladder in childhood: long- term results with conservative management. J Urol. 2000 Feb; 163 (2): 574–577.
6. Hadjizadeh N., Motamed F., Abdollahzade S., Rafiei S.: Association of voiding dysfunction with functional constipation. Indian Pediatr. 2009 Dec; 46 (12): 1093–1095. Epub 2009 Apr 1.
7. Klijn A.J., Asselman M., Vijverberg M.A., et al.: The diameter of the rectum on ultrasonography as a diagnostic tool for constipation in children with dysfunctional voiding. J Urol. 2004 Nov; 172 (5 Pt 1): 1986–1988.
8. Wein A.J., Kavoussi L.R., Campbell M.F.: Urology Cambell-Walsh, 10th ed. Saunders Elsevier: 2012; 3418–3420.
9. O’Regan S., Yazbeck S.: Constipation: a cause of enuresis, urinary tract infection and vesico-ureteral reflux in children. Med Hypotheses. 1985 Aug; 17 (4): 409–413.
10. O’Regan S., Yazbeck S., Schick E.: Constipation, bladder instability, urinary tract infection syndrome. Clin Nephrol. 1985 Mar; 23 (3): 152–154.
11. Ab E., Schoemaker M., Van Empelen R.: Paradoxical movement of the pelvic floor in dysfunctional voiding and the results of biofeedback training. Br J Urol Int. 2002; 89: 48.
12. Patoulias I.: Voiding disturbance in childhood. 1st ed. Parisianos, Athens: 2011; 58– 59. ISBN 978- 960-394-723-3.
13. Loening-Baucke V.: Urinary incontinence and urinary tract infection and their resolution with treatment of chronic constipation of childhood. Pediatrics. 1997 Aug; 100 (2 Pt 1): 228–232.
14. Chase J., Austin P., Hoebeke P., McKenna P.: International Children's Continence Society. The management of dysfunctional voiding in children: a report from the Standardisation Committee of the International Children’s Continence Society. J Urol. 2010 Apr; 183 (4): 1296–1302.
15. Hoebeke P., Van Laecke E., Van Camp C., Raes A., Van De Walle J.: One thousand video-urodynamic studies in children with non-neurogenic bladder sphincter dysfunction. BJU Int. 2001 Apr; 87 (6): 575–580.
16. Herndon C.D., Decambre M., McKenna P.H.: Interactive computer games for treatment of pelvic floor dysfunction. J Urol. 2001 Nov; 166 (5): 1893–1898.
17. Hansson S., Hjalmas K., Jodal U., Sixt R.: Lower urinary tract dysfunction in girls with untreated asymptomatic or cover bacteriuria. J Urol. 1990; 143: 333–336.
18. Issenman R.M., Filmer R.B., Gorski P.A.: A review of bowel and bladder control development in children: how gastrointestinal and urologic conditions relate to problems in toilet training. Pediatrics 1999; 103: 1346–1352.
19. Regan S.O., Schick E., Hamburger B., Yazbeck S.: Constipation associated with vesicoureteral reflux. Urol. 1986; 28: 394–396.
20. Chen J.J., Mao W., Homayoon K., Steinhardt G.F.: A multivariate analysis of dysfunction elimination syndrome, and its relationships with gender, urinary tract infection and vesicoureteral reflux in children. J Urol. 2004; 171: 1907–1910.
21. Naseer S.R., Steinhardt G.F.: New renal scars in children with urinary tract infections, vesicoureteral reflux and voiding dysfunction: a prospective evaluation. J Urol. 1997 Aug; 158 (2): 566–568.
22. Mulders M.M., Cobussen-Boekhorst H., de Gier R.P., Feitz W.F., Kortmann B.B.: Urotherapy in children: quantitative measurements of daytime urinary incontinence before and after treatment according to the new definitions of the International Children’s Continence Society. J Pediatr Urol. 2011 Apr; 7 (2): 213–218.
23. Nevéus T., Von Gontard A., Hoebeke P., et al.: The standardization of terminology of lower urinary tract function in children and adolescents: report from the Standardisation Committee of the International Children’s Continence Society. J Urol. 2006 Jul; 176 (1): 314–324.
24. Farhat W., Bägli D.J., Capolicchio G., et al.: The dysfunctional voiding scoring system: quantitative standardization of dysfunctional voiding symptoms in children. J Urol. 2000 Sep; 164 (3 Pt 2): 1011–1015.
25. Bower W.F., Yip S.K., Yeung C.K.: Dysfunctional elimination symptoms in childhood and adulthood. J Urol. 2005 Oct; 174 (4 Pt 2): 1623–1627; discussion 1627–1628.
26. Vereecken R.L., Proesmans W.: Urethral instability as an important element of dysfunctional voiding. J Urol. 2000; 163: 585–588.
27. Dede O., Sakellaris G.: Daytime urinary incontinence. Essentials in Pediatr Urol. 2012; 57–68.
28. Desantis D.J., Leonard M.P., Preston M.A., Barrowman N.J., Guerra L.A.: Effectiveness of biofeedback for dysfunctional elimination syndrome in pediatrics: a systematic review. J Pediatr Urol. 2011 Jun; 7 (3): 342–348.
29. Dyer L.L., Franco I.: Botulinum Toxin-A Therapy in pediatric Urology: Indications for the Neurogenic and Non-Neurogenic Neurogenic Bladder. Scientific World J. 2009; 9: 1300–1305.
30. Kroll P., Jankowski A., Soltysiak J., et al.: Botulinum toxin-A injections in children with neurogenic bladder. Nephroourol. 2011; 3: 125–128.
31. Carr L.K.: Botulinum toxin A should not be first-line therapy for overactive bladder. Can Urol Assoc J. 2011 Jun; 5 (3): 204–205.
32. Steele S.S.: Botulinum toxin A: First-line therapy for idiopathic detrusor over activity. Can Urol Assoc J. 2011; 5: 207–209.
33. Barroso U. Jr, Tourinho R., Lordêlo P., Hoebeke P., Chase J.: Electrical stimulation for lower urinary tract dysfunction in children: a systematic review of the literature. Neurourol Urodyn. 2011 Nov; 30 (8): 1429–1436.
34. Lordêlo P., Soares P.V., Maciel I., Macedo A. Jr, Barroso U. Jr.: Prospective study of transcutaneous parasacral electrical stimulation for overactive bladder in children: long-term results. J Urol. 2009 Dec; 182 (6): 2900–2904.
Go to article

Authors and Affiliations

Ioanna Gkalonaki
1
ORCID: ORCID
Ioannis Patoulias
1

  1. First Department of Pediatric Surgery, Aristotle University of Thessaloniki Greece, General Hospital “G.Gennimatas”, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

Illnesses with aerosol mode of transmission dominate in the structure of infectious diseases. Influenced by natural, social and biological factors, epidemiological characteristics of the infectious diseases change, that’s why the objective of this research was to determine modern peculiar features of the epide-miological situation regarding viral infections with aerosol transmission in Ukraine. Influenza incidence ranged from 31.14‒184.45 per 100 thousand people, other acute respiratory viral infections from 13685.24‒ 18382.5. Epidemic process of measles was characterized by increasing incidence in 2018 and 2019. In Ukraine, there is a tendency to reduce the incidence of rubella and mumps (р <0.05). The positive effect of immunization on the incidence of mumps and rubella has been established. Vaccination against measles cannot be considered as evidence of immunity against measles. The demographic situation in Ukraine may indirectly influence the intensity of the epidemic situation of viral infections with aerosol transmission.
Go to article

Bibliography

1. Naz R., Gul A., Urooj A., Amin S., Fatima Z.: Etiology of acute viral respiratory infections common in Pakistan: A review. Rev Med Virol. 2019; 29 (2): e2024. doi: 10.1002/rmv.2024
2. Somes M.P., Turner R.M., Dwyer L.J., Newall A.T.: Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: A systematic review and meta-analysis. 2018; 36 (23): 3199–3207. doi: 10.1016/j.vaccine.2018.04.063
3. Obando-Pacheco Р., Justicia-Grande J., Rivero-Calle I., et al.: Respiratory Syncytial Virus Seasonality: A Global Overview. J Infect Dis. 2018; 217 (9): 1356–1364. doi: 10.1093/infdis/jiy056
4. Shafagati N., Williams J.: Human metapneumovirus ‒ what we know now. 2018; 7: 135. doi: 10.12688/frch.12625.1
5. Ison M.G., Hayden R.T.: Microbiol Spectr. 2016; 4 (4). doi: 10.1128/microbiolspec
6. Singh S., Singh N., Ahirwar R., Sagar S.K., Mondal P.R.: Impact of COVID-19 Pandemic on Mental Health of General Population and University Students Across the World: A Review. Online J Health Allied Scs. 2021; 20 (2): 2. Available at URL: https://www.ojhas.org/issue78/2021-2-2.html
7. Guo Y.R., Cao Q.D., Hong Z.S., et al.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil Med Res. 2020; 7 (1): doi: 10.1186/ s40779-020-00240-0
8. Rota A., Moss W.J., Takeda M., et al.: Measles. Nat Rev Dis Primers. 2016; 2: 16049. doi: 10.1038/nrdp.2016.49
9. Lambert N., Strebel P., Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/S0140-6736(14)60539-0
10. Su S.B., Chang H.L., Chen A.K.: Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine. Int J Environ Res Public Health. 2020; 17 (5): doi: 10.3390/ijerph17051686
11. Podavalenko A.P., Zadorozhna V.I., Petrenko T.Ie, Podavalenko O.V.: Socio-hygienic monitoring in the system of epidemiological surveillance of airborne infections. Ukrainskyi medychnyi chasopys. 2016; 1 (111): 98‒101.
12. Buchan A., Hottes T.S., Rosella L.C., et al.: Contribution of influenza viruses to medically attended acute respiratory illnesses in children in high-income countries: a meta-analysis. Influenza Other Respir Viruses. 2016; 10 (6): 444–454. doi: 10.1111/irv.12400
13. Nair H., BrooksA., Katz M., et al.: Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011; 378 (9807): 1917–1930. doi: 10.1016/S0140-6736(11)61051-9
14. Principi N., Esposito S.: Severe influenza in children: incidence and risk factors. Expert Rev Anti Infect Ther. 2016; 14 (10): 961–968. doi: 10.1080/14787210.2016.1227701
15. Malysh N.G., Matsiuk M.V., Senchenko A.V.: Modern features of the epidemic process of viral infections with aerosol transmission in Sumy oblast. Eastern Ukrainian Medical Journal. 2021; 9 (1): 115–123.
16. Lapić I., Rogić D., Šegulja D., Kralik Oguić S., Knežević J.: The reliability of SARS-CoV-2 IgG antibody testing — a pilot study in asymptomatic health care workers in a Croatian university hospital. Croat Med 2020; 61: 485–490. doi: 10.3325/cmj.2020.61.485
17. Moss W.J.: Lancet. 2017; 390 (10111): 2490–2502. doi: 10.1016/S0140-6736(17)3
18. Javelle E., Colson P., Parola P., Raoult D.: Measles, the need for a paradigm shift. Eur J Epidemiol. 2019; 34 (10): 897–915. doi: 10.1007/s10654-019-00569-4
19. Metz J.A., Finn A.: Influenza and humidity — Why a bit more damp may be good for you! J Infect. 2015; 71 (1): S54–58. doi: 10.1016/j.jinf.2015.04.013
20. Kostinov M.P., Shmitko A.D., Bocharova I.I., et al.: The level of IgG antibodies to the measles virus in the umbilical cord blood of newborns, taking into account the age of the mothers. Epidemiologiya i infektsionnyie bolezni. 2014; 3: 30–34.
21. Tyor W., Harrison T.: Mumps and rubella. Handb Clin Neurol. 2014; 123: 591–600.
22. Bankamp B., Hickman C., Icenogle J.P., Rota P.A.: Successes and challenges for preventing measles, mumps and rubella by vaccination. Curr Opin Virol. 2019; 34: 110–116. doi: 10.1016/j.coviro.2019.01.002
23. Lewnard A., Grad Y.H.: Vaccine waning and mumps re-emergence in the United States. Sci Transl Med. 2018; 10 (433): eaаo5945. doi: 10.1126/scitranslmed.аao5945
24. Marlow A., Marin M., Moore K., Patel M.: CDC guidance for use of a third dose of MMR vaccine during outbreaks. J. Public Health Manag Pract. 2020; 26: 109–115.
25. Rubin S., Eckhaus M., Rennick L.J., Connor B.G.G., Duprex W.P.: Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015; 235 (2): 242–252. doi: 10.1002/path.4445
26. Lambert N., Strebel, Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/ S0140-6736(14)60539-0
27. Williams G.A., Bacci S., Shadwick R., et al.: Measles among migrants in the European Union and the European Economic Area. Scand J Public Health. 2016; 44 (1): 6–13. doi: 10.1177/1403494815610182
Go to article

Authors and Affiliations

Nina Malysh
1
Alla Podavalenko
2
Victoriya Zadorozhna
3
Svetlana Biryukova
4

  1. Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine
  2. Department of Hygiene, Epidemiology and Occupational Diseases, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  3. SI «Institute of Epidemiology and Infectious Diseases named after L.V. Gromashevsky National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
  4. Department of Microbiology, Bacteriology, Virology, Clinical and Laboratory Immunology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This issue, Chronicles of a Pandemic, is a collection of 27 position statements published by the Interdisciplinary COVID-19 Advisory Team to the President of the Polish Academy of Sciences, set up in July 2020. This publication is our team’s second comprehensive compilation (after Understanding COVID-19) of information about SARS-CoV-2 and COVID-19. Published in September 2020, Understanding COVID-19 aimed to sum up the first months of the pandemic and prepare the public in Poland for the difficult fall and winter 2020–2021. The present study, in turn, was written after two years of the pandemic, which first began in Wuhan in December 2019. We hope that ongoing reports on the course of the pandemic and the dilemmas faced by the public will help us learn from those difficult and important experiences, should similar challenges arise in the future.
Go to article

Authors and Affiliations

Jerzy Duszyński
Aneta Afelt
Małgorzata Kossowska
Anna Ochab-Marcinek
Radosław Owczuk
Wojciech Paczos
Anna Plater-Zyberk
Krzysztof Pyrć
Magdalena Rosińska
Andrzej Rychard
Tomasz Smiatacz
Download PDF Download RIS Download Bibtex

Abstract

The complex course of the COVID-19 and the distant complications of the SARS-CoV-2 infection still remain an unfaded challenge for modern medicine. The care of patients with the sympto-matic course of COVID-19 exceeds the competence of a single specialty, often requiring a multispecialist approach. The CRACoV-HHS (CRAcow in CoVid pandemic — Home, Hospital and Staff) project has been developed by a team of scientists and clinicians with the aim of optimizing medical care at hospital and ambulatory settings and treatment of patients with SARS-CoV-2 infection. The CRACoV project integrates 26 basic and clinical research from multiple medical disciplines, involving different populations infected with SARS-CoV-2 virus and exposed to infection.
Between January 2021 and April 2022 we plan to recruit subjects among patients diagnosed and treated in the University Hospital in Cracow, the largest public hospital in Poland, i.e. 1) patients admitted to the hospital due to COVID-19 [main module: ‘Hospital’]; 2) patients with signs of infection who have been confirmed as having SARS-CoV-2 infection and have been referred to home isolation due to their mild course (module: ‘Home isolation’); 3) patients with symptoms of infection and high exposure to SARS- CoV-2 who have a negative RT-PCR test result. In addition, survey in various professional groups of hospital employees, both medical and non-medical, and final-fifth year medical students (module: ‘Staff’) is planned.
The project carries both scientific and practical dimension and is expected to develop a multidisciplinary model of care of COVID-19 patients as well as recommendations for the management of particular groups of patients including: asymptomatic patient or with mild symptoms of COVID-19; symptomatic patients requiring hospitalization due to more severe clinical course of disease and organ complications; patient requiring surgery; patient with diabetes; patient requiring psychological support; patient with undesirable consequences of pharmacological treatment.
Go to article

Bibliography

1. Duszyński J., Afelt A., Ochab-Marcinek A., Owczuk R., Pyrć K., Rosińska M., Rychard A., Smiatacz T.: Zrozumieć Covid-19. 2020. Polska Akademia Nauk. https://pan.pl/images/2020/opracowanie-covid19-14-09-2020/ZrozumiecCovid19_opracowanie_PAN_interactive.pdf
2. Sydor W.: COVID-19 a zaburzenia krzepnięcia. Medical Research Reviews. ISBN 978–83–65515–97–1.
3. Hu B., Guo H., Zhou P., Zheng-Li S.: Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19: 141–154. https://doi.org/10.1038/s41579-020-00459-7.
4. Levi M., Thachil J., Iba T., Levye J.H.: Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7: e438–e440.
5. Terlecki M., Wojciechowska W., Klocek M., Olszanecka A., Stolarz-Skrzypek K., Grodzicki T., et al.: Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19: data from a large single-center registry in Poland. Kardiologia Polska. 2021.
6. Undas A., Podolak-Dawidziak M., Pruszczyk P., Windyga J.: Tromboprofilaktyka i leczenie przeciwkrzepliwe u dorosłych chorych hospitalizowanych z powodu COVID-19. 30 marca 2020. https://nil.org.pl/aktualnosci/5395-tromboprofilaktyka-i-leczenie-przeciwkrzepliwe-u-doroslych- chorych-hospitalizowanych-z-powodu-covid-19.
7. Flisiak R., Horban A., Jaroszewicz J., et al.: Zalecenia postępowania w zakażeniach SARS-CoV-2 Polskiego Towarzystwa Epidemiologów i Lekarzy Chorób Zakaźnych, na dzień 26 kwietnia 2021. http://www.pteilchz.org.pl/wp-content/uploads/2021/04/REKOMENDACJE-pl-w-C19-2021-26-04- 2021b.pdf.
8. Lo Bianco G., Di Pietro S., Mazzuca E., et al.: Multidisciplinary Approach to the Diagnosis and In- Hospital Management of COVID-19 Infection: A Narrative Review. Front Pharmacol. 2020 Dec 9; 11: 572168. https://doi.org/10.3389/fphar.2020.572168.
Go to article

Authors and Affiliations

Wojciech Sydor
1 2
Barbara Wizner
3
Magdalena Strach
2
Monika Bociąga-Jasik
4 5
Krzysztof Mydel
6
Agnieszka Olszanecka
7
Marek Sanak
8 5
Maciej Małecki
9 5
Jadwiga Wójkowska-Mach
10
Robert Chrzan
11
Aleksander Garlicki
4 5
Tomasz Gosiewski
12 5
Marcin Krzanowski
13 5
Jarosław Surowiec
14 5
Stefan Bednarz
15 5
Marcin Jędrychowski
16 5
Tomasz Grodzicki
3 5
The CraCoV-HHS Investigators

  1. Center for Innovative Therapies, Clinical Research Coordination Center, University Hospital in Cracow, Poland
  2. Department of Rheumatology and Immunology, Jagiellonian University Medical College, Cracow, Poland
  3. Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Cracow, Poland
  4. Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Cracow, Poland
  5. Steering Committee of the CRACoV-HHS
  6. Deputy Director for Coordination and Development, University Hospital in Cracow, Poland
  7. Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Cracow, Poland
  8. 2nd Department of Internal Medicine, Jagiellonian University Medical College, Cracow, Poland
  9. Department of Metabolic Diseases and Diabetology, Jagiellonian University Medical College, Cracow, Poland
  10. Chair of Microbiology, Medical Faculty, Jagiellonian University Medical College, Cracow, Poland
  11. Department of Radiology, Jagiellonian University Medical College, Cracow, Poland
  12. Department of Molecular Medical Microbiology, Chair of Microbiology, Medical Faculty, Jagiellonian University Medical College, Cracow, Poland
  13. Department of Nephrology and Dialysis Unit, Jagiellonian University Medical College; Deputy Medical Director, University Hospital in Cracow, Poland
  14. Head of Quality, Hygiene and Infection Control Section at University Hospital in Cracow, Poland
  15. Head of Primary Care Unit at University Hospital in Cracow, Poland
  16. Director of University Hospital in Cracow, Poland

This page uses 'cookies'. Learn more