Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the analysis of elasto-plastic post-buckling state of rectangular laminated plates subjected to combined loads, such as uniform compression and shear. The plates are built of specially orthotropic symmetrical layers. The analysis is carried out on the basis of nonlinear theory of orthotropic plates involving plasticity. The solution can be obtained in the analytical-numerical way using Prandtl-Reuss equations. The preliminary results of numerical calculations are also presented in figures.
Go to article

Authors and Affiliations

Ryszard Grądzki
Katarzyna Kowal-Michalska
Download PDF Download RIS Download Bibtex

Abstract

In this paper the controllability properties of the convex linear combination of fractional, linear, discrete-time systems are characterized and investigated. The notions of linear convex combination and controllability in the context of fractional-order systems are recalled. Then, the controllability property of such a linear combination of discrete-time, linear fractional systems is proven. Further, the reduction of an infinite problem of transition matrix derivation is reduced to a finite one, which greatly simplifies the numerical burden of the controllability issue. Examples of controllable and uncontrollable, single-input, linear systems are presented. The possibility of extension of the considerations to multi-input systems is shown.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID
Jerzy Klamka
2
ORCID: ORCID
Andrzej Dzieliński
3
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, Bialystok, Poland
  2. Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, Gliwice, Poland
  3. Warsaw University of Technology, Faculty of Electrical Engineering, ul. Koszykowa 75, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The stable supply of iron ore resources is not only related to energy security, but also to a country’s sustainable development. The accurate forecast of iron ore demand is of great significance to the industrialization development of a country and even the world. Researchers have not yet reached a consensus about the methods of forecasting iron ore demand. Combining different algorithms and making full use of the advantages of each algorithm is an effective way to develop a prediction model with high accuracy, reliability and generalization performance. The traditional statistical and econometric techniques of the Holt–Winters (HW) non-seasonal exponential smoothing model and autoregressive integrated moving average (ARIMA) model can capture linear processes in data time series. The machine learning methods of support vector machine (SVM) and extreme learning machine (ELM) have the ability to obtain nonlinear features from data of iron ore demand. The advantages of the HW, ARIMA, SVM, and ELM methods are combined in various degrees by intelligent optimization algorithms, including the genetic algorithm (GA), particle swarm optimization (PSO) algorithm and simulated annealing (SA) algorithm. Then the combined forecast models are constructed. The contrastive results clearly show that how a high forecasting accuracy and an excellent robustness could be achieved by the particle swarm optimization algorithm combined model, it is more suitable for predicting data pertaining to the iron ore demand.
Go to article

Bibliography

1. Al-Fattah, S.M. 2020. A new artificial intelligence GANNATS model predicts gasoline demand of Saudi Arabia. Journal of Petroleum Science and Engineering 194.
2. Al-Hnaity, B. and Abbod, M. 2016. Predicting Financial Time Series Data Using Hybrid Model. Intelligent Systems and Applications 650, pp. 19–41.
3. Bates, J.M. and Granger, C.W.J. 1969. The combination of forecasts. Journal of the Operational Research Society 20(4), pp. 451–468.
4. Bikcora et al. 2018 – Bikcora, C., Verheijen, L. and Weiland, S. 2018. Density forecasting of daily electricity demand with ARMA-GARCH, CAViaR, and CARE econometric models. Sustainable Energy Grids and Networks 13, pp. 148–156.
5. Box, G.E.P. and Jenkins, G.M. 1976. Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
6. Davies, N.J.P. and Petruccelli, J.D. 1988. An Automatic Procedure for Identification, Estimation and Forecasting Univariate Self Exiting Threshold Autoregressive Models. Journal of the Royal Statistical Society 37(2), pp. 199–204.
7. D’Amico et al. 2020 – D’Amico, A., Ciulla, G., Tupenaite, L. and Kaklauskas, A. 2020. Multiple criteria assessment of methods for forecasting building thermal energy demand. Energy and Buildings 224, 110220.
8. Eberhart, R. and Kennedy, J. 1995. A new optimizer using particle swarm theory. [In:] MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43.
9. Holland, J.M. 1975. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor.
10. Huang et al. 2006 – Huang, G.B., Zhu, Q.Y. and Siew, C.K. 2006. Extreme learning machine: theory and applications. Neurocomputing 70, pp. 489–501.
11. Jia, L.W. and Xu, D.Y. 2014. Analysis and Prediction of the Demand for Iron Ore: Using Panel, Grey, Co-Integration and ARIMA Models. Resources Science 36(7), pp. 1382–1391.
12. Kazemzadeh et al. 2020 – Kazemzadeh, M.R., Amjadian, A. and Amraee, T. 2020. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 204, 117948
13. Liu et al. 2016 – Liu, X.L., Moreno, B. and Garcia, A.S. 2016. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors. Energy 115, pp. 1042–1054.
14. Ma et al. 2013 – Ma, W.M., Zhu, X.X. and Wang, M.M. 2013. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resources Policy 38, pp. 613–620.
15. Mi et al. 2018 – Mi, J., Fan, L., Duan, X. and Qiu, Y. 2018. Short-Term Power Load Forecasting Method Based on Improved Exponential Smoothing Grey Model. Mathematical Problems in Engineering 2018, pp. 1–11.
16. National Bureau of Statistics of China. Output of Industrial Products. [Online] https://data.stats.gov.cn/easyquery. htm?cn=C01&zb=A0E0H&sj=2019 [Accessed: 2020-12-30].
17. National Bureau of Statistics of China, 2018. Chinese Mining Yearbook. Beijing: China Statistics Press.
18. Song et al. 2018 – Song, J.J., Wang, J.Z. and Lu, H.Y.2018. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Applied Energy 215, pp. 643–658.
19. Vapnik, V.N. 1995. The Nature of Statistical Learning Theory. New York: Springer.
20. Wang et al. 2018 – Wang, J., Luo, Y.Y., Tang, T.Y. and Peng, G. 2018. Modeling a combined forecast algorithm based on sequence patterns and near characteristics: An application for tourism demand forecasting. Chaos, Solitons and Fractals 108, pp. 136–147.
21. Wang et al. 2012 – Wang, J.J., Wang, J.Z., Zhang, Z.G. and Guo, S.P. 2012. Stock index forecasting based on a hybrid model. Omega-International Journal of Management Science 40, pp. 758–766.
22. Wang et al. 2010 – Wang, J.Z., Zhu, S.L., Zhang, W.Y. and Lu, H.Y. 2010. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 35, pp. 1671–1678.
23. Wang et al. 2020 – Wang, Z.X., Zhao, Y.F. and He, L.Y. 2020. Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average. Applied Soft Computing 94.
24. Winters, P.R. 1960. Forecasting sales by exponentially weighted moving averages. Management Science 6(3), pp. 324–42.
25. Zhang et al. 2019 – Zhang, S.H., Wang, J.Y. and Guo, Z.H. 2019. Research on combined model based on multi- -objective optimization and application in time series forecast. Soft Computing 23, pp. 11493–11521.
26. Zhang et al. 2017 – Zhang, Y., Li, C. and Li, L. 2017. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy 190, pp. 291–305.
27. Zhou et al. 2019 – Zhou, Z., Si, G.Q., Zheng, K., Xu, X., Qu, K. and Zhang, Y.B. 2019. CMBCF: A Cloud Model Based Hybrid Method for Combining Forecast. Applied Soft Computing 85, 105766.
28. Zhou, Z.H. 2016. Machine Learning. Beijing: Tsinghua University Press, 425 pp. ( in Chinese).

Go to article

Authors and Affiliations

Min Ren
1
Jianyong Dai
2
Wancheng Zhu
3
Feng Dai
3
ORCID: ORCID

  1. Northeastern University, Shenyang, China
  2. University of South China, Hengyang, China
  3. Northeastern University, Shenyang
Download PDF Download RIS Download Bibtex

Abstract

Marine geoid modelling in the Atlantic coastal region of Argentina is problematic. Firstly, because of the insufficient amount of available shipborne gravity data, which renders a purely gravimetric solution not feasible. Secondly, because of the very strong ocean currents, that affect the quality of satellite altimetry data, so that a purely altimetrie model is too noisy, even after low-pass filtering the Sea Surface Heights (SSHs) to remove (part of) the influence of the oceanographic signals. Thus, the recommended solution is to employ a combination method and the use of all the available gravity and altimetry data together. This is a suitable solution since (i) combination methods such as least squares collocation and Input Output System Theory (!OST) inherently low-pass filter and weigh the data, and (ii) will make use of the altimetrie heights to fill the gaps of the shipborne gravity data. Following this idea, purely altimetrie, gravimetric and combined (using the !OST method) marine geoid models have been estimated for Argentina, employing all available shipborne gravity data, satellite altimetry SSHs and the latest Earth Gravity Models (EGMs) developed from CHAMP and GRACE missions. The new EGMs are especially useful to assess the quality of the new geoid models, especially against EGM96, which was used in an older ERSl-only solution for the same area. From the comparison of the estimated geoid models with respect to stacked TOPEX/Poseidon SSHs, the authors found that the altimetrie model provides the best agreement while the combined one improves the accuracy (I a) of the gravimetric solution.
Go to article

Authors and Affiliations

Claudia Tocho
Georgios S. Vergos
Michael G. Sideris
Download PDF Download RIS Download Bibtex

Abstract

Combine harvesters are the source a large amount of noise in agriculture. Depending on different working conditions, the noise of such machines can have a significant effect on the hearing condition of drivers. Therefore, it is highly important to study the noise signals caused by these machines and find solutions for reducing the produced noise. The present study was carried out is order to obtain the fractal dimension (FD) of the noise signals in Sampo and John Deere combine harvesters in different operational conditions. The noise signals of the combines were recorded with different engine speeds, operational conditions, gear states, and locations. Four methods of direct estimations of the FD of the waveform in the time domain with three sliding windows with lengths of 50, 100, and 200 ms were employed. The results showed that the Fractal Dimension/Sound Pressure Level [dB] in John Deere and Sampo combines varied in the ranges of 1.44/96.8 to 1.57/103.2 and 1.23/92.3 to 1.51/104.1, respectively. The cabins of Sampo and John Deere combines reduced and enhanced these amounts, respectively. With an increase in the length of the sliding windows and the engine speed of the combines, the amount of FD increased. In other words, the size of the suitable window depends on the extraction method of calculating the FD. The results also showed that the type of the gearbox used in the combines could have a tangible effect on the trend of changes in the FD.

Go to article

Authors and Affiliations

Farzad Mahdiyeh Boroujeni
Ali Maleki
Download PDF Download RIS Download Bibtex

Abstract

The output of renewable energy is strongly uncertain and random, and the distribution of voltage and reactive power in regional power grids is changed with the access to large-scale renewable energy. In order to quantitatively evaluate the influence of renewable energy access on voltage and reactive power operation, a novel combinational evaluation method of voltage and reactive power in regional power grids containing renewable energy is proposed. Firstly, the actual operation data of renewable energy and load demand are clustered based on the K-means algorithm, and several typical scenarios are divided. Then, the entropy weight method (EWM) and the analytic hierarchy process (AHP) are combined to evaluate the voltage qualified rate, voltage fluctuation, power factor qualified rate and reactive power reserve in typical scenarios. Besides, the evaluation results are used as the training samples for back-propagation (BP) neural networks. The proposed combinational evaluation method can calculate the weight coefficient of the indexes adaptively with the change of samples, which simplifies the calculation process of the indexes’ weight. At last, the case simulation of an actual regional power grid is provided, and the historical data of one year is taken as the sample for training, evaluating and analyzing. And finally, the effectiveness of the proposed method is verified based on the comparison with the existing method. The evaluated results could provide reference and guidance to the operation analysis and planning of renewable energy.
Go to article

Bibliography

[1] Sharif A., Raza S.A., Ozturk I., Afshan S., The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: a global study with the application of heterogeneous panel estimations, Renewable Energy, vol. 133, pp. 685–691 (2019), DOI: 10.1016/j.renene.2018.10.052.
[2] Ossowska L.J., Janiszewska D.A., Toward sustainable energy consumption in the European Union, Archives of Electrical Engineering, vol. 23, no. 1, pp. 37–48 (2020), DOI: 10.33223/epj/119371.
[3] Zhang W.Q., Zhang X.Y., Huang S.W., Xia Y.K., Fan X.C., Evolution of a transmission network with high proportion of renewable energy in the future, Renewable Energy, vol. 102, pp. 372–379 (2017), DOI: 10.1016/j.renene.2016.10.057.
[4] Zhou Q., Wang N.B., Shen C.Y., Zhao L., Wang D.M., Zhang J.M., Analysis of the reasons and prospect for the abandonment of new energy power in China, Proceedings of the 2016 5th International Conference on Energy and Environmental Protection, Shenzhen, China (2016).
[5] Tang Z.Y., Hill D.J., Liu T., Two-stage voltage control of subtransmission networks with high penetration of wind power, Control Engineering Practice, vol. 62, pp. 1–10 (2017), DOI: 10.1016/j.conengprac.2017.02.013.
[6] da Costa J.N., Passos J.A., Henriques R.M., Loading margin sensitivity analysis in systems with significant wind power generation penetration, Electric Power Systems Research, vol. 175, pp. 1–9 (2019), DOI: 10.1016/j.epsr.2019.105900.
[7] Cai Y., Wang Z.C., Li Y., Cao Y.J., Tan Y.D., Tang X., A novel operation of regional power grids in china: the generator voltage-class-reduction scheme, IEEE Access, vol. 7, pp. 132841–132850 (2019), DOI: 10.1109/ACCESS.2019.2939925.
[8] Kumar V.S.S., Reddy K.K., Thukaram D., Coordination of reactive power in grid-connected wind farms for voltage stability enhancement, IEEE Transactions on Power Systems, vol. 29, pp. 2381–2390 (2014), DOI: 10.1109/TPWRS.2014.2300157.
[9] Liu Q.J., Yu L.F., Li Z.H., Zeng J., Chen S.Y., Regional grid voltage reactive power optimization strategy based on voltage qualification rate evaluation function, 2018 International Conference on Power System Technology, Guangzhou, China, pp. 3875–3882 (2018).
[10] Mahela O.P., Khan B., Alhelou H.H., Siano P., Power quality assessment and event detection in distribution system with wind energy penetration using S-transform and fuzzy clustering, IEEE Transactions on Industrial Informatics, vol. 16, no. 11, pp. 6922–6932 (2020), DOI: 10.1109/TII.2020.2971709.
[11] Mahela O.P., Khan B., Alhelou H.H., Tanwar S., Assessment of power quality in the utility grid integrated with wind energy generation, IET Power Electronics, vol. 13, no. 13, pp. 2917–2925 (2020), DOI: 10.1049/iet-pel.2019.1351.
[12] Swain S., Ray P.K., Short circuit fault analysis in a grid connected DFIG based wind energy system with active crowbar protection circuit for ride through capability and power quality improvement, International Journal of Electrical Power and Energy System, vol. 84, pp. 64–75 (2017), DOI: 10.1016/j.ijepes.2016.05.006.
[13] Wang S.X., Ge L.J., Cai S.X., Wu L., Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization, Journal of Modern Power Systems and Clean Energy, vol. 6, pp. 701–711 (2018), DOI: 10.1007/s40565-017-0355-3.
[14] Huang Y.S., Jiang Y.Q., Wang J., Li J., Adaptability evaluation of distributed power sources connected to distribution network, IEEE Access, vol. 9, pp. 42409–42423 (2021), DOI: 10.1109/ACCESS.2021.3066206.
[15] Du J., Cai C., Xie Z.J., Geng M.Z., Comprehensive energy efficiency evaluation of municipal power grid based on TOPSIS method, 2020 5th Asia Conference on Power and Electrical Engineering, Chengdu, China, pp. 829–833 (2020).
[16] Xu J.Z., Tong G.Q., Chen Q.,Wu M., A new evaluation method of the fault recovery scheme for mediumlow voltage dc distribution network, 2020 5th Asia Conference on Power and Electrical Engineering, Chengdu, China, pp. 1730–1735 (2020).
[17] Cheng Y.M., Liu C., Wu J., Liu H.M., Lee I.K., Niu J., Cho J.P., Koo K.W., Lee M.W., Woo D.G., A back propagation neural network with double learning rate for PID controller in phase-shifted full-bridge soft-switching power supply, Journal of Electrical Engineering and Technology, vol. 15, no. 6, pp. 2811–2822 (2020), DOI: 10.1007/s42835-020-00523-5.
[18] Li J.J., Zhang M.Y., Li Z.G., Zhang T., Zhang Q., Chi C., Study on grid planning method considering multiple energy access, 2018 International Conference on Smart Grid and Electrical Automation, Changsha, China, pp. 59–62 (2018).
[19] Malengret M., Gaunt C.T., Active currents, power factor, and apparent power for practical power delivery systems, IEEE Access, vol. 8, pp. 133095–133113 (2020), DOI: 10.1109/ACCESS.2020.3010638.
[20] Wiczynski G., Determining location of voltage fluctuation source in radial power grid, Electric Power Systems Research, vol. 180, pp. 1–10 (2020), DOI: 10.1016/j.epsr.2019.106069.
[21] Hong Y., Bie Z.H., Li G.F., Liu S.Y., Berizzi A., The integrated reliability evaluation of distribution system considering the system voltages adjustment, 2017 1st IEEE International Conference on Environment and Electrical Engineering and 2017 17th IEEE Industrial and Commercial Power Systems Europe, Milan, Italy (2017).
[22] Truong D.N., Ngo V.T., Estimation of parameters associated with individual sources of voltage fluctuations, International Journal of Electrical Power and Energy Systems, vol. 65, no. 2, pp. 425–431 (2015), DOI: 10.1109/TPWRD.2020.2976707.
[23] Zhang W.M., Zhang Y.X., The reactive power and voltage control management strategy based on virtual reactance cloud control, Archives of Electrical Engineering, vol. 69, no. 4, pp. 921–936 (2020), DOI: 10.24425/aee.2020.134639.
[24] Bian H.H., Zhong Y.Q., Sun J.S., Shi F.C., Study on power consumption load forecast based on K-means clustering and FCM-BP model, Energy Reports, vol. 6, pp. 693–700 (2020), DOI: 10.1016/j.egyr.2020.11.148.
[25] Chen Z., Du Z.B., Zhan H.Q., Wang K., An evaluation method of reactive power and voltage control ability for multiple distributed generators in an islanded micro-grid, 2018 International Conference on Power System Technology, Guangzhou, China, pp. 1819–1825 (2018).
[26] Lin C.F., Fang C.Z., Chen Y.L., Liu S.Y., Bie Z.H., Scenario generation and reduction methods for power flow examination of transmission expansion planning, 2017 IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada, pp. 90–95 (2017).
Go to article

Authors and Affiliations

Yuqi Ji
1
ORCID: ORCID
Xuehan Chen
1
Han Xiao
2
Shaoyu Shi
2
Jing Kang
2
Jialin Wang
2
Shaofeng Zhang
2

  1. Zhengzhou University of Light Industry College of Electrical and Information Engineering, China
  2. Sanmenxia Power Supply Company of State Grid Henan Electric Power Company, China
Download PDF Download RIS Download Bibtex

Abstract

On the basis of the obtained expeditionary data, the authors performed a comprehensive analysis of the ecosystems’ modern transformation in the studied area. In the course of the analysis, the authors found that at the present stage there have been quantitative changes (depletion of natural resources) in used landscapes, along with them, there are changes in qualitative characteristics (accumulation of resources). Now, against the background of vegetation and soil degradation, ways of their restoration are observed. New combinations of degraded and self-recovering ecosystems have emerged. Based on the analysis of the current state of different ecological systems and their relationships, the authors determined the possibilities of the dynamics of their combinations functioning by stages. This will make it possible to give a more reliable forecast of the ongoing processes in the ecosystems of the Republic of Kazakhstan.
Go to article

Authors and Affiliations

Tilepbergen Ryspekov
1
ORCID: ORCID
Marzhan Balkozha
2
ORCID: ORCID

  1. Kazakh National Agrarian Research University, Faculty of Agrobiology, Almaty, Kazakhstan
  2. Kazakh National Agrarian Research University, Faculty of Water, Land and Forest Resources, 8 Abai Ave, 050010, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The development of transport infrastructure strengthens the technogenic burden on the environment. Waste, thaw and rain waters from vehicle transport enterprises, such as car-washing installations, petrol stations, and car service stations may pollute ground and surface waters, and adjacent landscapes. The article presents quality parameters and suggests a number of measures permitting to minimize the harmful impact on the environment. The purpose is to improve the reagent treatment technology applicable to surface runoff from vehicle transport enterprises and the reuse of circulating waters by improving well-known methods with original technological procedures and chemical reagents. Research methods include the use of potentiometry, titrometry, and gravimetry. The investigation has shown the possibility to increase the efficiency of runoff treatment and removal of suspended particles and dissolved organic matter by 20–30%. This can be achieved by the application of a permanent magnetic field of 30–40 mT and the subsequent processing by the solution of aluminum chlorohydrate. Optimum parameters have been determined regarding magnetic field and processing conditions. It has been proven that the use of aluminum chlorohydrate in combination with polyhexamethyleneguanidine hydrochloride simplifies substantially the technological cycle. A better treatment can be achieved in comparison with the usual coagulant by 25%. Heavy metal ions are removed from water and the method includes microbiological disinfection and preservation of water in storage reservoirs. The improved technological scheme suggests the reagent treatment of storm and circulating waters for their repeated use.
Go to article

Authors and Affiliations

Oleksandr Kvartenko
1
ORCID: ORCID
Andriy Lysytsya
2
ORCID: ORCID
Nataliya Kovalchuk
1
ORCID: ORCID
Ihor Prysiazhniuk
2
ORCID: ORCID
Oksana Pletuk
1
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Educational and Scientific Institute of Construction and Architecture, Rivne 11 Soborna St., 33028, Ukraine
  2. Rivne State University of Humanities, Faculty of Natural Sciences and Psychology, Plastova St, 31, Rivne, 33000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In contrast to foreign combining forms, native combining forms are usually treated as elements on the margin of German word formation. At the same time the question is under discussion, how the notion of combining form has to be defined. Based on a semantically oriented notion, as presented in reference books, and using a large sample of items, it is argued that elements like SCHWIEGER(vater), STIEF- (kind), (Vogel)KUNDE, (Hallen)WART are just the often mentioned examples of a category with a broad range of elements and with communicative relevance. Native combining forms are not only remains of former language periods, but are permanently produced by language users in order to meet their communicative needs.
Go to article

Authors and Affiliations

Josef Schu
1
ORCID: ORCID

  1. Universität des Saarlandes, Saarbrücken
Download PDF Download RIS Download Bibtex

Abstract

The combination of permanent magnets and electrically excited windings creates an air gap magnetic field. The development of a hybrid magnetic circuit motor with an adjustable magnetic field is of great significance. This article introduces a hybrid magnetic circuit motor design that combines salient pole electromagnetic and permanent magnets. A tubular magnetic barrier has been designed to reduce inter-pole leakage and enhance the usage rate of permanent magnets in the hybrid magnetic circuit motor. The optimum eccentricity of the rotor has been accurately designed, resulting in an improved sinusoidal distribution of the air gap magnetic density waveform. An analysis of the static composite magnetic field under various excitation currents has been conducted, showcasing the capability of the hybrid magnetic circuit motor to stably adjust the air gap flux density level and output torque. A prototype has undergone comprehensive trial production and testing, conclusively confirming the machine’s superior output performance.
Go to article

Authors and Affiliations

Mingling Gao
1
Shilong Yan
1
Chenglong Yu
2
Wenjing Hu
1
Huihui Geng
1
Hongbin Yin
1
Mingjun Xu
1
Yufeng Zhang
1

  1. Shandong University of Technology 266 Xincun West Road, Zhangdian District, Zibo, Shandong Province, China
  2. Zibo Yongtai Motor Co., Ltd Zichuan District, Zibo, Shandong, China
Download PDF Download RIS Download Bibtex

Abstract

The asymptotic stability of the convex linear combination of continuous-time and discretetime linear systems is considered. Using the Gershgorin theorem it is shown that the convex linear combination of the linear asymptotically stable continuous-time and discretetime linear systems is also asymptotically stable. It is shown that the above thesis is also valid (even simpler) for positive linear systems.
Go to article

Authors and Affiliations

Tadeusz Kaczorek
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty ofElectrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes the risk factors related to the energy use of alternative fuels from waste. The essence of risk and its impact on economic activity in the area of waste management were discussed. Then, a risk assessment, on the example of waste fractions used for the production of alternative fuel, was carried out. In addition, the benefits for the society and the environment from the processing of alternative fuels for energy purposes, including, among others: reducing the cost of waste disposal, limiting the negative impact on water, soil and air, reducing the amount of waste deposited, acquisition of land; reduction of the greenhouse effect, facilitating the recycling of other fractions, recovery of electricity and heat, and saving conventional energy carriers, were determined. The analysis of risk factors is carried out separately for plants processing waste for alternative fuel production and plants producing energy from this type of fuel. Waste processing plants should pay attention to investment, market (price, interest rate, and currency), business climate, political, and legal risks, as well as weather, seasonal, logistic, technological, and loss of profitability or bankruptcy risks. Similar risks are observed in the case of energy companies, as they operate in the same external environment. Moreover, internal risks may be similar; however, the specific nature of the operation of each enterprise should be taken into account. Energy companies should pay particular attention to the various types of costs that may threaten the stability of operation, especially in the case of regulated energy prices. The risk associated with the inadequate quality of the supplied and stored fuels is important. This risk may disrupt the technological process and reduce the plant’s operational efficiency. Heating plants and combined heat and power plants should also not underestimate the non-catastrophic weather risk, which may lead to a decrease in heat demand and a reduction in business revenues. A comprehensive approach to risk should protect enterprises against possible losses due to various types of threats, including both external and internal threats.

Go to article

Authors and Affiliations

Oleksandr Ivashchuk
Bartosz Łamasz
Natalia Iwaszczuk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the sustainable development of electricity generation sources in the National Power System (NPS). The criteria to be met by sustainable power systems were determined. The paper delineates the power balance of centrally dispatched power generation units (CDPGU), which is required for the secure work of the NPS until 2035. 19 prospective electricity generation technologies were defined. They were divided into the following three groups: system power plants, large and medium combined heat and power (CHP) plants, as well as small power plants and CHP plants (distributed sources). The quantities to characterize the energy effectiveness and CO2 emission of the energy generation technologies analyzed were determined. The unit electricity generation costs, discounted for 2018, including the costs of CO2 emission allowance, were determined for the particular technologies. The roadmap of the sustainable development of the generation sources in the NPS between 2020 and 2035 was proposed. The results of the calculations and analyses were presented in tables and figure

Go to article

Authors and Affiliations

Bolesław Zaporowski
Download PDF Download RIS Download Bibtex

Abstract

This article presents an analysis of the sustainable development of generation sources in the Polish National Electric Power System (NEPS). First, the criteria for this development were formulated. The paper also discusses the current status of generation sources, operating in power plants and combined heat and power (CHP) plants of NEPS. Furthermore, it includes a prediction of power balance in NEPS, determining; predicted electricity gross use, predicted demand for peak capacity during the winter peak, predicted demand for peak capacity during the summer peak and required new capacity of centrally dispatched generation units (CDGUs) in 2025, 2030, 2035 and 2040 that would ensure NEPS operational security. Twenty prospective technologies of electricity generation and combined electricity and heat production were analyzed. These were divided into three groups: system power plants, high- and medium-capacity combined heat and power (CHP) plants, as well as small-capacity power plants and CHP plants (dispersed sources). The unit costs of electricity generation discounted for 2021 were calculated for the analyzed technologies, taking the costs of CO2 emission allowances into account. These costs include: capital costs, fuel costs, maintenance costs, operation costs and environmental costs (CO2 emission allowances). This proceeds to a proposal of a program of the sustainable development of generation sources in NEPS, which includes the desired capacity structure of power plants and CHP plants, and the optimal structure of electricity production in 2030 and 2040. The results of calculations and analyses are presented in tables and figure.
Go to article

Bibliography

ARE 2021. Statistical Information on Electricity (Informacja statystyczna o energii elektrycznej). Agencja Rynku Energii SA, Nr 6, Warszawa (in Polish).
BP 2021. BP Statistical Review of World Energy, Edition 2021. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accssed: 2021-09-17].
Directive 2005/89. Directive 2005/89/UE of the European Parliament and Council of 18 January 2006 on concerning measures to safeguarded security of electricity supply and infrastructure investment. Official Journal of the European Union, 2006, L 33/1 – L33/22.
Directive 2012/27. Directive 2012/27/UE of the European Parliament and Council of 25 October 2012 on energy efficiency. Official Journal of the European Union, 2012, L315/1 – L315/56.
KPEiK 2019. National Energy and Climate Plan 2021–2030 (Krajowy plan na rzecz energii i klimatu na lata 2021–2030). Ministerstwo Aktywów Państwowych, 2019 (in Polish).
MP 2020. Polish Nuclear Power Programme (Program polskiej energetyki jądrowej). Monitor Polski 2020, poz. 946 (in Polish).
PSE 2016. Forecast of Peak Capacity Demand Coverage in 2016–2035 (Prognoza pokrycia zapotrzebowania szczytowego na moc w latach 2016–2035). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/-/prognoza-pokrycia-zapotrzebowania-szczytowego-na-moc-w-latach-2016-2035 [Accessed: 2021-08-10] (in Polish).
PSE 2020. Development Plan of Present and Future Electricity Satisfaction Demand Coverage in 2021–2035 (Plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną na lata 2021–2030). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/ documents/20182/21595261/Dokument_glowny_PRSP_2021-2030_20200528.pdf [Accessed: 2021-08-10] (in Polish).
PEP2040 2021. Energy Policy of Poland until 2040 (Polityka energetyczna Polski do 2040 roku). MP 2021, poz. 128 (in Polish). Statistics 2019. Statistics of Polish Heat Industry 2018 (Statystyka Ciepłownictwa Polskiego 2018). Warszawa: Agencja Rynku Energii SA (in Polish).
Statistics 2020. Statistics of Polish Electric Power Industry 2019 (Statystyka Elektroenergetyki Polskiej 2019). Warszawa: Agencja Rynku Energii SA (in Polish).
URE 2020. Information about Investment Plans in New Generation Capacity in 2020–2034 (Informacja na temat planów inwestycyjnych w nowe moce wytwórcze w latach 2020–2034). Urząd Regulacji Energetyki. [Online] https://www.ure.gov.pl>download>Raport-Plany inwestycyjne w nowe moce wytwórcze latach 2020-2034 [Accessed: 2021-08-10] (in Polish).
Zaporowski, B. 2016. Sustainable development of the electricity generation sources (Zrównoważony rozwój źródeł energii elektrycznej). Polityka Energetyczna – Energy Policy Journal 19(3), pp. 35–48 (in Polish).
Zaporowski, B. 2019. Energy and economic effectiveness of prospective generation technologies for Polish electric power industry (Efektywność energetyczna i ekonomiczna perspektywicznych dla polskiej elektroenergetyki technologii wytwórczych). Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 63, część 2, pp. 87–90 (in Polish).
Go to article

Authors and Affiliations

Bolesław Zaporowski
1
ORCID: ORCID

  1. Institute of Electric Power Engineering of Poznań University of Technology, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article proposes a methodology for the formation of a combined model of the equilibrium values of pricing and the volume of electricity production, taking into account green and traditional sources of electricity production on the example of Ukraine. In accordance with the projected price and volume of electricity production in 2021, a model for redistributing electricity sources were considered, taking into account the minimization of budgetary resources and the risk of electricity production with appropriate restrictions in the production of various types of electricity and their impact on minimizing the price for the end user.
The studies have shown that important factors in the formation of electricity prices are indicators of the cost and volume of production, distribution and transportation of electricity to consumers, which largely depends on the formation and further development of the energy market in Ukraine. Also, the redistribution of the volumes of traditional and non-traditional electricity in the common “pot” is of great importance while minimizing risks and budgetary constraints. Balancing the system for generating electricity from various sources will help not only optimize long-term electricity prices and minimize tariffs for the end user, but also allow planning profit in the form of long-term market return on investment.
The analysis of the results showed that the optimal distribution of energy production makes it possible to obtain energy resources in the required volume with lower purchase costs and with minimal risk.
Go to article

Authors and Affiliations

Yuliia Halynska
1
ORCID: ORCID
Tetiana Bondar
2
ORCID: ORCID
Valerii Yatsenko
3
ORCID: ORCID
Viktor Oliinyk
3
ORCID: ORCID

  1. Department of International Economic Relations, Sumy State University, Ukraine
  2. Department of Management, Sumy State University, Ukraine
  3. Economic Cybernetics Department, Sumy State University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In order to study the failure mechanism and characteristics for strip coal pillars, a monitoring device for strip coal pillar uniaxial compression testing was developed. Compression tests of simulated strip coal pillars with different roof and floor rock types were conducted. Test results show that, with increasing roof and floor strength, compressive strength and elastic modulus of “roof-strip coal pillar-floor” combined specimens increase gradually. Strip coal pillar sample destruction occurs gradually from edge to the interior. First macroscopic failure occurs at the edge of the middle upper portion of the specimen, and then develops towards the corner. Energy accumulation and release cause discontinuous damage in the heterogeneous coal-mass, and the lateral displacement of strip coal pillar shows step and mutation characters. The brittleness and burst tendency of strip coal pillar under hard surrounding rocks are more obvious, stress growth rate decreases, and the rapid growth acoustic emission (AE) signal period can be regarded as a precursor for instability in the strip coal pillar. The above results have certain theoretical value for understanding the failure law and long-term stability of strip coal pillars.
Go to article

Bibliography

[1] M.D.G. Salamon, Stability, instability and design of pillar workings. Int. J. Rock. Mech. Min. 7 (6), 613-631 (1970). DOI: https://doi.org/10.1016/0148-9062(70)90022-7
[2] T.P. Medhurst, E.T. Brown, A study of the mechanical behaviour of coal for pillar design. Int. J. Rock. Mech. Min. 35 (8), 1087-1105 (1998). DOI: https://doi.org/10.1016/S0148-9062(98)00168-5
[3] J .N.V.D. Merwe, Predicting coal pillar life in South Africa. J. S. Afr. I. Min. Metall. 103 (5), 293-301 (2003).
[4] A.W. Kahir, S.S. Peng, Causes and mechanisms of massive pillar failure in a southern west virginia coal mine. Int. J. Rock. Mech. Min. 22 (6), 189-189 (1985). DOI: https://doi.org/10.1016/0148-9062(85)90193-7
[5] E. Ghasemi, M. Ataei, K. Shahriar, Prediction of global stability in room and pillar coal mines. Nat. Hazards. 72 (2), 405-422 (2014). DOI: https://doi.org/10.1007/s11069-013-1014-2
[6] V . Kajzar, R. Kukutsch, P. Waclawik, J. Nemcik, Innovative approach to monitoring coal pillar deformation and roof movement using 3d laser technology. Procedia. Eng. 191, 873-879 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.256
[7] W .J. Guo, H.L. Wang, Z.P. Liu, Coal pillar stability and surface movement characteristics of deep wide strip pillar mining. J. Min. Saf. Eng. 32 (3), 369-375 (2015). DOI: https://doi.org/10.13545/j.cnki.jmse.2015.03.004
[8] S.J. Chen, X. Qu, D.W. Yin, X.Q. Liu, H.F. Ma, H.Y. Wang, Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining. Geomech. Eng. 14 (5), 421-428 (2018). DOI: https://doi.org/10.12989/gae.2018.14.5.421
[9] S.J. Chen, D.W. Yin, N. Jiang, F. Wang, Z.H. Zhao, Mechanical properties of oil shale-coal composite samples. Int. J. Rock. Mech. Min. 123, 104-120 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2019.104120
[10] Y. Tan, W.B. Guo, Y.H. Zhao, Engineering stability and instability mechanism of strip Wongawilli coal pillar system based on catastrophic theory. J. China. Coal. Soc. 41 (7), 1667-1674 (2016). DOI: https://doi.org/10.13225/j.cnki.jccs.2015.1593
[11] J .H. Xu, X.X. Miao, X.C. Zhang, Analysis of the time-dependence of the coal pillar stability. J. China. Coal. Soc. 30 (4), 433-437 (2005).
[12] T. Sherizadeh, P.S.W. Kulatilake, Assessment of roof stability in a room and pillar coal mine in the u.s. using three-dimensional distinct element method. Tunn. Undergr. Sp. Tech. 59, 24-37 (2016). DOI: https://doi.org/10.1016/j.tust.2016.06.005
[13] G .L. He, D.C. Li, Z.W. Zhai, G.Y. Tang, Analysis of instability of coal pillar and stiff roof system. J. China. Coal. Soc. 32 (9), 897-901 (2007). DOI: https://doi.org/10.1016/S1872-2067(07)60020-5
[14] W . Gao, M.M. Ge, Stability of a coal pillar for strip mining based on an elastic-plastic analysis. Int. J. Rock. Mech. Min. 87, 23-28 (2016). DOI: https://doi.org/10.1016/j.ijrmms.2016.05.009
[15] J .P. Zuo, Y. Chen, F. Cui, Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies. J. China. U. Min. Techno. 47 (1), 81-87 (2018).490
[16] J .P. Zuo, Y. Chen, J.W. Zhang, J.T. Wang, Y.J. Sun, G.H. Jiang, Failure behavior and strength characteristics of coal-rock combined body under different confining pressures. J. China. Coal. Soc. 41 (11), 2706-2713 (2016). DOI: https://doi.org/10.13225/j.cnki.jccs.2016.0456
[17] S.J. Chen, D.W. Yin, B.L. Zhang, H.F. Ma, X.Q. Liu, Mechanical characteristics and progressive failure mechanism of roof-coal pillar structure. Chin. J. Rock. Mech. Eng. 36 (7), 1588-1598 (2017). DOI: https://doi.org/10.13722/j.cnki.jrme.2016.1282
[18] B.N. Hu, Stability analysis of coal pillar in strip mining. J. China. Coal. Soc. 20 (2), 205-210 (1995). DOI: https://doi.org/10.13225/j.cnki.jccs.1995.02.020
[19] A.H. Wilson, An hypothesis concerning pillar stability. Min. Eng. 131 (6), 409-417 (1972).
[20] J .K. Xu, R. Zhou, D.Z. Song, N. Li, K. Zhang, D.Y. Xi, Deformation and damage dynamic characteristics of coalrock materials in deep coal mines. Int. J. Damage. Mech. 28 (1), 58-78 (2019). DOI: https://doi.org/10.1177/1056789517741950
[21] H .P. Xie, Y. Ju, L.Y. Li, R.D. Peng, Energy mechanism of deformation and failure of rock masses. Chin. J. Rock. Mech. Eng. 27 (9), 1729-1740 (2008).
[22] Z.H. Zhao, H.P. Xie, Energy Transfer and Energy Dissipation in Rock Deformation and Fracture. J. Sichuan. Univ. 40 (2), 26-31 (2008).
[23] L.R. Myer, J.M. Kemeny, Z. Zheng, R. Suarez, R.T. Ewy, N.G.W. Cook, Extensile cracking in porous rock under differential compressive stress. Appl. Mech. Rev. 45 (8), 263-280 (1992). DOI: https://doi.org/10.1115/1.3119758
Go to article

Authors and Affiliations

Xiao Qu
1
Shaojie Chen
1
Dawei Yin
Shiqi Liu

  1. Hohai University, China
Download PDF Download RIS Download Bibtex

Abstract

A number of new satellite-only Global Gravity Models (GGMs) become progressively available based on the CHAMP and GRACE satellite mission data. These models promise higher (compared to older GGMs) accuracy in the determination of the low and medium harmonics of the Earth's gravity field. In the present study, the latest GGMs generated from CHAMP and GRACE data (namely EIGEN2, EIGEN3p, GGM0IC, GGM0IS and GRACED IS) have been studied with respect ro their accuracy and performance when used in gravity field approximation. A spectral analysis of the new models has been carried out, employing their degree and error-degree variances. In this way, their performance against each other and with respect to EGM96 was assessed, and the parts of the gravity field spectrum that each model describes more accurately have been identified. The results of the analysis led to the development of a combined geopotential model, complete to degree and order 360, whose coefficients were those of CHAMP until degree 5, then GRACE until degree 116, and EGM96 for the rest of the spectrum. Finally, a validation of all models (the combined included) has been performed by comparing their estimates against GPS/levelling data in land areas and TOPEX/Poseidon sea surface heights in marine regions. All rests have taken place over Greece and the eastern part of the Mediterranean Sea. From the results obtained it was concluded that the combined GGM developed provides more accurate results (compared to EGM96), in terms of the differences with the control datasets, at the level of 1-2 cm geoid and 1-2 mGal for gravity (ICT). Furthermore, the absolute geoid accuracy that the combined GGM offers is 12.9 cm (ICT) for 11 = 120, 25 cm for 11 = 200 and 33 cm for n = 360, compared to 29 cm, 36 cm and 42 cm for EGM96, respectively.
Go to article

Authors and Affiliations

Georgios S. Vergos
Ilias N. Tziavos
Michael G. Sideris
Download PDF Download RIS Download Bibtex

Abstract

The Rankine cycle steam turbine power plants make a base for world electricity production. The efficiency of modern steam turbine units is not higher than 43–45%, which is remarkably lower compared to the combined cycle power plants. However, an increase in steam turbine power plant efficiency could be achieved by the rise of initial cycle parameters up to ultra-supercritical values: 700–780˚C, 30–35 MPa. A prospective steam superheating technology is the oxy-fuel combustion heating in a sidemounted combustor located in the steam pipelines. This paper reviews thermal schemes of steam turbine power plants with one or two side-mounted steam superheaters. An influence of the initial steam parameters on the facility thermal efficiency was identified and primary and secondary superheater parameters were optimized. It was found that the working fluid superheating in the side-mounted oxy-methane combustors leads to an increase of thermal efficiency higher than that with the traditional boiler superheating in the initial temperature ranges of 700–780˚C and 660–780˚C by 0.6% and 1.4%, respectively.
Go to article

Bibliography

[1] Ohji A., Haraguchi M.: Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 11–40.
[2] Chiesa P., Macchi E.: A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants. J. Eng. Gas Turbines Power. 126(2004), 4, 770–785.
[3] Tanuma T.: Advances in Steam Turbines for Modern Power Plants. Woodhead, 2017.
[4] Bugge J., Kjaer S., Blum R.: High-efficiency coal-fired power plants development and perspectives. Energy 31(2006), 10-11, 1437–1445.
[5] Susta, M.R., Seong, K.B.: Supercritical and ultra-supercritical power plants-SEA’s vision or reality. In: Proc. Powergen Asia, Bangkok, 2004.
[6] Kotowicz J., Łukowicz H., Bartela Ł., Michalski S.: Validation of a program for supercritical power plant calculations. Arch. Thermodyn. 32(2011), 4, 81–89.
[7] Fan C., Pei D., Wei H.: A novel cascade energy utilization to improve efficiency of double reheat cycle. Energ. Convers. Manag. 171(2018), 1388–1396.
[8] Li Y., Zhou L., Xu G., Fang Y., Zhao S., Yang Y.: Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant. Energy 74(2014), 202–214.
[9] Liu Y., Li Q., Duan X., Zhang Y., Yang Z., Che D.: Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant. Energy 145(2018), 25–37.
[10] Łukowicz H., Dykas S., Rulik S., Stepczynska K.: Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn. 32(2011), 3, 231–245.
[11] Zaryankin A., Rogalev A., Komarov I., Kindra V., Osipov S.: The boundary layer separation from streamlined surfaces and new ways of its prevention in diffusers. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-168.
[12] Kowalczyk Ł., Elsner W., Drobniak S.: Thermoeconomic analysis of supercritical coal fired power plant using RRM method. in Polish: Analiza termoekonomiczna nadkrytycznego bloku weglowego przy uzyciu metody RRM. Arch. Thermodyn. 32(2011), 3, 215–229.
[13] Kosman W.: The influence of external cooling system on the performance of supercritical steam turbine cycles. Arch. Thermodyn. 31(2010), 3, 131–144.
[14] Zaryankin A., Rogalev A., Kindra V., Khudyakova V., Bychkov N.: Reduction methods of secondary flow losses in stator blades: Numerical and experimantal study. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-158.
[15] Zaryankin A., Rogalev A., Garanin I., Osipov S.: Methods of low-pressure cylinders throughput improvement for construction of ultra-high capacity generation units. WIT Trans. Ecol. Environ. 195(2015), 149–160.
[16] Aminov R.Z., Egorov A.N.: Hydrogenoxygen steam generator for a closed hydrogen combustion cycleInt. J. Hydrog. Energy 44(2019), 21, 11161–11167.
[17] Rogalev N., Prokhorov V., Rogalev A., Komarov I., Kindra V.: Steam boilers’ advanced constructive solutions for the ultra-supercritical power plants. Int. J. Appl. Eng. Res. 1(2016), 18, 9297–9306.
[18] Milman O., Yankov G., Krylov V., Ptahin A.: High efficiency steam-gas mixture condenser. J. Phys. Conf. Ser. 1683(2020), 4, 042074.
[19] Milman O., Krylov V., Ptakhin A., Kondratev A., Yankov G.: Steam condensation from a moving steam-gas mixture. Therm. Eng. 65(2018), 12, 916–921.
[20] Zou C., Song Y., Li G., Cao S., He Y., Zheng C.: The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. Int. J. Heat Mass Transf. 75(2014), 12–18.
[21] Mazas A.N., Fiorina B., Lacoste D. A., Schuller T.: Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame 158(2011), 12, 2428–2440.
[22] Jin B., Zhao H., Zou C., Zheng C.: Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energ. Convers. Manag., 99(2015), 92–101.
[23] Milman O., Shifrin B.A.: High-temperature steam turbine unit running on natural gas. In: Proc. of Sem. of the Laboratory for Hydrogen Energy Technologies of JIHT RAS, Moscow 2017, 143–149
[24] Klimenko A.V., Milman O.O., Shifrin B.A.: A high-temperature gas-and-steam turbine plant operating on combined fuel. Therm. Eng. 62(2015), 11, 807–816.
[25] Van der Ham L.V., Kjelstrup S.: Exergy analysis of two cryogenic air separation processes. Energy 35(2010), 12, 4731–4739.
[26] Kotowicz J., Balicki A.: Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit. Energ. Convers. Manag. 80(2014), 20–31.
[27] Aspen Plus. https://www.aspentech.com/en/products/engineering/aspen-plus (acessed 21 March 2020).
Go to article

Authors and Affiliations

Vladimir Olegovich Kindra
1
Sergey Konstantinovich Osipov
1
Olga Vladimirovna Zlyvko
1
Igor Alexandrovich Shcherbatov
1
Vladimir Petrovich Sokolov
1

  1. National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia
Download PDF Download RIS Download Bibtex

Abstract

The electricity production by combustion of organic fuels, especially coal, increases the atmospheric CO2 content, which contributes to global warming. The greenhouse gas emissions by the power production industry may be reduced by the application of CO2 capture and storage systems, but it remarkably decreases the thermal power plant (TPP) efficiency because of the considerable increase of the auxiliary electricity requirements. This paper describes the thermodynamic analysis of a combined cycle TPP with coal gasification and preliminary carbon dioxide capture from the syngas. Utilization of the heat produced in the fuel preparation increases the TPP net efficiency from 42.3% to 47.2%. Moreover, the analysis included the combined cycle power plant with coal gasification and the CO2 capture from the heat recovery steam generator exhaust gas, and the oxy-fuel combustion power cycle with coal gasification. The coal-fired combined cycle power plant efficiency with the preliminary CO2 capture from syngas is 0.6% higher than that of the CO2 capture after combustion and 9.9% higher than that with the oxy-fuel combustion and further CO2 capture. The specific CO2 emissions are equal to 103 g/kWh for the case of CO2 capture from syngas, 90 g/kWh for the case of CO2 capture from the exhaust gas and 9 g/kWh for the case of oxy-fuel combustion.
Go to article

Bibliography

[1] Friedlingstein P., O’Sullivan M., Jones M.W., Andrew R.M., Hauck J., Olsen A., Zaehle S.: Global carbon budget 2020. Earth Syst. Sci. Data 12(2020), 4, 3269–3340.
[2] Peters G.P., Andrew R.M., Canadell J.G., Friedlingstein P., Jackson R.B., Korsbakken J.I., Peregon A.: Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Change 10(2020), 1, 3–6.
[3] Le Quéré C., Korsbakken J.I., Wilson C., Tosun J., Andrew R., Andres R.J., van Vuuren D.P.: Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Change 9(2019), 3, 213–217.
[4] Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Mac Dowell N.: Carbon capture and storage (CCS): The way forward. Energ. Environ. Sci. 11(2018), 5, 1062–1176.
[5] Tong D., Zhang Q., Zheng Y., Caldeira K., Shearer C., Hong C., Qin Y., Davis S.J.: Committed emissions from existing energy infrastructure jeopardize 1.5˚C climate target. Nature 572(2019), 7769, 373–377.
[6] Nejat P., Jomehzadeh F., Taheri M.M., Gohari M., Majid M.Z.A.: A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sust. Energ. Rev. 43(2015), 843–862.
[7] Vega F., Baena-Moreno F.M., Fernández L.M.G., Portillo E., Navarrete B., Zhang Z.: Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energ. 260(2020), 114313.
[8] Fan J.L., Xu M., Li F., Yang L., Zhang X.: Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective. Appl. Energ. 229(2018), 326–334. [9] Porter R.T., Fairweather M., Kolster C., Mac Dowell N., Shah N.,Woolley R.M.: Cost and performance of some carbon capture technology options for producing different quality CO2 product streams. Int. J. Greenh. Gas Con. 57(2017), 185–195.
[10] Erlach B., Schmidt M., Tsatsaronis G.: Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. Energy 36(2011), 6, 3804–3815.
[11] Atsonios K., Koumanakos A., Panopoulos K.D., Doukelis A., Kakaras E.: Techno-economic comparison of CO2 capture technologies employed with natural gas derived GTCC. In: Proc. ASME Turbo Expo: Turbine Tech. Conf. Exp, San Antonio, June 3–7, 2013, GT2013-95117, V002T07A018.
[12] Kanniche M., Gros-Bonnivard R., Jaud P., Valle-Marcos J., Amann J.M., Bouallou C.: Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 30(2010), 1, 53–62.
[13] Merkel T.C., Lin H., Wei X., Baker R.: Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membrane Sci. 359(2010), 126– 139.
[14] Merkel T.C., Zhou M., Baker R.W.: Carbon dioxide capture with membranes at an IGCC power plant. J. Membrane Sci. 389(2012), 441–450.
[15] Merkel T.C., Wei X., He Z., White L.S., Wijmans J.G., Baker R.W.: Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Ind. Eng. Chem. Res. 52(2013), 3, 1150–1159.
[16] Song C., Liu Q., Deng S., Li H., Kitamura Y.: Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew. Sust. Energ. Rev. 101(2019), 265–278.
[17] Chiesa P., Campanari S., Manzolini G.: CO2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells. Int. J. Hydrogen Energ. 36(2011), 16, 10355–10365.
[18] Komarov I., Kharlamova D., Makhmutov B., Shabalova S., Kaplanovich I.: Natural gas-oxygen combustion in a super-critical carbon dioxide gas turbine combustor. E3S Web Conf. 178(2020), 01027.
[19] Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown Jr. G.W., Sasaki T., Itoh M., Manning J.: Demonstration of the Allam cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Enrgy Proced. 114(2017), 5948–5966.
[20] Rogalev A., Kindra V., Osipov S., Rogalev N.: Thermodynamic analysis of the net power oxy-combustion cycle. In: Proc. 13th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC13, Lausanne, April 8-12, 2018, ETC2019-030.
[21] Mukherjee S., Kumar P., Yang A., Fennell P.: Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture. J. Environ. Chem. Eng. 3(2015), 3, 2104–2114.
[22] Li J., Zhang H., Gao Z., Fu J., Ao W., Dai J.: CO2 capture with chemical looping combustion of gaseous fuels: An overview. Energ. Fuels 31(2017), 4, 3475–3524.
[23] Lyngfelt A., Linderholm C.: Chemical-looping combustion of solid fuels–status and recent progress. Enrgy Proced. 114(2017), 371–386.
[24] Naqvi R., Bolland O.: Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. Int. J. Greenh. Gas Con. 1(2007), 1, 19–30.
[25] Li K., Leigh W., Feron P., Yu H., Tade M.: Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Appl. Energ. 165(2016), 648–659.
[26] Duan L., Zhao M., Yang Y.: Integration and optimization study on the coal-fired power plant with CO2 capture using MEA. Energy 45(2012), 1, 107–116.
[27] Ma Y., Gao J., Wang Y., Hu J., Cui P.: Ionic liquid-based CO2 capture in power plants for low carbon emissions. Int. J. Greenh. Gas Con. 75(2018), 134–139.
[28] Oh S.Y., Binns M., Cho H., Kim J.K.: Energy minimization of MEA-based CO2 capture process. Appl. Energ. 169(2016), 353–362.
[29] Ho M.T., Allinson G.W., Wiley D.E.: Comparison of MEA capture cost for low CO2 emissions sources in Australia. Int. J. Greenh. Gas Con. 5(2011), 1, 49–60.
[30] Rogalev A., Kindra V., Osipov S.: Modeling methods for oxy-fuel combustion cycles with multicomponent working fluid. AIP Conf. Proc. 2047(2018), 1, 020020.
[31] Kunze C., Spliethoff H.: Assessment of oxy-fuel, pre-and post-combustion-based carbon capture for future IGCC plants. Appl. Energ. 94(2012), 109–116.
[32] Scaccabarozzi R., Gatti M., Martelli E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energ. 178(2016), 505–526.
[33] Rogalev A.N., Kindra V.O., Rogalev N.D., Sokolov V.P., Milukov I.A.: Methods for efficiency improvement of the semi-closed oxy-fuel combustion combined cycle. J. Phys. Conf. Ser. 1111(2018), 1, 012003.
[34] Cormos C.-Cr.: Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 42(2012), 434–445.
[35] Ito E., Okada I., Tsukagoshi K., Muyama A., Masada J.: Development of key technologies for the next generation 1700C-class gas turbine. In: Proc. ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, June 8–12, 2009. 919–929.
[36] Ebrahimi A., Meratizaman M., Reyhani H.A., Pourali O., Amidpour M.: Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy 90(2015), 1298–1316. [37] Uddin F., Taqvi S.A., Memon I.: Process simulation and sensitivity analysis of indirect coal gasification using Aspen Plus model. J. Eng. Appl. Sci. 11(2016), 17, 10546–10552.
[38] Kapetaki Z., Brandani P., Brandani S., Ahn H.: Process simulation of a dualstage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant. Int. J. Greenh. Gas Con. 39(2015), 17–26.
[39] Kotowicz J., Brzeczek M.: Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations study. Energy 175 (2019), 1100–1120.
[40] Kvamsdal H.M., Jordal K., Bolland O.: A quantitative comparison of gas turbine cycles with CO2 capture. Energy 175(2007), 10–24.
[41] Gazzani M., Macchi E., Manzolini G.: CO2 capture in integrated gasification combined cycle with SEWGS – Part A: Thermodynamic performances. Fuel 105(2013), 206–219.
Go to article

Authors and Affiliations

Vladimir Olegovich Kindra
1
Igor Alexandrovich Milukov
1
Igor Vladimirovich Shevchenko
1
Sofia Igorevna Shabalova
1
Dmitriy Sergeevich Kovalev
1

  1. National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia
Download PDF Download RIS Download Bibtex

Abstract

Efficiency and electrical power output of combined cycle power plants vary according to the ambient conditions. The amount of these variations greatly affects electricity production, fuel consumption, and plant incomes. Obviously, many world countries have a wide range of climatic conditions, which impact the performance of power plants. In this paper, a thermodynamic analysis of an operating power plant located in Jordan is performed with actual operating data acquired from the power plant control unit. The analysis is performed by using first and second laws of thermodynamics. Energy and exergy efficiencies of each component of the power plant system are calculated and the effect of ambient temperature on the components performance is studied. The effects of gas turbine pressure ratio, gas turbine inlet temperature, load and ambient conditions on the combined cycle efficiency, power outputs and exergy destruction are investigated. Energy and exergy efficiencies of the combined cycle power plant are found as 45.29%, and 42.73% respectively when the ambient temperature is 34 ◦C. Furthermore, it is found that the combustion chamber has the largest exergy destruction rate among the system components. The results showed that 73% of the total exergy destruction occurs in the combustion chamber when the ambient temperature is 34 ◦C. Moreover, the results show that the second major exergy loss is in HRSC. The results show that the energy and exergy efficiency of the combined cycle power plant decreases as the ambient temperature increases. According to the calculation results, improvement and modification suggestions are presented.

Go to article

Authors and Affiliations

Khaled Bataineh
Bara A. Khaleel
Download PDF Download RIS Download Bibtex

Abstract

Transmission lines’ live working is one of an effective means to ensure the reliable operation of transmission lines. In order to solve the unsafe problems existing in the implementation of traditional live working, the paper uses ground-based lidar to collect point cloud data. A tile based on the pyramid data structure is proposed to complete the storage and calling of point cloud data. The improved bidirectional filtering algorithm is used to distinguish surface features quickly and obtain a 3D model of the site. Considering the characteristics of live working, the speed of data reading and querying, the nearest point search algorithm based on octree is used to acquire a real- time calculation of the safe distance of each point in the planned path, and the safety of the operation mode is obtained by comparing with the value specified in the regulation, and assist in making decisions of the operation plan. In the paper, the simulation of the actual working condition is carried out by taking the “the electric lifting device ascending” as an example. The experimental results show that the established three-dimensional model can meet the whole process control of the operation, and has achieved practical effect.
Go to article

Authors and Affiliations

Ying Wang
1
ORCID: ORCID
Haitao Zhang
1 2 3
Qiang Lv
3
Qiang Gao
3
Mingxing Yi
3

  1. School of Automation & Electrical Engineering, Lanzhou Jiaotong University, Gansu, China
  2. Key Laboratory of Opto-Electronic Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University Gansu, China
  3. The UHV Company of State Grid Gansu Electric Power Company, Gansu, China
Download PDF Download RIS Download Bibtex

Abstract

Since wind power generation has strong randomness and is difficult to predict, a class of combined prediction methods based on empiricalwavelet transform(EWT) and soft margin multiple kernel learning (SMMKL) is proposed in this paper. As a new approach to build adaptive wavelets, the main idea is to extract the different modes of signals by designing an appropriate wavelet filter bank. The SMMKL method effectively avoids the disadvantage of the hard margin MKL method of selecting only a few base kernels and discarding other useful basis kernels when solving for the objective function. Firstly, the EWT method is used to decompose the time series data. Secondly, different SMMKL forecasting models are constructed for the sub-sequences formed by each mode component signal. The training processes of the forecasting model are respectively implemented by two different methods, i.e., the hinge loss soft margin MKL and the square hinge loss soft margin MKL. Simultaneously, the ultimate forecasting results can be obtained by the superposition of the corresponding forecasting model. In order to verify the effectiveness of the proposed method, it was applied to an actual wind speed data set from National Renewable Energy Laboratory (NREL) for short-term wind power single-step or multi-step time series indirectly forecasting. Compared with a radial basic function (RBF) kernelbased support vector machine (SVM), using SimpleMKL under the same condition, the experimental results show that the proposed EWT-SMMKL methods based on two different algorithms have higher forecasting accuracy, and the combined models show effectiveness.
Go to article

Bibliography

[1] Wang Q., Martinez-Anido C.B., Wu H.Y., Florita A.R., Hodge B.M., Quantifying the economic and grid reliability impacts of improved wind power prediction, IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1525–1537 (2016), DOI: 10.1109/TSTE.2016.2560628.
[2] Liu H.Q., Li W.J., Li Y.C., Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020), DOI: 10.24425/aee.2020.133025.
[3] Waskowicz B., Statistical analysis and dimensioning of a wind farm energy storage system, Archives of Electrical Engineering, vol. 66, no. 2, pp. 265–277 (2017), DOI: 10.1515/aee-2017-0020.
[4] Cassola F., Burlando M., Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output, Applied Energy, vol. 99, no. 6, pp. 154–166 (2012), DOI: 10.1016/j.apenergy.2012.03.054.
[5] Li J., Li M., Prediction of ultra-short-term wind power based on BBO-KELM method, Journal of Renewable and Sustainable Energy, vol. 11, no. 5, 056104 (2019), DOI: 10.1063/1.5113555.
[6] Zhang Y.G., Wang P.H., Zhang C.H., Lei S., Wind energy prediction with LS-SVM based on Lorenz perturbation, The Journal of Engineering, vol. 2017, no. 13, pp.1724–1727 (2017), DOI: 10.1049/joe.2017.0626.
[7] Duan J., Wang P., Ma W., Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network, Energy, vol. 214, 118980 (2021), DOI: 10.1016/j.energy.2020.118980.
[8] Moreno S.R., Silva R.G. D., Mariani V.C., Multi-step wind speed forecasting based on hybrid multistage decomposition model and long short-term memory neural network, Energy Conversion and Management, vol. 213, 112869 (2020), DOI: 10.1016/j.enconman.2020.112869.
[9] Ramon G.D., Matheus H.D.M.R., Sinvaldo R.M., A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting, Energy, vol. 216, 119174 (2021), DOI: 10.1016/j.energy.2020.119174.
[10] Yldz C., Akgz H., Korkmaz D., An improved residual-based convolutional neural network for very short-term wind power forecasting, Energy Conversion and Management, vol. 228, no. 1, 113731 (2021), DOI: 10.1016/j.enconman.2020.113731.
[11] Ribeiro G.T., Mariani V.C., Coelho L.D.S., Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting, Engineering Applications of Artificial Intelligence, vol. 28, no. June, pp. 272–281 (2019), DOI: 10.1016/j.engappai.2019.03.012.
[12] Liu X., Zhou J., Qian H.M., Short-term wind power forecasting by stacked recurrent neural networks with parametric sine activation function, Electric Power Systems Research, vol. 192, 107011 (2021), DOI: 10.1016/j.epsr.2020.107011.
[13] Zhu R., Liao W., Wang Y., Short-term prediction for wind power based on temporal convolutional network, Energy Reports, vol. 6, pp. 424–429 (2019), DOI: 10.1016/j.egyr.2020.11.219.
[14] Gilles J., Empirical wavelet transform, IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3999–4010 (2013), DOI: 10.1109/TSP.2013.2265222.
[15] Wang S.X., Zhang N.,Wu L.,Wang Y.M., Wind speed prediction based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method, Renewable Energy, vol. 94, pp. 629–636 (2016), DOI: 10.1016/j.renene.2016.03.103.
[16] Lanckriet G.R.G., Cristianini N., Bartlett P.L., Ghaoui L.E., Jordan M.I., Learning the kernel matrix with semi-definite programming, Journal of Machine learning research, vol. 5, pp. 323–330 (2002).
[17] Gönen M., Alpaydin E., Multiple kernel learning algorithms, Journal of Machine Learning Research, vol. 12, pp. 2211–2268 (2011).
[18] Wu D., Wang B.Y., Precup D., Boulet B., Multiple kernel learning based transfer regression for electric load forecasting, IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1183–1192 (2020), DOI: 10.1109/TSG.2019.2933413.
Go to article

Authors and Affiliations

Jun Li
1
Liancai Ma
1

  1. Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper our results of investigation on a pump power combiner in a configuration of 7×1 are presented. The performed combiner, with pump power of 80–85% transmission level, was successfully applied in a thulium doped fibre laser. The performed all-fibre laser setup reached a total CW output power of 6.42 W, achieving the efficiency on a 32.1% level

Go to article

Authors and Affiliations

D. Stachowiak
P. Kaczmarek
K.M. Abramski
Download PDF Download RIS Download Bibtex

Abstract

Atmospheric turbulence is considered as major threat to Free Space Optical (FSO) communication as it causes irradiance and phase fluctuations of the transmitted signal which degrade the performance of FSO system. Wavelength diversity is one of the techniques to mitigate these effects. In this paper, the wavelength diversity technique is applied to FSO system to improve the performance under different turbulence conditions which are modeled using Exponentiated Weibull (EW) channel. In this technique, the data was communicated through 1.55 μm, 1.31 μm, and 0.85 μm carrier wavelengths. Optimal Combining (OC) scheme has been considered to receive the signals at receiver. Mathematical equation for average BER is derived for wavelength diversity based FSO system. Results are obtained for the different link length under different turbulence conditions. The obtained average BER results for different turbulence conditions characterized by EW channel is compared with the published result of average BER for different turbulence which is presented by classical channel model. A comparative BER analysis shows that maximum advantage of wavelength diversity technique is obtained when different turbulence conditions are modeled by EW channel.
Go to article

Bibliography

[1] V. W. S. Chan, “Free-Space Optical Communications,” J. Light. Technol., vol. 24, no. 12, pp. 4750–4762, dec 2006. [Online]. Available: https://doi.org/10.1109/JLT.2006.885252
[2] R. S. Lawrence and J. W. Strohbehn, “A survey of clearair propagation effects relevant to optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1523–1545, 1970. [Online]. Available: https://doi.org/10.1109/PROC.1970.7977
[3] J. Schuster, “Free space optics technology overview,” a Present., 2002.
[4] H. A. Fadhil, A. Amphawan, H. A. B. Shamsuddin, T. H. Abd, H. M. R. Al-Khafaji, S. A. Aljunid, and N. Ahmed, “Optimization of free space optics parameters: An optimum solution for bad weather conditions,” Opt. J. Light Electron Opt., vol. 124, no. 19, pp. 3969–3973, 2013. [Online]. Available: https://doi.org/10.1016/j.ijleo.2012.11.059
[5] E. Wainright, H. H. Refai, and J. J. Sluss Jr, “Wavelength diversity in free-space optics to alleviate fog effects,” in Free. Laser Commun. Technol. XVII, vol. 5712. International Society for Optics and Photonics, 2005, pp. 110–118. [Online]. Available: https://doi.org/10.1117/12.591193
[6] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” JOSA A, vol. 16, no. 6, pp. 1417–1429, 1999. [Online]. Available: https://doi.org/10.1364/JOSAA.16.001417
[7] H. Henniger and O. Wilfert, “An Introduction to Free-space Optical Communications.” Radioengineering, vol. 19, no. 2, 2010.
[8] H. Moradi, M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “BER analysis of optical wireless signals through lognormal fading channels with perfect CSI,” in 2010 17th Int. Conf. Telecommun. IEEE, 2010, pp. 493–497. [Online]. Available: https://doi.org/10.1109/ICTEL.2010.5478870
[9] M. Uysal and J. Li, “Error rate performance of coded free-space optical links over gamma-gamma turbulence,” in 2004 IEEE Int. Conf. Commun. (IEEE Cat. No. 04CH37577), vol. 6. IEEE, 2004, pp. 3331– 3335. [Online]. Available: https://doi.org/10.1109/ICC.2004.1313162
[10] H. E. Nistazakis, V. D. Assimakopoulos, and G. S. Tombras, “Performance estimation of free space optical links over negative exponential atmospheric turbulence channels,” Opt. J. Light Electron Opt., vol. 122, no. 24, pp. 2191–2194, 2011. [Online]. Available: https://doi.org/10.1016/j.ijleo.2011.01.013
[11] M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett., vol. 8, no. 10, pp. 635–637, 2004. [Online]. Available: https://doi.org/10.1109/LCOMM.2004.835306
[12] R. Barrios and F. Dios, “Exponentiated weibull distribution family under aperture averaging for gaussian beam waves,” Optics express, vol. 20, no. 12, pp. 13 055–13 064, 2012. [Online]. Available: https://doi.org/10.1364/OE.20.013055
[13] L. M. Wasiczko and C. C. Davis, “Aperture averaging of optical scintillations in the atmosphere: experimental results,” in Atmos. Propag. II, vol. 5793. International Society for Optics and Photonics, 2005, pp. 197–208. [Online]. Available: https://doi.org/10.1117/12.606020
[14] P. R. Barbier, D. W. Rush, M. L. Plett, and P. Polak-Dingels, “Performance improvement of a laser communication link incorporating adaptive optics,” in Artif. Turbul. Imaging Wave Propag., vol. 3432. International Society for Optics and Photonics, 1998, pp. 93–102. [Online]. Available: https://doi.org/10.1117/12.327974
[15] J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “High-rate error-correction codes for the optical atmospheric channel,” in Free. Laser Commun. V, vol. 5892. International Society for Optics and Photonics, 2005, p. 58920V. [Online]. Available: https://doi.org/10.1117/12.615760
[16] S. S. Muhammad, T. Javornik, I. Jelovcan, E. Leitgeb, and O. Koudelka, “Reed solomon coded PPM for terrestrial FSO links,” in 2007 Int. Conf. Electr. Eng. IEEE, 2007, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ICEE.2007.4287281
[17] D. Shah and D. K. Kothari, “BER Performance of FSO link under strong turbulence with different Coding Techniques,” IJCSC, vol. 8, pp. 4–9, 2015. [Online]. Available: https://doi.org/10.031206/IJCSC.2016.002
[18] H. E. Nistazakis and G. S. Tombras, “On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels,” Optics & Laser Technology, vol. 44, no. 7, pp. 2088–2094, 2012. [Online]. Available: https: //doi.org/10.1016/j.optlastec.2012.03.021
[19] D. Shah, D. K. Kothari, and A. K. Ghosh, “Bit error rate analysis of the K channel using wavelength diversity,” Opt. Eng., vol. 56, no. 5, p. 56106, 2017. [Online]. Available: https://doi.org/10.1117/1.OE.56.5.056106
[20] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Commun., vol. 8, no. 2, pp. 951–957, 2009. [Online]. Available: https://doi.org/10.1109/TWC.2009.071318
[21] D. Giggenbach, B. L. Wilkerson, H. Henniger, and N. Perlot, “Wavelength-diversity transmission for fading mitigation in the atmospheric optical communication channel,” in Free. Laser Commun. VI, vol. 6304. International Society for Optics and Photonics, 2006, p. 63041H. [Online]. Available: https://doi.org/10.1117/12.680924
[22] M. M. Ibrahim and A. M. Ibrahim, “Performance analysis of optical receivers with space diversity reception,” IEE Proceedings- Communications, vol. 143, no. 6, pp. 369–372, 1996. [Online]. Available: https://doi.org/ip-com:19960885
[23] K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, “Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels,” Opt. Lett., vol. 37, no. 15, pp. 3243–3245, 2012. [Online]. Available: https://doi.org/10.1364/OL.37.003243
[24] R. R. Parenti and R. J. Sasiela, “Distribution models for optical scintillation due to atmospheric turbulence,” MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, Tech. Rep., 2005.
[25] S. Nadarajah and A. K. Gupta, “On the moments of the exponentiated Weibull distribution,” Commun. Stat. Methods, vol. 34, no. 2, pp. 253–256, 2005. [Online]. Available: https://doi.org/10.1080/03610920509342418
[26] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions 10th Printing with Corrections,” Natl. Bur. Stand. Appl. Math. Ser., vol. 55, 1972.
[27] A. Goldsmith, Wireless communications. Cambridge university press, 2005.
Go to article

Authors and Affiliations

Dhaval Shah
1
Hardik Joshi
1
Dilipkumar Kothari
1

  1. Faculty of Electronics and Communication Engineering, Institute of Technology, Nirma University, Ahmedabad, India

This page uses 'cookies'. Learn more