Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a sanitary and bacteriological study of Lake Hańcza and its influents and an outflow. The study was conducted from April to October in the years 1998-2000, at 9 sites situated on the lake (pelagic zone, near-shore waters, ecotonal zone), 4 sites situated on the influents (the Czarna Hańcza and Stara Hańcza Rivers, the Spod Przełomki stream and the stream flowing from Lake Boczniel) and one situated on the Czarna Hańcza River, which flows out of Lake Hańcza. Total Viable Count at 20°C (TYC 20°C) and Total Viable Count at 37°C (TYC 37°C) were used as indicators of pollution, while Total Coli (TC), Faecal (therrnotolerant) Coli (FC) and Faecal Streptococcus - Enterococcus (FS) - as indicators of the sanitary state. The indicator bacteria number in the waters of Lake Hańcza and in the outflowing waters were usually typical of clean surface waters (purity class I). The bacteria number in the water inflowing to Lake Hańcza was much higher than that measured in the water of the lake and was usually similar to the values typical of slightly polluted (purity class II) and heavily polluted waters (purity class III). Throughout the study period, higher indicator bacteria numbers were measured in summer months; in other periods a higher number was found only sporadically. Its increase in subsequent years of study in the water at the established sites may be an indication of the increasing effect of allochtonie factors on the waters of Lake Hańcza.
Go to article

Authors and Affiliations

Anna Gotkowska-Plachta
Ewa Korzeniewska
Stanisław Niewolak
Download PDF Download RIS Download Bibtex

Abstract

The area of the Coastal Landscape Park (CLP) due to its location is extremely attractive touristi carea. In the summer season, a significant increase in population density is observed, which influences surface water quality. Large numbers of tourists generate an increased amount of municipal wastewater, being treated in local treatment plants and discharged into rivers and streams. The paper presents preliminary research from summer 2016 on three watercourses ending in the Baltic Sea: Piaśnica, Karwianka and Czarna Wda rivers. It is a part of a long-term project conducted in CLP to assess surface waters quality. The scope of research included measurements of in situ parameters (temperature, conductivity, pH, dissolved oxygen). Chemical Oxygen Demand was determined using a spectrophotometer. Ion chromatography was used to determine ions concentrations (including biogenic compounds). Sanitary state of watercourses was assessed based on fecal coliforms abundance, which number was determined by the cultivation method. The determination of microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity was determined using epifluorescence microscopy method. Results showed that water quality of Piaśnica and Czarna Wda rivers were affected by discharged treated wastewater. In the case of Karwianka River, the main pollution source could be surface runoff from fields and unregulated sewage management in this area. The conducted research confirmed the urgent need for better protection of this area to conserve both its ecosystem and value for tourism.
Go to article

Bibliography

  1. Amin, A., Ahmed, I., Salam, N., Kim, B. Y., Singh, D., Zhi, X. Y., Xiao, M. & Li, W. J. (2017). Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microbial Ecology, 74 (1), pp. 116–127. DOI:10.1007/s00248-017-0930-1
  2. APHA. (2005). Standard methods for the examination of water and wastewater. In 21st ed. Washington DC, USA.
  3. Baczkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R., Płóciennik, B. & Polkowska, Ż. (2022). Microbial and chemicalquality assessment of the small rivers entering the South Baltic. Part II: Case study on the watercourses in the Puck Bay catchment area. Archives of Environmental Protection. (under review
  4. Becerra-Castro, C., Macedo, G., Silva, A. M. T., Manaia, C. M. & Nunes, O. C. (2016). Proteobacteria become predominant during regrowth after water disinfection. Science
  5. of the Total Environment, 573, pp. 313–323. DOI:10.1016/j.scitotenv.2016.08.054
  6. Borkowski, R. (2019). Wyzwania i zagrożenia dla turystyki na Półwyspie Helskim w XXI wieku. Bezpieczeństwo. Teoria i Praktyka, 3, pp. 55–70. DOI:10.34697/2451-0718-b. (in Polish)
  7. Brysiewicz, A., Bonisławska, M., Czerniejewski, P. & Kierasiński, B. (2019). Quality analysis of waters from selected small watercourses within the river basins of Odra river and Wisła river. Rocznik Ochrona Srodowiska, 21(2), pp. 1202–1216. (in Polish)
  8. Bugajski, P. & Satora, S. (2009). Bilans ścieków dopływających i dowożonych do oczyszczalni na przykładzie wybranego obiektu. Infrastruktura i Ekologia Terenów Wiejskich, 5, pp. 73–82. (in Polish)
  9. Cai, L. & Zhang, T. (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environmental Science and Technology, 47(10), pp. 5433–5441. DOI:10.1021/es400275r
  10. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V. & Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  11. Chien, A. C., Hill, N. S. & Levin, P. A. (2012). Cell size control in bacteria. Current Biology, 22(9), R340–R349. DOI:10.1016/j.cub.2012.02.032
  12. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014–1015). American Association for the Advancement of Science. DOI:10.1126/science.1167755
  13. Council of Ministers, 2011: Rozporządzenia Ministra Środowiska z dnia 9 listopada 2011 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego jednolitych części wód powierzchniowych , (2011) (testimony of (Dz. U. poz. 1549, zał 6). (in Polish)
  14. Council of Ministers, 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  15. Council of Ministers, 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  16. Council of Ministers, 2016a: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  17. Council of Ministers, 2016b: Rozporządzenie Rady Ministrów z dnia 18 października 2016 r. w sprawie Planu gospodarowania wodami na obszarze dorzecza Wisły, (2016) (testimony of Dz.U.2016 poz.1991). (in Polish)
  18. Council of Ministers, 2016c: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  19. Council of Ministers, 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  20. Council of Ministers, 2021: Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm, (2021) (testimony of Dz.U. 2021 poz. 1475). (in Polish)
  21. Curr, R. H. F., Koh, A., Edwards, E., Williams, A. T. & Davies, P. (2000). Assessing anthropogenic impact on Mediterranean sand dunes from aerial digital photography. Journal of Coastal Conservation, 6(1), pp. 15–22. DOI:10.1007/BF02730463
  22. De Brauwere, A., Ouattara, N. K., & Servais, P. (2014). Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology, 44(21), pp. 2380–2453. DOI:10.1080/10643389.2013.829978
  23. de la Vega, C., Schückel, U., Horn, S., Kröncke, I., Asmus, R. & Asmus, H. (2018). How to include ecological network analysis results in management? A case study of three tidal basins of the Wadden Sea, south-eastern North Sea. Ocean and Coastal Management, 163(May), pp. 401–416. DOI:10.1016/j.ocecoaman.2018.07.019
  24. Dodds, W. K. & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), pp. 155–164. DOI:10.5268/IW-6.2.909
  25. Drury, B., Rosi-Marshall, E. & Kelly, J. J. (2013). Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology, 79(6), pp. 1897–1905. DOI:10.1128/AEM.03527-12
  26. Fry, J. C. (1990). Direct Methods and Biomass Estimation. In Grigorova, R. & Norris J. R. B. T.-M. (Eds.), Techniques in Microbial Ecology (Vol. 22, pp. 41–85). Academic Press. DOI:10.1016/S0580-9517(08)70239-3
  27. García-Llorente, M., Harrison, P. A., Berry, P., Palomo, I., Gómez-Baggethun, E., Iniesta-Arandia, I., Montes, C., García del Amo, D. & Martín-López, B. (2018). What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodiversity and Conservation, 27(7), pp.1575–1597. DOI:10.1007/s10531-016-1152-4
  28. Gössling, S., Hall, C. M. & Scott, D. (2018). Coastal and Ocean Tourism. Handbook on Marine Environment Protection, pp. 773–790. DOI:10.1007/978-3-319-60156-4_40
  29. Grabic, J., Duric, S., Ciric, V. & Benka, P. (2018). Water quality at special nature reserves in Vojvodina, Serbia. Croatian Journal of Food Science and Technology, 10(2), pp. 179–184. DOI:10.17508/cjfst.2018.10.2.05
  30. Hachich, E.M.; Di Bari, M.; Christ, A.P.G.; Lamparelli, C.C.; Ramos, S.S.& Sato, M.I.Z. (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian J. Microbiol., 43, pp. 675–681.
  31. Huo, Y., Bai, Y. & Qu, J. (2017). Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Applied Microbiology and Biotechnology, 101(17), pp. 6755–6764. DOI:10.1007/s00253-017-8384-4
  32. Infoeko, 2004: Available online: http://www.infoeko.pomorskie.pl/InformacjeZbiorcze/2004/Szczegoly/26. Accessed on 20 October 2020. (in Polish)
  33. Johnston, E. L. & Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157(6), pp. 1745–1752. DOI:10.1016/j.envpol.2009.02.017
  34. Justić, D., Rabalais, N. N., Turner, R. E. & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), pp. 339–356. DOI:10.1016/S0272-7714(05)80014-9
  35. Kaczor, G. (2011). Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych. Acta Sci. Pol., Formatio Circumiectus, 10(2), pp. 27–34. (in Polish)
  36. Kosek, K., Kozak, K., Kozioł, K., Jankowska, K., Chmiel, S. & Polkowska, Z. (2018). The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Science of the Total Environment, 622–623, pp. 913–923. DOI:10.1016/j.scitotenv.2017.11.342
  37. Kosek, K. & Polkowska, Ż. (2016). Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Monatshefte Fur Chemie, 147(8), pp. 1401–1405. DOI:10.1007/s00706-016-1771-1
  38. Kowalski, T. (1989). Analiza chemicznych i biochemicznych właściwości zanieczyszczeń występujących w ściekach. Ochrona Środowiska. (in Polish)
  39. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  40. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of biogenic substances in water-courses of coastal landscape park. Journal of Elementology, 21(2), pp. 413–423. DOI:10.5601/jelem.2015.20.1.800
  41. Kutyła, S. (2015). Characteristics of water level fluctuations in Polish lakes – a review of the literature. Ochrona Srodowiska i Zasobów Naturalnych, 25(3), pp. 27–34. DOI:10.2478/oszn-2014-0011
  42. la Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S. & Paranhos, R. (2012). Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research, 66(4), pp. 635–650. DOI:10.1007/s10152-012-0297-0
  43. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A. & Olańczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water Science and Technology, 64(12), 2352. DOI:10.2166/wst.2011.769
  44. Luczkiewicz, A., Jankowska, K., Langas, V. & Kaiser, A. (2019). Inventory of existing treatment technologies in wastewater treatment plants Case studies in four coastal regions of the South Baltic Sea.
  45. Łuczkiewicz, A., Jankowska, K., Fudala-Książek, S. & Olańczuk-Neyman, K. (2010). Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Research, 44(17), pp. 5089–5097. DOI:10.1016/j.watres.2010.08.007
  46. Majdak, P. (2008). Tourist amenities of Hel and conceptions of their development. Turystyka i Rekreacja Tom 4. (in Polish)
  47. Michałkiewicz, M. (2018). Ścieki i ich negatywna rola w środowisku. Technologia Wody, 5(61), pp. 30–33.
  48. Munksgaard, D. G. & Young, J. C. (1980). Flow and load variations at wastewater treatment plants. Journal of the Water Pollution Control Federation, 52(8), pp. 2131–2144.
  49. Norland S. (1993). The relationship between biomass and volume of bacteria. In Cole, J.J. (Ed.), Handbook of methods in aquatic microbial ecology (pp. 303–308). Lewis Publishers,.
  50. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2),pp. 422–430.
  51. Olańczuk-Neyman, K., Quant, B., Łuczkiewicz, A., Kulbat, E., Jankowska, K., Sokołowska, A., Bray, R. & Kulbat, E. (2015). Dezynfekcja ścieków. Seidel-Przywecki sp. z.o.o. (in Polish)
  52. Olson, D. M. & Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), pp. 502–515. DOI:10.1046/j.1523-1739.1998.012003502.x
  53. Ostroumov, S. A. (2017). Water Quality and Conditioning in Natural Ecosystems: Biomachinery Theory of Self-Purification of Water. Russian Journal of General Chemistry, 87(13), pp. 3199–3204. DOI:10.1134/S107036321713014X
  54. Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnological Oceanography, 25(5), pp. 943–948.
  55. Rees, G. & Bartram, J. (2002). Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. CRC Press.
  56. Statistics Poland, 2016: Available online: https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/ Accessed on 20 October 2020, https://stat.gov.pl/obszary-tematyczne/kultura-turystyka-sport/turystyka/ Accessed on 20 October 2020. (in Polish)
  57. Straza, T. R. A., Cottrell, M. T., Ducklow, H. W. & Kirchman, D. L. (2009). Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied and Environmental Microbiology, 75(12), pp. 4028–4034. DOI:10.1128/AEM.00183-09
  58. Świątecki, A. (1997). Zastosowanie wskaźników bakteriologicznych w ocenie wód powierzchniowych. (Monografie). Wyższa Szkoła Pedagogiczna. (in Polish)
  59. Trussell, R. R. (1990). Evaluation of the Health Risks Associated with Disinfection. Critical Reviews in Environmental Control, 20(2), pp. 77–113. DOI:10.1080/10643389009388392
  60. Wiskulski, T. (2015). Geography For Society (Issue January 2015).
  61. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252(May). DOI:10.1016/j.jenvman.2019.109637
  62. Young, K. D. (2006). The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 70(3), pp.660–703. DOI:10.1128/MMBR.00001-06
  63. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
Go to article

Authors and Affiliations

Emilia Bączkowska
1
Agnieszka Kalinowska
1
Oskar Ronda
2 3
Katarzyna Jankowska
1
Rafał Bray
1
Bartosz Płóciennik
4
Żaneta Polkowska
3 2

  1. Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Costal Landscape Park, Wladyslawowo, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to its location, Puck Bay is an area particularly vulnerable to pollution of anthropogenic origin. The aim of the study was to assess the water quality of small watercourses entering the inner part of Puck Bay. The paper presents the results of chemical and microbiological analyses of 10 rivers and canals at their estuaries located on the western shore of the internal Puck Bay. The following environmental parameters were analyzed: conductivity, pH, dissolved oxygen concentration (in situ measurements), COD (cuvette tests), concentrations of ions (ion chromatography). Microbiological analysis included assessment of sanitary condition based on the number of fecal coliforms by a cultivation method. The determination of basic microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity were determined using epifluorescence microscopy method. Based on the obtained results, it was found that small watercourses may carry a notable load of anthropogenic pollution and thus affect the environment of Puck Bay. The results clearly indicate the need for quality monitoring in the rivers and canals in the Coastal Landscape Park, flowing into Puck Bay. The research showed that also smaller watercourses may have an impact on the coastal waters’ state, and thus on the Baltic Sea water quality.
Go to article

Bibliography

  1. Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R. & Fenner, K. (2020). Relating Metatranscriptomic Profiles to the Micropollutant Biotransformation Potential of Complex Microbial Communities. Environmental Science and Technology. DOI:10.1021/acs.est.9b05421
  2. Andrulewicz, E. & Janta, A. (1997). Zatoka Pucka Wewnętrzna. In A. Janta (Ed.), Nadmorski Park Krajobrazowy, pp. 123–137. Wydawnictwo Nadmorskiego Parku Krajobrazowego. (in Polish)
  3. Arheimer, B., Dahné, J. & Donnelly, C. (2012). Climate change impact on riverine nutrient load and land-based remedial measures of the baltic sea action plan. Ambio, 41(6), pp. 600–612. DOI:10.1007/s13280-012-0323-0
  4. Artioli, Y., Friedrich, J., Gilbert, A. J., McQuatters-Gollop, A., Mee, L. D., Vermaat, J. E., Wulff, F., Humborg, C., Palmeri, L. & Pollehne, F. (2008). Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies. Marine Pollution Bulletin, 56(9), pp. 1609–1617. DOI:10.1016/j.marpolbul.2008.05.027
  5. Baath, E. (1994). Thymidine and Leucine Incorporation in Soil Bacteria with Different Cell Size. Marine Ecology, 27, pp. 267–278.
  6. Bączkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R. T., Płóciennik, B. & Polkowska, Ż. (2021). Microbial and chemical quality assessment of the small rivers entering the South Baltic . Part I : Case study on the watercourses in the Baltic Sea catchment area. Archives of Environmental Protection, 47(4), pp. 55–73. DOI:10.24425/aep.2021.139502
  7. Bartram, J. & Rees, G. (2002). Monitoring Bathing Waters – A Practical Guide to the Design
  8. and Implementation of Assessments and Monitoring Programmes. In Urban Water.
  9. E & FN Spon is an imprint of the Taylor & Francis Group. DOI:10.1016/S1462-0758(02)00006-7
  10. Bernard, L., Courties, C., Servais, P., Troussellier, M., Petit, M.A., Lebaron, P. Relationships among Bacterial Cell Size , Productivity, and Flow Cytometry. Microb. Ecol. 2000, 40, pp. 148–158.
  11. Błędzki, L. A. & Kruk-Dowgiallo, L. (1983). Wieloletnie zmiany struktury bentosu Zatoki Puckiej. Człowiek i Środowisko, 7(1–2), pp. 79–93. (in Polish)
  12. Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C. & Woerner, J. (2008). Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae, 8(1), pp. 21–32. DOI:10.1016/j.hal.2008.08.028
  13. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., … Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  14. Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E. A. & Bartoli, M. (2015). Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agriculture, Ecosystems and Environment, 212, pp. 253–262. DOI:10.1016/j.agee.2015.07.009
  15. Cochrane, S.K.J., Connor, D.W., Nilsson, P., Mitchell, I., Reker, J., Franco, J., Valavanis, V., Moncheva, S., Ekebom, J. & Nygaard, K. (2010) Marine Strategy Framework Directive. Guidance on the Interpretation and Application of Descriptor 1: Biological Diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research Centre, Ispra,, Luxembourg, 2010;
  16. Cole, J. J., Pace, M. L., Caraco, N. F. & Steinhart, G. S. (1993). Bacterial biomass and cell size distributions More and larger cells in anoxic waters in lakes. Aquatic Microbial Ecology, 38(8), pp. 1627–1632.
  17. Cottrell, M. T. & Kirchman, D. L. (2004). Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology, 34, pp. 139–149.
  18. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Documents in European Community Environmental Law No L 206 / 7 (1992). DOI:10.1017/cbo9780511610851.039
  19. Council of Ministers 1988: Zarządzenia Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 17 listopada 1988 r. (MP nr 32, poz. 292) i z dnia 10 maja 1989 r. (MP Nr 17, poz. 119), (1988). (in Polish)
  20. Council of Ministers 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  21. Council of Ministers 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  22. Council of Ministers 2016a: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  23. Council of Ministers 2016b: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  24. Council of Ministers 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  25. Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), pp. 926–929. DOI:10.1126/science.1156401
  26. Duan, S., He, Y., Kaushal, S. S., Bianchi, T. S., Ward, N. D. & Guo, L. (2017). Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum. Frontiers in Marine Science, 3 (JAN). DOI:10.3389/FMARS.2016.00280
  27. Ducrotoy, J. P. & Elliott, M. (2008). The science and management of the North Sea and the Baltic Sea: Natural history, present threats and future challenges. Marine Pollution Bulletin, 57(1–5), pp. 8–21. DOI:10.1016/j.marpolbul.2008.04.030
  28. Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Ż., Szymkiewicz, A., Galer-Tatarowicz, K., Wichorowski, M., Białoskórski, M. & Puszkarczuk, T. (2019). A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on baltic sea coastal waters. Polish Journal of Environmental Studies, 28(4), pp. 2531–2539. DOI:10.15244/pjoes/92524
  29. Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecological Economics, 47(1), pp. 13–31. DOI:10.1016/j.ecolecon.2002.10.001
  30. European Court of Auditors. (2016). Combating eutrophication in the Baltic Sea: further and more effective action needed. Special report number 3 (Issue 03). DOI:10.2865/9931
  31. Gasoll, J. M., Giorgio, P. A. & Massana, R. (1995). Active Versus Inactive Bacteria: Size-Dependence in a Coastal Marine Plankton Community. Marine Ecology Progress Series, 128, pp. 91–97. http://www.int-res.com/articles/meps/128/m128p091.pdf
  32. Gillor, O., Hadas, O., Post, A. F. & Belkin, S. (2010). Phosphorus and nitrogen in a monomictic freshwater lake: Employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 55(6), pp. 1182–1190. DOI:10.1111/j.1365-2427.2009.02342.x
  33. Giovannoni, S. J. (2017). SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 9(1), pp. 231–255. DOI:10.1146/annurev-marine-010814-015934
  34. Górniak, A. (2017). Spatial and temporal patterns of total organic carbon along the Vistula River course (Central Europe). Applied Geochemistry, 87(September), pp. 93–101. DOI:10.1016/j.apgeochem.2017.10.006
  35. Gren, I. M. (2017). Cost-effective nutrient reductions to the Baltic Sea. Managing a Sea: The Ecological Economics of the Baltic, Hjort 1992, pp. 43–56. DOI:10.4324/9781315071367-4
  36. Hachich, E. M., Di Bari, M., Christ, A. P. G., Lamparelli, C. C., Ramos, S. S. & Sato, M. I. Z. (2012). Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian Journal of Microbiology, 43(2), pp. 675–681. DOI:10.1590/S1517-83822012000200032
  37. HELCOM. (2009). Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. DOI:10.1002/iroh.19910760302
  38. HELCOM, 2015. Updated Fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea
  39. Environment Proceedings No. 145
  40. HELCOM. (2018). State of the Baltic Sea- Second HELCOM holistic assessment, 2011-2016. In Baltic Sea Environment Proceedings (Vol. 155). DOI:10.1016/j.gaitpost.2008.05.016
  41. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), pp. 807–816. DOI:10.1016/S0043-1354(99)00225-0
  42. Hobot, A., Banaszak, K., Stolarska, M., Sowińska, K., Serafin, R. Stachura, A. (2012). Warunki korzystania z wód zlewni rzeki Redy (SCWP: DW1802, DW1803) – Etap 1 – Dynamiczny bilans ilościowy zasobów wodnych. Available online, accessed on 5 January 2022: http://www.rzgw.gda.pl/cms/fck/uploaded/ZGPW_rozporzadzenia/Bilansowanie%20zasob%C3%B3w_REDA.pdf (in Polish)
  43. Hong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G. & Ding, S. (2020). Evaluation of water quality and heavy metals in wetlands along the yellow river in Henan province. Sustainability (Switzerland), 12(4), pp. 1–19. DOI:10.3390/su12041300
  44. Hooker, K. V., Coxon, C. E., Hackett, R., Kirwan, L. E., O’Keeffe, E. & Richards, K. G. (2008). Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 37(1), pp. 138–145. DOI:10.2134/jeq2006.0547
  45. IMGW Data, 2009-2015: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/ (in Polish)
  46. IMGW Data, 2016: Available online, accessed on 20 October 2020: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/Biuletyn_PSHM_2016_07_(lipiec).pdf (in Polish)
  47. Kalenik, M. (2014). Skuteczność oczyszczania ścieków w gruncie piaszczystym z warstwą naturalnego klinoptylolitu. Ochrona Środowiska, 36, pp. 43–48 (in Polish).
  48. Kalinowska D., Wielgat P., Kolerski T. & Zima P. (2020). Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water 12(3), 809. DOI: 10.3390/w12030809
  49. Klekot, L. (1980a). Ilościowe badania łąk podwodnych zatoki puckiej. Oceanologia, 12, pp. 125–139 (in Polish).
  50. Klekot, L. (1980b). Zatoka pucka osobliwością hydrologiczną Bałtyku. Oceanologia, 12, pp. 109–123 (in Polish).
  51. Korth, F.,Fry, B., Liskow, I. & Voss, M. (2013). Nitrogen Turnover during the Spring Outflows of the Nitrate-Rich Curonian and Szczecin Lagoons Using Dual Nitrate Isotopes. Marine Chemistry 154: pp. 1–11. DOI:10.1016/j.marchem.2013.04.012
  52. Korzeniewski, K. (1993). Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego.
  53. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  54. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of Biogenic Substances in Water- Courses of Coastal Landscape Park. Journal of Elementology 21 (538): pp. 413–23. DOI:10.5601/jelem.2015.20.1.800
  55. Kruk-Dowgiałło L, S. A. (2008). Gulf of Gdańsk and Puck Bay. [In:] Schiewer U (Ed) Ecology of Baltic coastal waters. Ecological studies. Vol. 197, pp. 139-165. DOI:10,1007/978-3-540-73524-3_7
  56. Kumar, A. S., Reddy, A. M., Srinivas, L. & Reddy, P. M. (2014). Assessment of Surface Water Quality in Hyderabad Lakes by Using Multivariate Statistical Techniques, Hyderabad-India. Environment and Pollution, 4(2), pp. 14–23. DOI:10.5539/ep.v4n2p14
  57. Kyllmar, K., Forsberg, L. S., Andersson, S. & Mårtensson, K. (2014). Small agricultural monitoring catchments in Sweden representing environmental impact. Agriculture, Ecosystems and Environment, 198, pp. 25–35. DOI:10.1016/j.agee.2014.05.016
  58. La Ferla, R., Azzaro, M., Budillon, G., Caroppo, C., Decembrini, F. & Maimone, G. (2010). Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology, 1(2), pp. 235–257. DOI:10.1080/19475721.2010.541500
  59. La Ferla, R., Maimone, G., Caruso, G., Azzaro, F., Azzaro, M., Decembrini, F., Cosenza, A., Leonardi, M. & Paranhos, R. (2014). Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia, 726, pp. 65–80. DOI:10.1007/s10750-013-1752-x
  60. Ling, T. Y., Soo, C. L., Liew, J. J., Nyanti, L., Sim, S. F. & Grinang, J. (2017). Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River. Journal of Chemistry, 2017. DOI:10.1155/2017/5737452
  61. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), pp. 143–150. DOI:10.1016/j.marpolbul.2012.09.031
  62. Luo, J., Ledgard, S. F. & Lindsey, S. B. (2008). A test of a winter farm management option for mitigating nitrous oxide emissions from a dairy farm. Soil Use and Management, 24(2), pp. 121–130. DOI:10.1111/j.1475-2743.2007.00140.x
  63. Łysiak-Pastuszak, E., Drgas, N. & Pia̧tkowska, Z. (2004). Eutrophication in the Polish coastal zone: The past, present status and future scenarios. Marine Pollution Bulletin, 49(3), pp. 186–195. DOI:10.1016/j.marpolbul.2004.02.007
  64. Massoud, M. A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184(7), pp. 4151–4160. DOI:10.1007/s10661-011-2251-z
  65. Matej-Lukowicz, K., Wojciechowska, E., Nawrot, N. & Dzierzbicka-Głowacka, L. A. (2020). Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland. PeerJ, 8, e8381. DOI:10.7717/peerj.8381
  66. Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A. & Schimanke, S. (2012). Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Climate Dynamics, 39(9–10), pp. 2421–2441. DOI:10.1007/s00382-012-1339-7
  67. Michałek, M., Barańska, A., Kuczyński, T., Brzeska-Roszczyk, P., Mioskowska, M., & Tarała, A. (2021). Marine Ecosystem Protection Survey - protection plan for the Coastal Landscape Park. Wydawnictwa Wewnętrzne Instytutu Morskiego Nr WW 7367. Available online, accessed on 5 January 2022: https://pomorskieparki.pl/planyochrony/opracowanie-projektu-planu-ochrony-nadmorskiego-parku-krajobrazowego/ (in Polish)
  68. Michałek, M. & Kruk-Dowgiałło, L., (2015). Management Program for Zatoka Pucka Region. Areas: Zatoka Pucka and Hel Peninsula (PLH 220032) and Zatoka Pucka (PLB220005). Wydawnictwa Wewnętrzne Instytutu Morskiego w Gdańsku WW 6855A (in Polish)
  69. Nazeer, S., Ali, Z. & Malik, R. N. (2016). Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling. Archives of Environmental Contamination and Toxicology, 71(1), pp. 97–112. DOI:10.1007/s00244-016-0272-x
  70. Newton, R. J. & McLellan, S. L. (2015). A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology, 6(SEP), pp. 1–13. DOI:10.3389/fmicb.2015.01028
  71. Ngang, B. U. & Agbazue, V. E. (2016). A Seasonal Assessment of Groundwater Pollution due to Biochemical Oxygen Demand, Chemical Oxygen Demand and Elevated Temperatures in Enugu Northern Senatorial District, South East Nigeria. IOSR Journal of Applied Chemistry (IOSR-JAC, 9(7), pp. 66–73. DOI:10.9790/5736-0907016673
  72. Noble, R.T., Moore, D.F., Leecaster, M.K., McGee, C.D. & Weisberg, S.B. (2003). Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 37, pp. 1637–1643.
  73. Norland S. (1993). The relationship between biomass and volume of bacteria. [In] Cole J.J. (Ed.) Handbook of methods in aquatic microbial ecology, pp. 303–308. Lewis Publishers.
  74. Novotny, V. (2003). Water quality: diffuse pollution and watershed management. John Wiley & Sons. Inc., Hoboken, New Jersey.
  75. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2), pp. 422–430. http://www.ncbi.nlm.nih.gov/pubmed/9925563
  76. Ordinance of the Governor, 1999: Zarządzenia Nr 173/99 Wojewody Pomorskiego z dnia 30 listopada 1999r.50131_AS_5_.JPG(Dz.U. W.P. nr 131, poz. 1129), (1999) (in Polish).
  77. Pastuszak, M., Kowalkowski, T., Kopiński, J., Doroszewski, A., Jurga, B. & Buszewski, B. (2018). Long-term changes in nitrogen and phosphorus emission into the Vistula and Oder catchments (Poland)—modeling (MONERIS) studies. Environmental Science and Pollution Research, 25(29), PP. 29734–29751. DOI:10.1007/s11356-018-2945-7
  78. Pernthaler, J. (2017). Competition and niche separation of pelagic bacteria in freshwater habitats. Environmental Microbiology, 19(6), pp. 2133–2150. DOI:10.1111/1462-2920.13742
  79. Piniewski, M., Kardel, I., Giełczewski, M., Marcinkowski, P. & Okruszko, T. (2014). Climate change and agricultural development: Adapting polish agriculture to reduce future
  80. nutrient loads in a coastal watershed. Ambio, 43(5), pp. 644–660. DOI:10.1007/s13280-013-0461-z
  81. Pliński, M. & Florczyk, I. (1984). Analizys of the composition and vertical distribution
  82. of the macroalgae in western part of the Gulf of Gdańsk in 1979 and 1980. Oceanologia,
  83. 19, pp. 101–115.
  84. Posch, T., Franzoi, J., Prader, M. & Salcher, M. M. (2009). New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology, 54, pp. 113–126. DOI:10.3354/ame01269
  85. Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O., Tittel, J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., Rinke, K., Dietze, M., Matthes, M., Paul, L. & Friese, K. (2013). Reservoirs as sentinels of catchments: The Rappbode Reservoir Observatory (Harz Mountains, Germany). Environmental Earth Sciences, 69(2), pp. 523–536. DOI:10.1007/s12665-013-2464-2
  86. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. (2008). Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry, 88(3), pp. 285–304. DOI:10.1007/s10533-008-9212-9
  87. Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep,K., Pawlowski, j., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M,I., Vrålstad, T., Zlatkovic, S., Zupancic, M, & Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research, 191 (December 2020), 116767. DOI:10.1016/j.watres.2020.116767
  88. Saniewska, D., Gębka, K., Bełdowska, M., Siedlewicz, G., Bełdowski, J. & Wilman, B. (2019). Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 142 (April), pp. 361–376. DOI:10.1016/j.marpolbul.2019.03.059
  89. Serajuddin, Chowdhury, A. I. & Ferdous, T. (2018). Correlation Among Some Global Parameters Describing Organic Pollutants in River Water: a Case Study. International Journal of Research -GRANTHAALAYAH, 6(7), pp. 278–289. DOI:10.29121/granthaalayah.v6.i7.2018.1308
  90. Shrestha, S. & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), pp. 464–475. DOI:10.1016/j.envsoft.2006.02.001
  91. Šimek, K., Vrba, J. & Hartman, P. (1994). Size-Selective Feeding by Cyclidium sp. on Bacterioplankton and Various Sizes of Cultured Bacteria. FEMS Microbiology Ecology, 14(2), pp. 157–167.
  92. Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Horňák, K. & Sed’a, J. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnology and Oceanography, 59(5), pp. 1477–1492. DOI:10.4319/lo.2014.59.5.1477
  93. Świątecki, A. (1997). Application of bacteriological indicators in the assessment of surface waters. WSP Olsztyn. (in Polish)
  94. Tanentzap, A. J., Fitch, A., Orland, C., Emilson, E. J. S., Yakimovich, K. M., Osterholz, H. & Dittmar, T. (2019). Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 116(49), pp. 24689–24695. DOI:10.1073/pnas.1904896116
  95. Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N. & Wulff, F. (2007). Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio, 36(2–3), pp. 186–194. DOI:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2
  96. Węsławski, J. M., Kryla-Straszewska, L., Piwowarczyk, J., Urbański, J., Warzocha, J., Kotwicki, L., Włodarska-kowalczuk, M. & Wiktor, J. (2013). Habitat modelling limitations – Puck Bay, Baltic Sea – a case study. Oceanologia, 55(1), pp. 167–183. DOI:10.5697/oc.55-1.167
  97. Węsławski, J. M., Warzocha, J., Bradtke, K., Kryla, L., Tatarek, A., Kotwicki, L. & Piwowarczyk, J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia, 51(3), pp. 415–435.
  98. Wielgat, P., Kalinowska, D., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Wojciechowska, E., Nawrot, N., Matej-Lukowicz, K. & Dzierzbicka-Glowacka, L. A. (2021). Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ, 9, pp. 1–26. DOI:10.7717/peerj.10938
  99. Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M. & Obarska-Pempkowiak, H. (2019a). Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Science and Technology: Water Supply, 19(3), pp. 986–994. DOI:10.2166/ws.2018.190
  100. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019b). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252 (May). DOI:10.1016/j.jenvman.2019.109637
  101. Wojtusiak, R. J. (1950). In the sea. Państwowe Zakłady Wydawnictw Szkolnych. (in Polish)
  102. Wołowicz, M., Kotwicki, S. & Geringer d’Odenberg, M. (1993). Many years of changes in the biocenosis of the Bay of Puck in the area of the mouth of the sewage treatment plant in Swarzewo. [In] Korzeniewski, K. (Ed.), Puck Bay (pp. 510–519). Fundacja Rozwoju Uniwersytetu Gdańskiego (in Polish).
  103. Wulff, F., Humborg, C., Andersen, H. E., Blicher-Mathiesen, G., Czajkowski, M., Elofsson, K., Fonnesbech-Wulff, A., Hasler, B., Hong, B., Jansons, V., Mörth, C. M., Smart, J. C. R., Smedberg, E., Stålnacke, P., Swaney, D. P., Thodsen, H., Was, A. & Zylicz, T. (2014). Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio, 43(1), pp. 11–25. DOI:10.1007/s13280-013-0484-5
  104. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
  105. Zalewska, T., Woroń, J., Danowska, B. & Suplińska, M. (2015). Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia, 57(1), pp. 32–43. DOI:10.1016/j.oceano.2014.06.003
  106. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K. & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems and Environment, 88(2), pp. 137–146. DOI:10.1016/S0167-8809(01)00249-3
Go to article

Authors and Affiliations

Emilia Bączkowska
1
Agnieszka Kalinowska
1
Oskar Ronda
2 3
Katarzyna Jankowska
1
Rafał Bray
1
Bartosz Płóciennik
4
Żaneta Polkowska
2 3

  1. Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Coastal Landscape Park, Wladyslawowo, Poland

This page uses 'cookies'. Learn more