Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.

Go to article

Authors and Affiliations

P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

In this stud y, we attempt to analyse free nonlinear vibrations of buckling in laminated composite beams. Two new methods are applied to obtain the analytical solution of the nonlinear governing equation of the problem. The effects of different parameters on the ratio of nonlinear to linear natural frequencies of the beams are studied. These methods give us an agreement with numerical results for the whole range of the oscillation amplitude.

Go to article

Authors and Affiliations

G. Abdollahzadeh
M. Ahmadi
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.

Go to article

Authors and Affiliations

D. Kisała
K. Furtak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the capabilities of ABAQUS finite-element program [1] in modelling sandwich beams and plates resting on deformable foundations. Specific systems of sandwich beams and plates separated by an elastic core layer were subjected to the action of point and distributed moving loads. A few theoretical examples are provided to present different techniques of modelling the foundations and the moving loads. The effects of the boundary conditions and of the foundation parameters on the deflections of the analysed structures are also presented.

Go to article

Authors and Affiliations

A. Zbiciak
M. Ataman
W. Szcześniak
Download PDF Download RIS Download Bibtex

Abstract

A method of calculating the deflections of steel plate-concrete composite beams is proposed. In the hybrid work of such beams the properties of reinforced concrete and composite structures are combined. This convention should be followed in considering their ultimate capacity and serviceability limit state. The proposed solution has been verified in experimental studies performed by the authors. Good compatibility of theoretical calculations and experimental results has been obtained. It allows the theoretical solution to be used in the analysis of other cases with parameters different than those of the discussed beams. In the experiments done by the author six beams of total length of 5.20 m and theoretical length of 5,00 m were used. The cross section was rectangular, 0.24 m in width and 0.49 m in height. The steel plate 4.74 m long was 6.10 and 16 mm thick. The diameter of the flexible connectors was 13 mm. Their spacing varied between 80 and 200 mm. Owing to the flexibility of the connectors the interface slip between the steel and concrete parts was included in the theoretical solutions. The results of an in-depth analysis indicate that the deflections of steel plate-concrete composite beams are affected by the compressive strength of concrete and the yield point of steel as well as connectors’ diameter and spacing. This impact varies, that of the yield point of the steel from which the plate is made being the highest.
Go to article

Authors and Affiliations

Dawid Kisała
1
Kazimierz Furtak
1
ORCID: ORCID

  1. Department of Bridge and Tunnel Building, Tadeusz Kościuszko Cracow University of Technology, Warszawska 24 St., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to assess the bending strength of steel plate - concrete composite members, based on an experimental study performed by the authors together with theoretical and numerical analyses. The values of the mechanical parameters of the materials the beams were made from were adopted on the basis of the tests results. The proposed solutions have been verified by experiment. For this purpose the results of tests performed by the authors and other researchers have been used. The former ones are original, and the way of their presentation makes them applicable by other researchers. Following the results it can be stated that with respect to bending strengths from the experimental study the results obtained from the theoretical analysis are underestimated 6,6 % on average. The results based on the numerical analysis, on the other hand, are overestimated by - 7,5 % on average. The results of the theoretical and numerical analyses indicate that the interface slip between the steel plate and concrete part affect the bending strength of steel plate-concrete composite beams only slightly (about 2% on average).

Go to article

Authors and Affiliations

Dawid Kisała
Kazimierz Furtak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work is a five-layered composite beam with clamped ends subjected to a uniformly distributed load along its length. Two analytical models of this beam are developed with consideration of the shear effect. The first model is formulated on the basis of the classical zig-zag theory. Whereas, the second model is developed using an individual nonlinear shear deformation theory with consideration of the classical shear stress formula (called Zhuravsky shear stress). The system of two differential equations of equilibrium for each beam model is obtained based on the principle of stationary total potential energy. These systems of equations are exactly analytically solved. The shear effect function and the maximum deflection are determined for each of these two beam models. Detailed calculations are carried out for exemplary beams of selected dimensionless sizes and material constants. The main goal of the research is to develop two analytical models of this beam, determine the shear effect function, the shear coefficient, and the maximum deflection in the elastic range for each model, as well as to perform a comparative analysis.
Go to article

Authors and Affiliations

Krzysztof Magnucki
1
ORCID: ORCID

  1. Łukasiewicz Research Network, Poznan Institute of Technology, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a review of composite structures in which aluminium alloys are used. Current trends in the research of composite structures with aluminium girders and their possible applications in structural engineering were shown. In the presented solutions, advantageous properties of aluminium alloys were exploited, such as high strength-to-weight ratio, corrosion resistance and recyclability. The authors demonstrated the structural behaviour of aluminium-concrete and aluminiumtimber composite beams based on their own tests as well as investigations presented in the literature. Furthermore, aluminium-concrete composite columns, a composite mullion made of an aluminium alloy and timber, and a military bridge consisting of aluminium truss components, a stay-in-place-form, reinforcement and concrete were presented. In addition to the description of the structural elements, the main conclusions from their experimental, theoretical and numerical analyses were also demonstrated in this paper. The connection of aluminium girders with concrete or timber slabs provided for the increase of the load-bearing capacity and stiffness, and it eliminated the problem of local buckling in girder flanges and lateral-torsional buckling of girders in the analysed solutions.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID
Maciej Szumigała
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, free and forced vibration responses of carbon nanotube reinforced uniform and tapered composite beams are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced uniform and tapered composite beams are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available in literature. Various parametric studies are also performed to investigate the effect of aspect ratio, percentage of CNT content, ply orientation, and boundary conditions on natural frequencies and mode shapes of a CNT reinforced composite beam. It was observed that the addition of carbon nanotube in fiber reinforced polymer composite (FRP) beam enhances the stiffness of the structure which consequently increases the natural frequencies and alters the mode shapes.

Go to article

Authors and Affiliations

Ananda Babu Arumugam
Vasudevan Rajamohan
Naresh Bandaru
Edwin Sudhagar P.
Surajkumar G. Kumbhar
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a fiber-based model proposed for computing the nonlinear longitudinal shear distribution in composite steel-concrete beams. The presented method incorporates the accurate stress-strain relationship with strain softening for concrete and bi-linear constitutive relation for structural steel, both in agreement with Eurocodes, however any one-dimensional constitutive relation can be used. The numerical solution for a simply supported beams loaded with the uniform load, concentrated force and both was presented. The results indicate that the highest value of the shear flow for a beam under an uniform load is at the ends and in the one third of the span length and for the point load, the maximum shear is in the proximity of the concentrated force.

Go to article

Authors and Affiliations

B. Grzeszykowski
E. Szmigiera
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to highlight the performance of beams composed of lightweight concretefilled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.

Go to article

Authors and Affiliations

Khawala A. Farhan
Muhaned A. Shallal

This page uses 'cookies'. Learn more