Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 121
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Strength and permeability properties along with microstructural evolution of hardened slurries composed of fly ash from fluidal bed combustion of brown coal and an addition of OPC/BFSC is assessed in this paper. An increase in the amount of fly ash in slurries influences the development of mechanical strength and a decrease of hydraulic conductivity. SEM, XRD, and porosity analyses confirmed formation of watertight microstructures. The structure of slurries is composed of ettringite, C-S-H phase, AFt, and AFm phases. Ettringite crystallises as relatively short needles forming compact clusters or intermixed with the C-S-H phase. The occurring C-S-H phases are mainly of type I – fibrous and type II – honeycomb

Go to article

Authors and Affiliations

Z. Kledyński
P. Falaciński
A. Machowska
J. Dyczek
Ł. Kotwica
Download PDF Download RIS Download Bibtex

Abstract

According to a fuel flexibility, fluidized bed boilers are considered as appropriate for biomass combustion as cofiring. But the burning of fuels such as forest and agricultural biomass raises a number of operational problems. Most important of these problems are bed agglomeration and deposition. Deposition appears when biomass contains significant amounts of alkali elements, such as sodium and potassium. The purpose of the work is to select a fuel additive to overcome these operational problems. Investigations were conducted in two stages at a pilot scale 0.1 MWth laboratory circulating fluidized bed reactor. As the fuel, the mixture of biomass contained forest residues, sunflower husks, straw and wood pellets from mixed woods was selected. In the first stage biomass was burnt without any additives, while in the second one the fuel was enriched with some additive. The additive (liquid mixture of chemicals) was added to the fuel in amounts of 1 dm3 per 5-10 Mg of fuel. The following operational parameters were examined: temperature profiles along the height of the circulating fluidised bed column, pressure profiles, emissions. After the tests, the laboratory reactor was inspected inside. Its results enables expression of the following conclusions: there was no agglomeration during fuel additive testing, and the deposition was reduced as well. Moreover, the parts (heating surfaces, separator) of the laboratory reactor were coated with a protective layer. The layer covered microcracks and protected the parts from deposition for a long period after the operation.

Go to article

Authors and Affiliations

Wojciech Nowak
Łukasz Dunajski
Wojciech Kruk
Download PDF Download RIS Download Bibtex

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Download PDF Download RIS Download Bibtex

Abstract

The article concerns computer modelling of processes in cooling systems of internal combustion engines. Modelling objectives and existing commercial programs are presented. It also describes Author’s own method of binding graphs used to describe phenomena in the cooling system of a spark ignition engine. The own model has been verified by tests on the engine dynamometer. An example of using a commercial program for experimental modelling of an installation containing a heat accumulator is presented.

Go to article

Authors and Affiliations

Zbigniew Kneba
Keywords HTAC gas combustion
Download PDF Download RIS Download Bibtex

Abstract

HTAC (High Temperature Air Combustion) technology is one of the most important achievements in combustion engineering of recent years. The main idea of the technology is to organize combustion in such a way that reaction takes place in almost whole volume of combustion chamber with very uniform gas and temperature field. It can be done by preheating air above the ignition temperature of fuel, separation of air and fuel nozzles and by high recirculation inside the combustion chamber. Uniform and moderated temperatures result in very low thermal NO emission, and on the other hand, long enough rcsiclcncc time in the chamber results in low CO and incomplete products emission. In this paper authors present simple mathematical model which allows for estimation of influence of air temperature and flue gas recirculation rate on final emission on NO and CO.
Go to article

Authors and Affiliations

Kamil Malczyk
Andrzej Szlęk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an original design of a single compression machine for combustion study. The principle of operation is based an old concept, utilizing the inertia energy of a flywheel to accelerate the crank mechanism and the attached piston to compress rapidly the combustible mixture in the combustion chamber. A square piston geometry was adopted to allow visualization of the compression and combustion processes in directions perpendicular to the cylinder axis. To avoid the extensive scratching of glass walls by the moving piston, a special multi-action clutch-brake unit was used; this facilitates coupling of the flywheel with the crank mechanism during the single piston stroke and subsequent immediate uncoupling and fast stopping of the piston. The whole operating cycle can be completed within no more than two revolutions of the crankshaft. The design details of the machine, its acceleration characteristics and a sample of the visualized combustion process are presented.
Go to article

Authors and Affiliations

Tadeusz J. Rychter
Tomasz Lezanski
Download PDF Download RIS Download Bibtex

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.

Go to article

Authors and Affiliations

Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Zbigniew Jelonek
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the application possibilities of ceramic foam in a thermal combustion process of a lean methane-air mixture. The experiments were done in a ceramic foam bed. The foam (Vukopor ® A) was made mainly of Al 2O 3. The foam samples were packed in a tubular reactor symmetrically placed in a laboratory furnace. It was assumed that the tested foam should have a surface close to the monolith surface area which was tested in a previous work (Pawlaczyk and Gosiewski, 2015). Pore density of the tested foam was 10 PPI. The tested air mixture contained 0.51 - 0.76 vol. % of methane. The results show that thermal methane oxidation in foam is possible in the acceptable range of temperatures. The combustion process in foam is characterized by similar ignition temperature to tests carried out in monolith, a more intense course, and better methane conversion at lower temperatures.
Go to article

Authors and Affiliations

Anna Pawlaczyk-Kurek
1
ORCID: ORCID
Aleksandra Janusz-Cygan
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Baltycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work concerned the introduction of simplifications in a one-dimensional mathematical model of a chemical reactor. Fecralloy foam with a pore density of 16 PPC (pores per centimetre) was used as catalyst support. The analysed process was the combustion of methane with a typical concentration found in the ventilation air of hard coal mines. The process was carried out using a palladium catalyst.
Go to article

Authors and Affiliations

Mateusz Korpyś
1
ORCID: ORCID
Marzena Iwaniszyn
1
ORCID: ORCID
Katarzyna Sindera
1
ORCID: ORCID
Andrzej Kołodziej
1
ORCID: ORCID
Adam Rotkegel
1
ORCID: ORCID
Joanna Profic-Paczkowska
2
ORCID: ORCID
Maciej Sitarz
3
ORCID: ORCID
Anna Gancarczyk
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
  2. Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
  3. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The development of combustion systems construction is associated with the possibility of increasing the thermal or overall efficiency of an internal combustion engine. The combustion systems currently in use (mainly related to direct fuel injection) are increasingly being replaced by hybrid systems, including direct and indirect injection. Another alternative is the use of prechambers in new combustion systems. This article concerns the thermodynamic aspect of this issue – namely, the assessment of the inter-chamber flow of a marine engine equipped with a prechamber combustion spark ignition system. The research was carried out using mainly one-dimensional simulation apparatus, and detailed analyses were presented using three-dimensional modeling. The tests included the engine model at medium load. Differences in mass flows were shown at different diameters and different numbers of holes from the preliminary chamber (while maintaining the same cross-sectional area). Similar values of excess air coefficient during ignition of the fuel dose in the prechamber were observed, which resulted in changes in the flow between the prechamber and the main chamber. The differences in mass flow affected the temperatures achieved in the individual combustion chambers. Based on three-dimensional analyses, the mass transfer rate between the chambers and the temperature distribution were assessed during fuel ignition initiated in the prechamber.
Go to article

Bibliography

  1.  P. Tarnawski and W. Ostapski, “Pulse powered turbine engine concept – numerical analysis of influence of different valve timing concepts on thermodynamic performance”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 373‒382 (2018), doi: 10.24425/123444.
  2.  N. Gombosuren, O. Yoshifumi, and A. Hiroyuki, “A charge possibility of an unfueled prechamber and its fluctuating phenomenon for the spark ignited engine”, Energies 13(2), 303 (2020), doi: 10.3390/en13020303.
  3.  M. Günther (ed.), Ignition Systems for Gasoline Engines, 4th International Conference. Verlag expert, Berlin, 2018. doi: 10.5445/ IR/1000088324.
  4.  A. Shah, “Improving the efficiency of gas engines using pre-chamber ignition”, PhD Thesis, Lund University, 2015.
  5.  P. Hlaing, M.E. Marquez, V.S.B. Shankar, E. Cenkar, M.B. Houidi, and B. Johansson, “A study of lean burn pre-chamber concept in a heavy duty engine”, SAE Tech. Paper 2019‒24‒0107 (2019), doi: 10.4271/2019-24-0107.
  6.  A. Jamrozik and W. Tutak, “Theoretical analysis of air-fuel mixture formation in the combustion chambers of the gas engine with two- stage combustion system”, Bull. Pol. Acad. Sci. Tech. Sci., 62(4), 779‒790 (2014), doi: 10.2478/bpasts-2014-0085.
  7.  J. Benajes, R. Novella, J. Gomez-Soriano, P.J. Martinez-Hernandiz, C. Libert, and M. Dabiri, “Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines”, Appl. Energ. 248, 576‒588 (2019), doi: 10.1016/j. apenergy.2019.04.131.
  8.  A. Shah, P. Tunestal, and B. Johansson, “Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines”, SAE Tech. Paper 2015‒01‒0867 (2015), doi: 10.4271/2015-01-0867.
  9.  W. Attard, N. Fraser, P. Parsons, and E. Toulson, “A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain”, SAE Int. J. Engines 3(2), 20‒37 (2010), doi: 10.4271/2010-01-1457.
  10.  I. Pielecha, K. Wisłocki, W. Cieślik, and Ł. Fiedkiewicz, “Prechamber selection for a two stage turbulent jet ignition of lean air-gas mixtures for better economy and emission”, 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018), E3S Web of Conferences, 70, 03010 (2018), doi: 10.1051/e3sconf/20187003010.
  11.  L.O. Guelder, “Turbulent premixed flame propagation models for different combustion regimes”, 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1990, doi: 10.1016/S0082-0784(06)80325-5.
  12.  B.F. Magnussen and B.H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1976, doi: 10.1016/S0082- 0784(77)80366-4.
  13.  AVL BOOST. AVL AST Documentation 2019.
  14.  M. Gholamisheeri, I.S. Wichman, and E.Toulson, “A study of the turbulent jet flow field in a methane fuelled turbulent jet ignition (TJI) system”, Combust. Flame 183, 194‒206 (2017), doi: 10.1016/j.combustflame.2017.05.008.
  15.  G. Gentz, B. Thelen, M. Gholamisheeri, P. Litke, A. Brown, J. Hoke, and E. Toulson, “A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine”, Appl. Therm. Eng. 81, 399‒411 (2015), doi: 10.1016/j.applthermaleng.2015.02.026.
Go to article

Authors and Affiliations

Ireneusz Pielecha
1

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper the reburning process has been characterised. A dependence of NOx in flue gas content decreasing efficiency on some parameters has been pointed. During experiment the reburning process has been controlled with pulse disturbation of reburning fuel injection. An increasing of NOx reduction efficiency has been noticed, due to pulsations intensifying mixing process in reduction zone.
Go to article

Authors and Affiliations

Lech Szecówka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possible applications of using acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum are possible to generate. These results may be helpful in the future diagnostics of internal combustion engines. In the paper, the results of scientific work in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology are included.
Go to article

Authors and Affiliations

Adam Deptuła
Dariusz Kunderman
Piotr Osiński
Urszula Radziwanowska
Radosław Włostowski
Download PDF Download RIS Download Bibtex

Abstract

This paper describes experiments on the application of sodium bicarbonate desulphurisation in the coal-fuel boiler. The boiler has been in operation for several years now and it has refiably fulfilled the original assignment to reduce SO2 emissions from the value of 1200 - 1500 mg/Nm3 to 400 mg/Nm3. Higher desulphurisation efficiency is determined only by the ratio of Na/S sorbent dosage. The resulting product of desulphurisation is stored together with fly ash in underground mines, and has no influence on the groundwater. Positive experience of the tests and boiler operation lies in higher reactivity of sodium and sulphur as compared with conventional methods based on limestone. Within the scope of the secondary measures of elimination of sulphur oxides in combustion products, an experimental dry-method desulphurisation of combustion products was performed by blasting an agent containing sodium bicarbonate NaHCO3 (99.6 %) into the flue ways before the electrostatic precipitator in a coal-fuel furnace with the steam output of 220 t/h.

Go to article

Authors and Affiliations

Pavel Kolat
Bohumír Čech
Mojmír Vrtek
David Tomášek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is a comparative study of co-firing high shares of wooden and agro-biomass with hard coal under oxy-fuel and air conditions in the laboratory scale reactor for pulverised fuels. The investigations of co-combustion behaviour NOx and SO2 emission and burnout were carried out for selected blends. Detailed investigations were concentrated on determining the effect of dosing oxygen method into the burner on NOx emission. The paper presents the results of co-firing blends with 20 and 50% share of biomass by mass in air and oxy-combustion condition. Biomass oxy-cofiring integrated with CCS (CO2 capture) technology could be a carbon negative technology. The reduction of NOx emissions in the conditions of oxy-co-firing is dependent on the concentration of oxygen in the primary stream of oxidiser. A significant reduction of NOx was achieved in the case of low oxygen concentration in the primary stream for each investigated blends. Co-firing of biomass with coal in an oxygen enriched atmosphere enhances combustion behaviour, lowers fuel burnout and as a result increases of the boiler efficiency.

Go to article

Authors and Affiliations

Halina Pawlak-Kruczek
Michał Ostrycharczyk
Marcin Baranowski
Michał Czerep
Jacek Zgóra
Download PDF Download RIS Download Bibtex

Abstract

Fly ashes from the combustion of lignite coal are suitable materials for the creation of suspensions in which CO2 is bound by mineral carbonation. Considering their limited economic uses, mineral sequestration, as a stage of the CCS technology in lignite coal power plants, can be a way of recycling them. Mineral sequestration of CO2 was researched using fly ashes from the combustion of lignite coal in the Pątnów power plant, distinguished by a high content of CaO and free CaO. Research into phase composition confirmed the process of carbonation of the whole calcium hydroxide contained in pure suspensions. The degree of CO2 binding was determined on the basis of thermogravimetric analysis. A rise in the content of CaCO3 was found in the suspensions after subjecting them to the effects of carbon dioxide. Following carbonation the pH is lowered. A reduction in the leaching of all pollutants was discovered in the studied ashes. The results obtained were compared to earlier research of ashes from the same power plant but with a different chemical composition. Research confirmed that water suspensions of ashes from the combustion of lignite coal in the Pątnów power plant are distinguished for a high degree of carbonation.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
Download PDF Download RIS Download Bibtex

Abstract

Human-induced climate change is caused by the emission of pollutants into the environment. One of the sources of the formation of harmful compounds is the combustion of solid fuels in heating boilers. These contribute to the occurrence of respiratory and circulatory system diseases, allergies, cancer and developmental disorders in children. In this research, the concentrations of carbon monoxide, nitrogen oxides, sulfur dioxide and hydrocarbons in samples obtained from the combustion of hard coal intended for fuel in household furnaces were measured using an exhaust-gas analyzer equipped with electrochemical sensors. The combustion of test samples was performed using an up-draft research furnace. The results show that the average total concentration of the tested pollutants emitted from the combustion of type 32 and type 33 coal is over 20% lower compared to the emission from the combustion of type 31 coal. Moreover, the concentration of carbon monoxide, the permissible levels of which are regulated by the chimney emission standards, is significantly lower during the combustion of type 32 and type 33 coal compared to the combustion of type 31 coal. Therefore, one of the ways to locally reduce pollutant emission from the combustion of solid fuels in home heating boilers might be the accurate choice of the type of hard coal used for heating. Before the use of coal stoves in households is completely dismissed, local regulations can be introduced to limit emissions in places where air quality indicators are exceeded and improve the health of the population.
Go to article

Authors and Affiliations

Aleksandra Kęska
1
ORCID: ORCID
Iwona Jatowczyc-Borkowska
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the investigations of fluidized combustion of oily wastes derived from cold rollingmill process on a zeolite bed. Oily wastes generated in the rolling-mill process arc one of the most hazardous residues from metallurgical works because the toxic additives content. The experiments were carried out using a small laboratory combustor with full measurement equipment. The measurement apparatus associated with the combustion chamber made it possible to measure the basic parameters of the process including the composition of exhaust gasses. It has been shown that the combustion of oily wastes from cold rolling-mill process can be conducted efficiently and friendly for the environment.
Go to article

Authors and Affiliations

Sławomir Leszczyński
Download PDF Download RIS Download Bibtex

Abstract

ln laboratory electrically heated entrained flow reactor with quasi one-dimensional laminar flow the influence of fuel properties on the nitrogen oxide emission for 23 coals of various rank from brown coal, bituminous coal to anthracites has been examined. For one brown coal type twofold increase of nitrogen content resulted in NO, emissions increase of about 30%. Increasing rank from brown coal to bituminous coal increases NO emissions and next a fall in the anthracites range. With nitrogen content increase NO - emission grows a~d the ratio of fuel nitrogen conversion to nitrogen oxide decreases. Experiments results and their statistical analysis were used to determine relationships describing NO, emissions and conversion ratio of fuel nitrogen to nitrogen oxide as functions of two variables. describing coal properties, i.e. nitrogen content and fuel ratio (fixed carbon to volatile matter ratio).
Go to article

Authors and Affiliations

Wiesław Rybak
Wiesław Ferens
Arkadiusz Maczuga
Download PDF Download RIS Download Bibtex

Abstract

The advancement of contemporary internal combustion engine technologies necessitates not only design enhancements but also the exploration of alternative fuels or fuel catalysts. These endeavors are integral to curbing the emission of hazardous substances in exhaust gases. Most contemporary catalyst additives are of complex chemical origins, introduced into the fuel during the fuel preparation stage. Nonetheless, none of these additives yield a significant reduction in fuel consumption. The research endeavors to develop the fuel system of a primary marine diesel engine to facilitate the incorporation of pure hydrogen additives into diesel fuel. Notably, this study introduces a pioneering approach, employing compressed gaseous hydrogen up to 5 MPa as an additive to the principal diesel fuel. This method obviates the need for extensive modifications to the ship engine fuel equipment and is adaptable to modern marine power plants. With the introduction of modest quantities of hydrogen into the primary fuel, observable shifts in the behavior of the fuel equipment become apparent, aligning with the calculations outlined in the methodology. The innovative outcomes of the experimental study affirm that the mass consumption of hydrogen is contingent upon the hydrogen supply pressure, the settings of the fuel equipment, and the structural attributes of the fuel delivery system. The modulation of engine load exerts a particularly pronounced influence on the mass admixture of hydrogen. The proportion of mass addition of hydrogen in relation to the pressure of supply (ranging from 4–12 MPa) adheres to a geometric progression (within the range of 0.04–0.1%). The application of this technology allows for a reduction in the specific fuel consumption of the engine by 2–5%, contingent upon the type of fuel system in use, and concurrently permits an augmentation in engine power by up to 5%. The resultant economic benefits are estimated at 1.5–4.2% of the total fuel expenses. This technology is applicable across marine, automotive, tractor, and stationary diesel engines. Its implementation necessitates no intricate modifications to the engine design, and its utilization demands no specialized skills. It is worth noting that, in addition to hydrogen, other combustible gases can be employed.
Go to article

Authors and Affiliations

Denys Shalapko
1
Mykola Radchenko
1
Anatoliy Pavlenko
2
ORCID: ORCID
Roman Radchenko
1
Andrii Radchenko
1
Maxim Pyrysunko
1

  1. Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine
  2. Kielce University of Technology, Department of Building Physics and Renewable Energy, Aleja Tysia˛clecia Pan´stwa Polskiego 7,25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents cycle models of cylinder pressure and models of forces in crank-piston system based on a sample of experimental results. The models make it possible to determine the cycles in an arbitrary state of engine operation. Model limitations and the conditions for model applicability are also discussed. An example simulation of the processes is presented for well identified and verified models pertaining to the engine of Polonez 1,5 GU automobile. The method can also be applied to other types of engines after identification of the model parameters based on a sample of at least six indicator courses measured in different states of engine operation.
Go to article

Authors and Affiliations

Krzysztof Paweł Wituszyński
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of tests of the application of magnetic fuel activators, which improve the efficiency of metallurgical furnaces and positively affect the ecological aspects of their work. Energy indicators for metallurgical furnaces during operation before and after installation of magnetic fuel activators as well as the results of composition and concentration of emitted pollutants are included in the paper. The magnetic activation of liquid and gaseous fuels modifies their structure. As a result of the activation, the fuel mixture is selectively saturated with oxygen in the zone of free fuel flow. The combustion conditions were close to optimal, which is confirmed by the reduction of pollutants in the exhaust gases. Fuel saving in the combustion process is also a measurable economic effect. The tests included ovens of several types: pusher furnace, one and two chamber furnaces and a furnace with a rotary shaft. Several-month measurement cycles were carried out on each of them. The experiments consisted in the analysis of gas and heat consumption per month in individual furnaces before and after the use of magnetic fuel activators. The effectiveness of using activators was determined on the basis of the results of the tests carried out. As a result of a twelve-month test cycle on the pusher type furnace, a 36% reduction in gas consumption and a 22% reduction in heat consumption were achieved. After a seventeen-month measurement cycle on chamber furnaces, a 35% reduction in gas consumption and 6% in heat consumption were achieved. The tests on furnaces with a rotary shaft lasted fourteen months and showed a reduction in gas consumption by 8%. An improvement in the composition of fumes in the furnace atmosphere was achieved in all units with magnetic activators installed, as well as a reduction in the emission of harmful pollutants into the atmosphere from the installation.

Go to article

Authors and Affiliations

Przemysław Szymanek
Anna Pajdak
ORCID: ORCID
Arkadiusz Szymanek
Download PDF Download RIS Download Bibtex

Abstract

Due to the fact that the landfill deposition of municipal waste with the higher heating value (HHV) than 6 MJ/kg in Poland is prohibited, the application of waste derived fuels for energy production seems to be good option. There is a new combined-heat-and-power (CHP) plant in Zabrze, where varied solid fuels can be combusted. The formation of ashes originating from the combustion of alternative fuels causes a need to find ways for their practical application and demands the knowledge about their properties. Therefore, the present work is devoted to studying the co-combustion of solid recovered fuel (SRF) and coal, its impact on fly ash quality and the potential application of ashes to synthesis zeolites. The major objectives of this paper is to present the detail characteristics of ash generated during this process by using the advanced instrumental techniques (XRF, XRD, SEM, B ET, TGA). The co-combustion were carried out at 0.1 MWth fluidized bed combustor. The amount of SRF in fuel mixture was 1, 5, 10 and 20%, respectively. The focus is on the comparison the ashes depending on the fuel mixture composition. Generally, the ashes characterise high amounts of SiO2, Al2O3 and Fe2O3. It is well observed, that the chemical composition of ashes from co-combustion of blends reflects the amount of SRF addition. Considering the chemical composition of studied ashes, they can be utilize as a zeolites A. The main conclusions is that SRF can be successfully combusted with coal in CFB technology and the fly ashes obtained from coal + SRF fuel mixtures can be used to synthesis zeolites.
Go to article

Authors and Affiliations

Aleksandra Ściubidło
Wojciech Nowak
Download PDF Download RIS Download Bibtex

Abstract

Natural gas combustion was carried out in air enriched with oxygen in the amount of 25 and 29% with addition of CO2 in place of part of nitrogen. The research was carried out at different flow rates of gas and oxygen excess ratios. The concentration of CO and NOx was analyzed. It has not been proved that the increased oxygen concentration influences significantly the CO concentration. However, the addition of CO2 caused a substantial variability of CO concentration in the exhaust gas, in contrast to the concentration of NOx which decreased monotonically. Model calculations, performed with use of FactSage, indicate an increase in the concentration of CO not only for the air enriched with oxygen, but after adding CO2 too, as well

Go to article

Authors and Affiliations

Zofia Kalicka
Wojciech Jerzak
Elżbieta Kawecka-Cebula
Download PDF Download RIS Download Bibtex

Abstract

CO, NO, NO2 and dust concentrations from combustion of deciduous wood (birch, beech, lime-tree) logs and pellets in two heating boilers (15 and 25 KW), situated in a heat station were investigated. Time dependences of pollutant concentrations as well as the impact of temperature in the combustion chamber and oxygen concentration on pollutant concentrations were presented. Pollutant emission indices have been estimated.

Go to article

Authors and Affiliations

Marek Juszczak

This page uses 'cookies'. Learn more