Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 35
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis of the thermal-flow characteristics for a laminar flow inside a rectangular microchannel. The flow of water through channels with thin obstacles mounted on opposite walls was analyzed. The studies were conducted with a low Reynolds number (from 20 to 200). Different heights of rectangular obstacles were analyzed to see if geometrical factors influence fluid flow and heat exchange in the microchannel. Despite of the fact that the use of thin obstacles in the microchannels leads to an increase in the pressure drop, the increase in the height of the obstacles favors a significant intensification of heat exchange with the maximum thermal gain factor of 1.9 for the obstacle height coefficient h/H=0.5, which could be acceptable for practical application.
Go to article

Bibliography

[1] Y.-T. Yang and S. Yang. Numerical study of turbulent flow in two-dimensional channel with surface mounted obstacle. International Journal of Heat and Mass Transfer, 37(18):2985–2991, 1994. doi: 10.1016/0017-9310(94)90352-2.
[2] K. Sivakumar, T. Sampath Kumar, S. Sivasankar, V. Ranjithkumar, and A. Ponshanmugakumar. Effect of rib arrangements on the flow pattern and heat transfer in internally ribbed rectangular divergent channels. Materials Today: Proceedings, 46(9):3379–3385, 2021. doi: 10.1016/j.matpr.2020.11.548.
[3] T.M. Liou, S.W. Chang, and S.P. Chan. Effect of rib orientation on thermal and fluid-flow features in a two-pass parallelogram channel with abrupt entrance. International Journal of Heat and Mass Transfer, 116:152–165, 2018. doi: 10.1016/j.ijheatmasstransfer.2017.08.094.
[4] W. Yang, S. Xue, Y. He, and W. Li. Experimental study on the heat transfer characteristics of high blockage ribs channel. Experimental Thermal and Fluid Science, 83:248–259, 2017. doi: 10.1016/j.expthermflusci.2017.01.016.
[5] F.B. Teixeira, M.V. Altnetter, G. Lorenzini, B.D. do A. Rodriguez, L.A.O. Rocha, L.A. Isoldi, and E.D. dos Santos. Geometrical evaluation of a channel with alternated mounted blocks under mixed convection laminar flows using constructal design. Journal of Engineering Thermophysics, 29(1): 92–113, 2020. doi: 10.1134/S1810232820010087.
[6] A. Korichi and L. Oufer. Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. International Journal of Thermal Sciences, 44(7):644–655, 2005. doi: 10.1016/j.ijthermalsci.2004.12.003.
[7] L.C. Demartini, H.A. Vielmo, and S.V. Möller. Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26(2):153–159, 2004. doi: 0.1590/S1678-58782004000200006.
[8] Y.T. Yang and C.Z. Hwang. Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat and Mass Transfer, 46(5):771–780, 2003. doi: 0.1016/S0017-9310(02)00360-5.
[9] G. Wang, T. Chen, M. Tian, and G. Ding. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. International Journal of Heat and Mass Transfer, 148:119142, 2020. doi: 10.1016/j.ijheatmasstransfer.2019.119142.
[10] S. Mahjoob and S. Kashkuli. Thermal transport analysis of injected flow through combined rib and metal foam in converging channels with application in electronics hotspot removal. International Journal of Heat and Mass Transfer, 177:121223, 2021. doi: 10.1016/j.ijheatmasstransfer.2021.121223.
[11] L. Chai, G.D. Xia, and H.S. Wang. Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Applied Thermal Engineering, 92:32–41, 2016. doi: 10.1016/j.applthermaleng.2015.09.071.
[12] Y. Yin, R. Guo, C. Zhu, T. Fu, and Y. Ma. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 236:116306, 2020. doi: 10.1016/j.seppur.2019.116306.
[13] A. Behnampour O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, M. Zarringhalam, and R. Mashayekhi. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-Dimensional Systems and Nanostructures, 91:15–31, 2017. doi: 10.1016/j.physe.2017.04.006.
[14] M.R. Gholami, O.A. Akbari, A. Marzban, D. Toghraie, G.A.S. Shabani, and M. Zarringhalam. The effect of rib shape on the behavior of laminar flow of {oil/MWCNT} nanofluid in a rectangular microchannel. Journal of Thermal Analysis and Calorimetry, 134(3):1611–1628, 2018. doi: 10.1007/s10973-017-6902-3.
[15] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-{Al2O3} nanofluid in a rib-microchannel. Applied Mathematics and Computation, 290:135–153, 2016. doi: 10.1016/j.amc.2016.05.053.
[16] B. Mondal, S. Pati, and P.K. Patowari. Analysis of mixing performances in microchannel with obstacles of different aspect ratios. Journal of Process Mechanical Engineering, 233(5):1045–1051, 2019. doi: 10.1177/0954408919826748.
[17] L. Chai, G.D. Xia, and H.S. Wang. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls -- Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 97:1081–1090, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.076.
[18] P. Pontes, I. Gonçalves, M. Andredaki, A. Georgoulas, A.L.N. Moreira, and A.S. Moita. Fluid flow and heat transfer in microchannel devices for cooling applications: Experimental and numerical approaches. Applied Thermal Engineering, 218:119358, 2023. doi: 10.1016/j.applthermaleng.2022.119358.
[19] B.K. Srihari, A. Kapoor, S. Krishnan, and S. Balasubramanian. Computational fluid dynamics studies on the flow of fluids through microchannel with intentional obstacles. AIP Conference Proceedings, 2516(1):170003. doi: 10.1063/5.0108550.
[20] T. Grzebyk and A. Górecka-Drzazga. Vacuum microdevices. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(1):19–23, 2012. doi: 10.2478/v10175-012-0004-y.
[21] M. Kmiotek and A. Kucaba-Piętal. Influence of slim obstacle geometry on the flow and heat transfer in microchannels. Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(2):111–118, 2018. doi: 10.24425/119064.
[22] S. Baheri Islami, B. Dastvareh, and R. Gharraei. An investigation on the hydrodynamic and heat transfer of nanofluid flow, with non-Newtonian base fluid, in micromixers. International Journal of Heat and Mass Transfer, 78:917–929, 2014. doi: 10.1016/j.ijheatmasstransfer.2014.07.022.
[23] S. Baheri Islami, B. Dastvareh, and R. Gharraei. Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer. International Communications in Heat and Mass Transfer, 43:146–154, 2013. doi: 10.1016/j.icheatmasstransfer.2013.01.002.
[24] C.K. Chung, C.Y. Wu, and T.R. Shih. Effect of baffle height and reynolds number on fluid mixing, Microsystem Technologies, 14(9-11):1317–1323, 2008, doi: 10.1007/s00542-007-0511-1.
[25] I. Adina R&D, Theory and Modling Guide, Vollume III: ADINA CFD&FSI, Report ARD. 2019.
[26] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, 1998.
Go to article

Authors and Affiliations

Małgorzata Kmiotek
1
ORCID: ORCID
Robert Smusz
1
ORCID: ORCID

  1. Rzeszow University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primary humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.

Go to article

Authors and Affiliations

X.R. Ding
Y.Y. Cino
Y.Y. Chen
Download PDF Download RIS Download Bibtex

Abstract

Plate fin-tube heat exchangers fins are bonded with tubes by means of brazing or by mechanical expansion of tubes. Various errors made in the process of expansion can result in formation of an air gap between tube and fin. A number of numerical simulations was carried out for symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer in forced convection conditions. Different locations of air gap spanning 1/2 circumference of the tube were considered, relatively to air flow direction. Inlet velocities were a variable parameter in the simulations (1– 5 m/s). Velocity and temperature fields for cases with air gap were compared with cases without it (ideal thermal contact). For the case of gap in the back of the tube (in recirculation zone) the lowest reduction (relatively to the case without gap) of heat transfer rate was obtained (average of 11%). The worst performance was obtained for the gap in the front (reduction relatively to full thermal contact in the average of 16%).

Go to article

Authors and Affiliations

Dariusz Andrzejewski
Marcin Łęcki
Artur Gutkowski
Download PDF Download RIS Download Bibtex

Abstract

The joined wing concept is an unconventional airplane configuration, known since the mid-twenties of the last century. It has several possible advantages, like reduction of the induced drag and weight due to the closed wing concept. The inverted joined wing variant is its rarely considered version, with the front wing being situated above the aft wing. The following paper presents a performance prediction of the recently optimized configuration of this airplane. Flight characteristics obtained numerically were compared with the performance of two classical configuration airplanes of similar category. Their computational fluid dynamics (CFD) models were created basing on available documentation, photographs and some inverse engineering methods. The analysis included simulations performed for a scale of 3-meter wingspan inverted joined wing demonstrator and also for real-scale manned airplanes. Therefore, the results of CFD calculations allowed us to assess the competitiveness of the presented concept, as compared to the most technologically advanced airplanes designed and manufactured to date. At the end of the paper, the areas where the inverted joined wing is better than conventional airplane were predicted and new research possibilities were described.

Go to article

Authors and Affiliations

Adam Sieradzki
Adam Dziubiński
Cezary Galiński
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this article is to verify and validate the mathematical description of the airflow around a wind turbine with vertical axis of rotation, which could be considered as representative for this type of devices. Mathematical modeling of the airflow around wind turbines in particular those with the vertical axis is a problematic matter due to the complex nature of this highly swirled flow. Moreover, it is turbulent flow accompanied by a rotation of the rotor and the dynamic boundary layer separation. In such conditions, the key aspects of the mathematical model are accurate turbulence description, definition of circular motion as well as accompanying effects like centrifugal force or the Coriolis force and parameters of spatial and temporal discretization. The paper presents the impact of the different simulation parameters on the obtained results of the wind turbine simulation. Analysed models have been validated against experimental data published in the literature.
Go to article

Authors and Affiliations

Andrzej J. Nowak
Tomasz Krysiński
Zbigniew Buliński
Download PDF Download RIS Download Bibtex

Abstract

The present study deals with modelling and validation of a planar Solid Oxide Fuel Cell (SOFC) design fuelled by gas mixture of partially pre-reformed methane. A 3D model was developed using the ANSYS Fluent Computational Fluid Dynamics (CFD) tool that was supported by an additional Fuel Cell Tools module. The governing equations for momentum, heat, gas species, ion and electron transport were implemented and coupled to kinetics describing the electrochemical and reforming reactions. In the model, the Water Gas Shift reaction in a porous anode layer was included. Electrochemical oxidation of hydrogen and carbon monoxide fuels were both considered. The developed model enabled to predict the distributions of temperature, current density and gas flow in the fuel cell.

Go to article

Authors and Affiliations

Zdzisław Jaworski
Paulina Pianko-Oprych
Tomasz Zinko
Download PDF Download RIS Download Bibtex

Abstract

Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coefficients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

Go to article

Bibliography

[1] B.F. Blackwell. The vertical-axis wind turbine “How it works”. Energy Report, SLA-74-0160, Sandia Laboratories, 1974.
[2] K. Jankowski. Vertical axis turbine of Darrieus h-type with variable blade incidence angle concept design. M.Sc. Thesis, Warsaw University of Technology, Poland, 2009.
[3] I. Paraschivoiu. Wind Turbine Design: With Emphasis on Darrieus Concept. Polytechnic International Press, Canada, 2002.
[4] I. Paraschivoiu, O. Trifu, and Saeed F. H-Darrieus wind turbine with blade pitch control. International Journal of Rotating Machinery, 2009:ID 505343, 2009. doi: 10.1155/2009/505343.
[5] R. Bravo, S. Tullis, and S. Ziada. Performance testing of a small vertical-axis wind turbine. In Proceedings of the 21st Canadian Congress of Applied Mechanics CANCAM, Toronto, Canada, 7-9 June 2007.
[6] M.R. Islam, S. Mekhilef, and R. Saidur. Progress and recent trends of wind energy technology. Renewable and Sustainable Energy Reviews, 21:456–468, 2013. doi: 10.1016/j.rser.2013.01.007.
[7] F. Scheurich, T.M. Fletcher, and R.E. Brown. The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine. In 4 8th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 4-7 Jan. 2010. doi: 10.2514/6.2010-1579.
[8] H.A. Madsen, T.J. Larsen, U.S. Paulsen, and L. Vita. Implementation of the actuator cylinder flow model in the HAWC2 code for aeroelastic simulations on vertical axis wind turbines. In Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Dallas, USA, 7-10 Jan. 2013. doi: 10.2514/6.2013-913.
[9] W. Tjiu, T. Marnoto, S. Mat, M.H. Ruslan, and K. Sopian. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multimegawatt Darrieus VAWT development. Renewable Energy, 75:560–571, March 2015. doi: 10.1016/j.renene.2014.10.039.
[10] M. Islam, D.S.K. Ting, and A. Fartaj. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews, 12(4):1087–1109, 2008. doi: 10.1016/j.rser.2006.10.023.
[11] M Abdul Akbar and V Mustafa. A new approach for optimization of vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 153:34–45, 2016. doi: 10.1016/j.jweia.2016.03.006.
[12] J.H. Strickland, T. Smith, and K. Sun. A vortex model of the Darrieus turbine: An analytical and experimental study. Report SAND81-7017, Sandia National Laboratories, 1981.
[13] C.S. Ferreira, H.A. Madsen, M. Barone, B. Roscher, P. Deglaire, and I. Arduin. Comparison of aerodynamic models for vertical axis wind turbines. Journal of Physics: Conference Series, 524(1):012125, 2014. doi: 10.1088/1742-6596/524/1/012125.
[14] P. Lichota and D.A. Noreña. A priori model inclusion in the multisine maneuver design. In 17th International Carpathian Control Conference (ICCC), pages 440–445, Tatranska Lomnica, Slovakia, 29 May – 1 June 2016. doi: 10.1109/CarpathianCC.2016.7501138.
[15] A. Allet, S. Hallé, and I. Paraschivoiu. Numerical simulation of dynamic stall around an airfoil in Darrieus motion. Journal of Solar Energy Engineering, 121:69–76, 1999. 10.1115/1.2888145.
[16] C.S. Ferreira, H. Bijl, G. van Bussel, and G. van Kuik. Simulating dynamic stall in a 2D VAWT: modeling strategy, verification and validation with particle image velocimetry data. Journal of Physics: Conference Series, 75:012023, 2007. doi: 10.1088/1742-6596/75/1/012023.
[17] E. Amet, T. Maître, C. Pellone, and J.L. Achard. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. Journal of Fluids Engineering, 131(11):111103, 2009. doi: 10.1115/1.4000258.
[18] W.Z. Shen, J.H. Zhang, and J.N. Sørensen. The actuator surface model: a new Navier-Stokes based model for rotor computations. Journal of Solar Energy Engineering, 131(1):011002, 2009. doi: 10.1115/1.3027502.
[19] F. Schuerich and R.E. Brown. Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines. AIAA Journal, 49(11):2511–2521, 2011. doi: 10.2514/1.J051060.
[20] A. Laneville and P. Vittecoq. Dynamic stall: the case of the vertical axis wind turbine. Journal of Solar Energy Engineering, 108(2):140–145, 1986. doi: 10.1115/1.3268081.
[21] M.C. Claessens. The Design and Testing of Airfoils for Application in Small Vertical Axis Wind Turbines. M.Sc. Thesis, Delft University of Technology, The Netherlands, 2006.
[22] P. Marsh, D. Ranmuthugala, I. Penesis, and G. Thomas. Three dimensional numerical simulations of a straight-bladed vertical axis tidal turbine. In 1 8th Australasian Fluid Mechanics Conference, Launceston, Australia, 3-7 December 2012.
[23] K. Rogowski. Analysis of Performance of the Darrieus Wind Turbines. Ph.D. Thesis, Warsaw University of Technology, Poland, 2014.
[24] K. Rogowski and R. Maronski. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37
[25] F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. doi: 10.2514/3.12149.
[26] O. Guerri, A. Sakout, and K. Bouhadef. Simulations of the fluid flow around a rotating vertical axis wind turbine. Wind Engineering, 31(3):149–163, 2007. doi: 10.1260/030952407781998819.
[27] F. Scheurich, T.M. Fletcher, and R.E. Brown. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy, 14(2):159–177, 2011. doi: 10.1002/we.409.
Go to article

Authors and Affiliations

Krzysztof Rogowski
1
Ryszard Maroński
1
Janusz Piechna
1

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.
Download PDF Download RIS Download Bibtex

Abstract

It is commonly known that the cause of serious accidents in underground coal mining is methane. Thus, computational fluid dynamics (CFD) becomes a useful tool to simulate methane dispersion and to evaluate the performance of the ventilation system in order to prevent mine accidents related to methane. In this study, numerical and experimental studies of the methane concentration and air velocity behaviour were carried out. The experiment was conducted in an auxiliary ventilated coal heading in Turkish Hard Coal Enterprises (TTK), which is the most predominant coal producer in Turkey. The simulations were modeled using Fluent-Ansys v.12. Significant correlations were found when experimental values and modeling results were compared with statistical analysis. The CFD modeling of the methane and air velocity in the headings especially uses in auxiliary ventilation systems of places where it is hard to measure or when the measurements made are inadequate.
Go to article

Bibliography

[1] J. Toraño, S.Torno, M. Menendez, M. Gent, J. Velasco, Models of methane behaviour in auxiliary ventilation of underground coal mining. Int. J. of Coal Geology 80 (1), 35-43 (2009).
[2] J.K. Richmond, G.C. Price, M.J. Sapko, E.M. Kawenski, Historical summary of coal mine explosions in the United States 1959-1981. In: Bureau of Mines Information Circular (IC-8909), (1983).
[3] The Chamber of Mining Engineers of Turkey (TMMOB), The Occupational Accidents Report in Mining, Turkey (2010).
[4] A .M. Wala, B.J. Kim, Simulation of unsteady-state of airflow and methane concentration processes in mine ventilation systems caused by disturbances in main fan operation. In: Mopusset-Jones (Eds.), the Second US Mine Ventilation Symposium, (1985).
[5] J.S. Edwards, T.X. Ren, R. Jozefowicz, Using CFD to solve mine safety and health problems. In: APCOM XXV Conference, Brisbane, (1995).
[6] M.T. Parra, J.M. Villafruela, F. Castro, C. Méndez, Numerical and experimental analysis of different ventilation systems in deep mines. Building and Env. 41 (2), 87-93 (2006).
[7] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of Methane Dispersion and Innovative Methane Management in Underground Mining Faces. Appl. Mathematical Modelling 38, 3467-3484 (2014).
[8] J.C. Kurnia, A.P. Sasmito, A.S. Mujumdar, Simulation of A Novel Intermittent Ventilation System for Underground Mines. Tunnelling and Underground Space Technology 42, 206-215 (2014).
[9] X. Wang, X. Liu, Y. Sun, J. An, J. Zhang, H. Chen, Construction schedule simulation of a diversion tunnel based on the optimized ventilation time. J. of Hazard Materials 165, 933-943 (2009).
[10] D. Xie, H. Wang, K.J. Kearfott, Z. Liu, S. Mo, Radon dispersion modeling and dose assessment for uranium mine ventilation shaft exhausts under neutral atmospheric stability. J. of Env. Radioactivity 129, 57-62 (2014).
[11] J. Toraño, S. Torno, M. Menendez, M. Gent, Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunnelling Underground Space Technology 26, 201-210 (2011) .
[12] A .M. Wala, J.C. Yingling, J. Zhang, Evaluation of the face ventilation systems for extended cuts with remotely operated mining machines using three-dimensional numerical simulations. In: Metall. and Exploration Annual Meeting Society for Mining, (1998).
[13] S .M. Aminossadati, K. Hooman, Numerical simulation of ventilation air flow in underground mine workings. In: 12th U.S./North American Mine Ventilation Symposium, 253-259 (2008).
[14] M. Branny, Computer simulation of flow of air and methane mixture in the longwall-return crossing zone. Petroleum Journals Online, 1-10 (2007).
[15] N .I. Vlasin, C. Lupu, M. Şuvar, V.M. Pasculescu, S. Arad, Computerised modelling of methane releases exhaust from a retreating logwall face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 274-277 (2013).
[16] Z .H. Zhang, E.K. Hov, N.D. Deng, J.H. Guo, Study on 3D mine tunnel modelling. In: the International Conference on Environment, Ecosystem and Development (EE D’07), 35-40 (2007).
[17] S .M. Radui, G. Dolea, R. Cretan, Modeling and simulation of coal winning process on the mechanized face. In: 4th European Conference on Recent Advances in Civil and Mining Engineering (ECCIE’13), 30-35 (2013).

[18] J. Cheng, S. Li, F. Zhang, C. Zhao, S. Yang, A. Ghosh, J. of Loss Prevention in the Process Industries 40, 285-297 (2016).
[19] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part II: Parametric studies. J. of Naturel Gas Science and Engineering 43, 254-267 (2017b).
[20] Z . Wang, T. Ren, Y. Cheng, Numerical investigations of methane flow characteristics on a longwall face Part I: Methane emission and base model results. J. of Naturel Gas Science and Engineering 43, 242-253 (2017a).
[21] Y . Lu, S. Akhtar, A.P. Sasmito, J.C. Kurnia, Prediction of air flow, methane, and coal dust dispersion in a room and pillar mining face. Int. J. of Mining Science and Technology 27, 657-662 (2017).
[22] Q. Zhang, G. Zhou, X. Qian, M. Yuan, Y. Sun, D. Wang, Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation. J. of Cleaner Production 184, 239-250 (2018).
[23] J. Wachowicz, J.M. Laczny, S. Iwaszenko, T. Janoszek, M. Cempa-Balewicz, Modelling of underground coal gasification process using CFD methods. Arch. Min. Sci. 60, 663-676 (2015).
[24] T . Skjold, D. Castellanos, K.L. Olsen, R.K. Eckhoff, Experimental and numerical investigations of constant volume dust and gas explosions in a 3.6-m flame acceleration tube. J. of Loss Prevention in the Process Industries 30, 164-176 (2014).
[25] C.A. Palmer, E. Tuncalı, K.O. Dennen, T.C. Coburn, R.B. Finkelman, Characterization of Turkish coals: a nationwide perspective. Int. J. Coal Geology 60, 85-115 (2004).
[26] S . Toprak, Petrographic properties of major coal seams in Turkey and their formation. Int. J. of Coal Geology 78, 263-275 (2009).
[27] A .E. Karkınlı, T. Kurban, A. Kesikoglu, E. Beşdok, CFD based risk simulations and management on CBS. In: Congress of Geographic Information Systems, Antalya, Turkey (2011). [28] http://www.theatc.org/events/cleanenergy/pdf/TuesdayMorningBallroom2&3/Bicer, accessed: 09.05.2012.
[29] Turkish Hard Coal Enterprises (TT K), Turkish Hard Coal Enterprise general management activities between 2003 and 2009, (2009).
[30] I. Diego, S. Torno, J. Torano, M. Menendez, M. Gant, A practical use of CFD for ventilation of underground works. Tunnelling Underground Space Technology 26, 189-200 (2011).
[31] S . Torno, J. Torano, M. Ulecia, C. Allende, Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunnelling Underground Space Technology 34, 73-81 (2013).
[32] Z . Altaç, Modeling Samples with Gambit and Fluent. Depart. of the Mech. Eng. of Eskisehir Osmangazi Univ., Turkey (2005).
[33] A . Konuk, S. Önder, Statistics for Mining Engineers. Depart. of the Mining Eng. of Eskisehir Osmangazi Univ., Turkey (1999).
Go to article

Authors and Affiliations

Gülnaz Daloğlu
1
Mustafa Önder
1
Teresa Parra
2

  1. Eskişehir Osmangazi Üniversitesi Müh. Mim. Fak. Maden Mühendi sliği Bölümü, 26480 Eskişehir, Turkey
  2. University of Valladolid, Department of Energy and Fluid Mechanics, Valladolid, Spain
Download PDF Download RIS Download Bibtex

Abstract

In small steam turbines, sometimes the efficiency is not as important as the cost of manufacturing the turbine. The Curtis wheel is a solution allowing to develop a low output turbine of compact size and with a low number of stages. This paper presents three fully dimensional computational fluid dynamics cases of a Curtis stage with full and partial admission. A 1 MW steam turbine with a Curtis stage have been designed. The fully admitted stage reaches a power of over 3 MW. In order to limit its output power to about 1 MW, the partial admission was applied. Five variants of the Curtis stage partial admission were analyzed. Theoretical relations were used to predict the partial admission losses which were compared with a three-dimensional simulations. An analysis of the flow and forces acting on rotor blades was also performed.
Go to article

Bibliography

[1] Achille M., Cardarelli S., Pantano F., Zito M.: Design and CFD analysis of a Curtis turbine stage. In: Proc. 29th Int. Conf. on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, ECOS 2016, Portorož, June 19–23, 2016.
[2] Rashid S., Tremmel M., Waggott J., Moll R.: Curtis stage nozzle/rotor aerodynamic interaction and the effect on stage performance. J. Turbomach. 129(2007), 3, 551–562
[3] Perycz S.: Steam and Gas Turbines. Ossolineum, Wrocław 1992.
[4] Surwilo J., Lampart P., Szymaniak M.: CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine. Open Eng. 5(2015), 1, 360–364.
[5] Kosowski K., Piwowarski M., Włodarski W., Stepien R.: A multistage turbine for a micro power plant. In: Proc. IFToMM Int. Symp. on Dynamics of Steam and Gas Turbines (R. Rzadkowski, Ed.), Gdansk, 1-3 Dec., 2009, Wydawn. IMP PAN, Gdansk 2009, 283–290.
[6] Pan Y., Yuan Q., Zhu G.: Numerical Investigation on the Influence of Inlet Structure on Partial-admission Losses. Proc. Chin. Soc. Electr. Eng. 38(2018), 14, 4156– 4164.
[7] Sakai N., Harada T., Imai Y.: Numerical study of partial admission stages in steam turbine. JSME Int. J. B-Fluid T. 49(2006), 2, 212–217.
[8] Lampart P., Szymaniak M., Rzadkowski R.: Unsteady load of partial admission control stage rotor of a large power steam turbine. In Proc. ASME Turbo EXPO 2004, Power for Land, Sea and Air, Vienna, June 14–17, 2004, ASME GT-2004- 53886, 2004.
[9] Koprowski A., Rzadkowski R.: Computational fluid dynamics analysis of 1 MW steam turbine inlet geometries. Arch. Thermodyn. 42(2021), 1, 35–55.
[10] Rusanov A., Rusanov R.: The influence of stator-rotor interspace overlap of meridional contours on the efficiency of high-pressure steam turbine stages. Arch. Thermodyn. 42(2021), 1, 97–114.
[11] Dejch M.E., Filippov G.A., Lazarev L.Ja.: Collection of Profiles for Axial Turbine Cascades. Machinostroienie, Moscow 1965 (in Russian).
[12] Neuimin V.M.: Methods of evaluating power losses for ventilation in stages of steam turbines of TES. Therm. Eng.+ 61(2014), 10, 765–770.
[13] Ansys CFX, Release 18.2.
[14] Ansys DesignModeller, Release 18.2.
[15] Ansys TurboGrid, Release 18.2.
[16] Ansys CFX, Release 18.2, CFX documentation.
[17] Wagner W., Pruss A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2002), 2, 387–535
Go to article

Authors and Affiliations

Arkadiusz Koprowski
1
Romuald Rządkowski
1 2

  1. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland
  2. Air Force Institute of Technology, Ksiecia Bolesława 6, 01-494 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work aims to determine and compare heat generation and propagation of densely packed gold nanoparticles (Au NPs) induced by a resonant laser beam (532 nm) according to the Mie theory. The heat flux propagation is transferred into the materials, which here are: silica glass; soda-lime-silica glass; borosilicate glass; polymethyl methacrylate (PMMA); polycarbonate (PC); and polydimetylosiloxane (PDMS). This analysis aims to select the optimum material serving as a base for using photo-thermoablation. On the other hand, research focused only on Newtonian heat transfer in gold, not on non-Fourier ones, like the Cattaneo approach. As a simulation tool, a computational fluid dynamics code with the second-order upwind algorithm is selected. Results reveal a near-Gaussian and Gaussian temperature distribution profile during the heating and cooling processes, respectively. Dependence between the maximum temperature after irradiation and the glass thermal conductivity is observed confirming the Fourier law. Due to the maximum heating area, the borosilicate or soda-lime glass, which serves as a base, shall represent an excellent candidate for future experiments.
Go to article

Bibliography

[1] Dash S., Mohanty S., Pradhan S., Mishra B.K.: CFD design of a microfluidic device for continuous dielectrophoretic separation of charged gold nanoparticles. J. Taiwan Inst. Chem. Eng. 58(2016), 39–48.
[2] Paruch M., Mochnacki B.: Cattaneo-Vernotte bio-heat transfer equation. Identification of external heat flux and relaxation time in domain of heated skin tissue. Comput. Assist. Meth. Eng. Sci. 25(2018), 2–3, 71–80.
[3] Alia M.E., Sandeep N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys. 7(2017), 21–30.
[4] Paruch M., Majchrzak E.: The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10(2008), 2, 29–37.
[5] Feng B., Li Z., Zhang X.: Prediction of size effect on thermal conductivity of nanoscale metallic films. Thin Solid Films 517(2009), 8, 2803–2807.
[6] Wang B.-X., Zhou L.-P., Peng X.-F.: Surface and size effects on the specific heat capacity of nanoparticles. Int. J. Thermophys. 1(2006), 27, 139–151.
[7] Mie G.: Beträge zur Optik trüber Medien, speziell kolloidaler Metalösungen. Annalen der Physik 330(1908), 3, 377–445.
[8] Pezzi L., De Sio L. Veltri I., Placido T. et al.: Photo-thermal effects in gold nanoparticles dispersed in thermotropic menamic liquid crystals. Phys. Chem. Chem. Phys. 17(2015), 31, 20281–20287.
[9] Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L.: Thermoplasmonics with Gold Nanoparticles: A new weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2(2021), 8, 1–17.
[10] Annesi F. et al.: Biocompatible and biomimetic keratin capped Au nanoparticles enable the inactivation of mesophilic bacteria via photo-thermal therapy. Colloid. Surface. A 625(2021), 126950.
[11] Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles: Wiley-VCH, 1998.
[12] Guglielmelli A. et al.: Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 16(2021), 2, 121– 138.
[13] Black S.E.: Laser ablation: Effects and Applications. Nova Science, New York 2011.
[14] Radhakrishnan A., Murugesan V.: Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations. AIP Conf. Proc. 1620(2014), 52–57.
[15] Giannini V, Fernandez-Domínguez A.I., Heck S.C., Maier S.A.: Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(2011), 6, 3888 – 3912.
[16] Louis C., Pluchery O. (Eds.): Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College, London 2012.
[17] Martin R.J.: Mie scattering formulae for non-spherical particles. J. Mod. Optic. 12(1993), 40, 2467–2494
[18] Myers T.G.: Why are the slip lengths so large in carbon nanotubes? Microfluid. Nanofluid. 10(2011), 1145–1145.
[19] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(2008), 9, 2632–2637.
[20] Maxwell J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. T. R. Soc. Lond. 170(1879), 231–25.
[21] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Method H. 28(2018), 1, 64–80.
[22] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. AIP Conf. Proc. 2077(2019), 020065-1–020065-9.
[23] Badur J., Freidt M., Ziółkowski P.: Neoclassical Navier–Stokes equations considering the Gyftopolous–Beretta exposition of thermodynamics. Energies 13(2020), 1656, 1–32.
[24] Mikielewicz D.: Hydrodynamics and heat transfer in bubbly two-phase flows. Int. J. Heat Mass Tran. 46(2002), 2, 207–220.
[25] Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403–1409.
[26] Badur J.: Concept of Energy Evolution. Wydawn. IMP PAN, Gdansk 2009 (in Polish).
[27] Smoluchowski M.: On conduction of heat by rarefied gases. Phyl. Mag. 46(1898), 192–206.
[28] Smoluchowski M.: On conduction of heat in pulverized solids. Pol. Ac. Art. Sci. 2(1927), 1, 66–77.
[29] Docherty S.Y., Borg M.K., Lockerby D.A., Reese J.M.: Multiscale simulation of heat transfer in a rarefied gas. Int. J. Heat. Fluid. Fl. 50(2014), 114–125.
[30] Stephenson D., Lockerby D.A., Borg M.K., Reese J.M.: Multiscale simulation of nanofluidic networks of arbitrary complexity. Microfluid. Nanofluid. 18(2015), 5– 6, 841–858.
[31] Lockerby D.A., Patronis A., Borg M.K., Reese J.M.: Asynchronous coupling of hybrid models for efficient simulation of multiscale systems. J. Comput. Phys. 284(2015) 261–272.
[32] Sobieski W., Zhang Q.: Multi-scale modeling of flow resistance in granular porous media. Math. Comput. Simulat. 132(2017), 159–171.
[33] Johnson P.B., Christy R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(1972), 12, 4370–4379.
[34] Narottam P.B.: Handbook of Glass Properties. Academic Press, New York 1986.
[35] Agari Y., Ueda A., Omura Y.: Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(1997), 4, 801–807.
[36] Cahill D.G., Olson J.R., Fischer H.E., Watson S.K., Stephens R.B., Tait R.H., Ashworth T., Pohl R.O.: Thermal conductivity and specific heat of glass ceramics. Phys. Rev. B 44(1991), 22, 226–232,
[37] James E.M. (Ed.): Polymer Data Handbook. Oxford University Press (1999), 131, 363–367, 411–435, 655–657.
[38] Dixon M.C., Daniel T.A., Hieda M., Smilgies D.M., Chan M.C., Allara D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23(2007), 5, 2414–2422.
[39] Harvey B.S.: Hyperthermia. New Engl. J. Med. 329(1993), 483–487.
[40] Barichello L.B., Siewert C.E.: A discrete-ordinates solution for a non-grey model withcomplete frequency redistribution. J. Quant. Spectrosc. Ra. 2(1999), 2, 665–675.
[41] Koniorczyk P., Zmywaczyk J.: Analysis of thermal conductivity reduction in grey medium using a discrete ordinate method and the Henyey–Greenstein phase function for absorbing, emitting and anisotropically scattering media. Arch. Thermodyn. 29(2008), 2, 47–60.
[42] Filkoski R.V.: Radiation heat transfer modeling and CFD analysis of pulverizedcoal combustion with staged air introduction. Arch. Thermodyn. 30(2009), 4, 97–118.
[43] Dabrowski P.: Selected studies of flow maldistribution in a minichannel plate heat exchanger. Arch. Thermodyn. 38(2017), 3, 135–148.
Go to article

Authors and Affiliations

Piotr Radomski
1
Paweł Ziółkowski
1
Luciano de Sio
2
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Shipbuilding, Energy Institute, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Sapienza University of Rome, Department of Medico-Surgical Sciencesand Biotechnologies, Center for Biophotonics, Piazzale Aldo Moro 5,00185 Roma, RM, Italy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents studies of mathematical modelling in transonic flow through the first stage rotor of the axial compressor of homogenous and heterogeneous condensation. The condensation phenomena implemented into a commercial software is based on the classical theory of nucleation and molecular-kinetic droplet growth model. Model is validated against experimental studies available in the literature regarding the flow through the first stage of turbine compressor, i.e. the rotor37 transonic compressor benchmark test. The impact of air humidity and air contamination on the condensation process for different flow conditions is examined. The influence of latent heat release due to condensation exerts a significant impact on the flow structure, thus the analysis of the air humidity and contamination influence on the condensation is presented. The results presented indicate the non-negligible influence of air humidity on the flow structure in the transonic flow regime, thus it is recommended to take condensation phenomenon under consideration in high-velocity airflow simulations.

Go to article

Authors and Affiliations

Piotr Paweł Wiśniewski
Sławomir Dykas
Guojie Zhang
Download PDF Download RIS Download Bibtex

Abstract

Electrode induction melting gas atomization (EIGA) is a newly developed method for preparing ultra-clean metal powders, and is a completely crucible-free melting and atomization process. Based on conducted several atomization experiments, we found that the fine powder yields obtained during the EIGA process were greatly affected by the status of metal melt flow. While, continuous metal melt flow was beneficial for the yield of fine powders, it was in conflict with the principle described for the vacuum induction melting inert gas atomization (VIGA) process. To understand the critical role of continuous metal melt flow in the EIGA process, a computational fluid dynamics (CFD) approach was developed to simulate the gas atomization process. The D50 particle size of powder prepared by atomization under continuous liquid metal flow was about 70 μm, while that obtained by atomization under non-continuous liquid metal flow was about 100 μm. The diameter distribution results of numerical simulations agreed well with the experimental measurements, which demonstrated the accuracy of our simulation method. This study provides theoretical support for understanding the critical role of continuous metal melt flow and improving fine powder yields in the EIGA process. PACS: 02.60.Cb; 43.28.Py; 41.20.Gz; 81.20.Ev
Go to article

Authors and Affiliations

Jialun Wu
1
ORCID: ORCID
Min Xia
1
ORCID: ORCID
Junfeng Wang
1
ORCID: ORCID
Changchun Ge
1
ORCID: ORCID

  1. University of Science & Technology Beijing, Institute of Powder Metallurgy and Advanced Ceramics, Beijing 100083, China
Download PDF Download RIS Download Bibtex

Abstract

In determining the effects of actions when designing road structures, the influence of the loads caused by the buffeting of the passing vehicles (high-cycle forces) is neglected. Taking into account the fatigue load, they can have a very large impact on the assessment of the load capacity. The subject of analysis is the pressure and velocity distributions around a truck. At the current stage of the work, it can be concluded that the gusts of passing trucks affect the dynamics of the gantry structure and the elements suspended on it, such as platforms or boards. There is a strong suction force. It is possible to simplify the model in such a way that the board and the wind move with the speed of the vehicle while the truck remains stationary. Due to the lack of reliable guidelines for strength calculations of such structures, advanced Computational Fluid Dynamics (CFD) tools were used. This paper also presents a shaking table built by the authors for dynamic loading of structural models. It describes the construction of the shaking table and the kind of movement made by the table deck. It also shows a scheme of the table deck suspension on linear bearings, as well as a scheme of the table motion system.
Go to article

Authors and Affiliations

Agnieszka Padewska-Jurczak
1
ORCID: ORCID
Dawid Cornik
1
ORCID: ORCID
Ryszard Walentynski
1
ORCID: ORCID
Maciej Wiśniowski
1
ORCID: ORCID
Piotr Szczepaniak
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this analysis is to consider a mutual interference between aircraft motion and surrounding flow field. Euler flow model for inviscid, compressible gas and aircraft flight dynamics model was used to analyse quick dynamic manoeuvres. For such manoeuvres, aerodynamic hysteresis has a great influence on aircraft dynamics, which cannot be simulated with the assumption of quasi-steady aerodynamics. On the other hand, the aircraft motion as a rigid body strongly influences the flow field around itself. To account for this mutual interference, the Euler flow equations were used to obtain aerodynamic forces and moments acting on a simplified aircraft configuration (main wing+ tailplane only) during pull-out manoeuvre, and the flight dynamics equations of motion were used to describe dynamics of an aircraft. Initial conditions for the flight dynamics equation of motion were settled up coming from the solution of the Euler flow model. As a test case, a weak pull-out manoeuvre was selected. During this manoeuvre, the highest value of angle of attack doesn't exceed 12 degrees - the value which can be obtained from the classical approach based on flight dynamics equations of motion with quasisteady aerodynamics. However, coupled Euler flight dynamic model has much wider applicability, and can be used for the analysis of manoeuvres at high angles of attack, including large scale separation at sharp edges, unsteadiness and flow asymmetries even for symmetrical undisturbed flowficld case. This method, if successfully verified to a number of important flight manoeuvres (such as spin, Cobra manoeuvre, roll at high angles of attack and other) can open a new, very promising field in the analysis of aircraft dynamics.
Go to article

Authors and Affiliations

Tomasz Iglewski
Zdobysław Goraj
Download PDF Download RIS Download Bibtex

Abstract

Development of new or upgrading of existing airplanes requires many different analyses, e.g., thermal, aerodynamical, structural, and safety. Similar studies were performed during re-design of two small aircrafts, which were equipped with new turboprop engines. In this paper thermo-fluid analyses of interactions of new propulsion systems with selected elements of airplane skin were carried out. Commercial software based numerical models were developed. Analyses of heat and fluid flow in the engine bay and nacelle of a single-engine airplane with a power unit in the front part of the fuselage were performed in the first stage. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the front landing gear, and the bottom part of the fuselage were investigated. Similar studies were carried out for the twin-engine airplane with power units mounted on the wings. In this case thermal interactions between the hot exhaust gases, which were flowing out below the wings, and the wing covers and flaps were studied. Simulations were carried out for different airplane configurations and operating conditions. The aim of these studies was to check if for the assumed airplane skin materials and the initially proposed airplane geometries, the cover destruction due to high temperature is likely. The results of the simulations were used to recommend some modifications of constructions of the considered airplanes.

Go to article

Authors and Affiliations

Piotr Łapka
Mirosław Seredyński
Piotr Furmański
Download PDF Download RIS Download Bibtex

Abstract

In this work we investigate the present capabilities of computational fluid dynamics for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. This kind of modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant non-dimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, bubble size and liquid temperature as well as axial profiles of wall temperature. After reviewing the theoretical and experimental basis of correlations used in the ANSYS CFX model used for the calculations, we give a careful assessment of the necessary recalibrations to describe the DEBORA tests. The basic CFX model is validated by a detailed comparison to the experimental data for two selected test cases. Simulations with a single set of calibrated parameters are found to give reasonable quantitative agreement with the data for several tests within a certain range of conditions and reproduce the observed tendencies correctly. Several model refinements are then presented each of which is designed to improve one of the remaining deviations between simulation and measurements. Specifically we consider a homogeneous MUSIG model for the bubble size, modified bubble forces, a wall function for turbulent boiling flow and a partial slip boundary condition for the liquid phase. Finally, needs for further model developments are identified and promising directions discussed.
Go to article

Authors and Affiliations

Roland Rzehak
Eckhard Krepper
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC) stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.

Go to article

Authors and Affiliations

Zdzisław Jaworski
Paulina Pianko-Oprych
Ekaterina Kasilova
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.

Go to article

Authors and Affiliations

Dariusz Dariusz Asendrych
Paweł Niegodajew
Stanisław Drobniak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to demonstrate the feasibility of using a Computational Fluid Dynamics tool for the design of a novel Proton Exchange Membrane Fuel Cell and to investigate the performance of serpentine micro-channel flow fields. A three-dimensional steady state model consisting of momentum, heat, species and charge conservation equations in combination with electrochemical equations has been developed. The design of the PEMFC involved electrolyte membrane, anode and cathode catalyst layers, anode and cathode gas diffusion layers, two collectors and serpentine micro-channels of air and fuel. The distributions of mass fraction, temperature, pressure drop and gas flows through the PEMFC were studied. The current density was predicted in a wide scope of voltage. The current density – voltage curve and power characteristic of the analysed PEMFC design were obtained. A validation study showed that the developed model was able to assess the PEMFC performance.
Go to article

Authors and Affiliations

Tomasz Zinko
Paulina Pianko-Oprych
Zdzisław Jaworski
Download PDF Download RIS Download Bibtex

Abstract

Investigations on integration of optoelectronic components with LTCC (low temperature co-fired ceramics) microfluidic module are presented. Design, fabrication and characterization of the ceramic structure for optical absorbance is described as well. The geometry of the microfluidic channels has been designed according to results of the CFD (computational fluid dynamics) analysis. A fabricated LTCC-based microfluidic module consists of an U-shaped microchannel, two optical fibers and integrated light source (light emitting diode) and photodetector (light-to-voltage converter). Properties of the fabricated microfluidic system have been investigated experimentally. Several concentrations of potassium permanganate (KMnO4) in water were used for absorbance/transmittance measurements. The test has shown a linear detection range for various concentrations of heavy metal ions in distilled water. The fabricated microfluidic structure is found to be a very useful system in chemical analysis.

Go to article

Authors and Affiliations

Karol Malecha
Download PDF Download RIS Download Bibtex

Abstract

An ancient forging device in Spain has been studied, namely the forge with a waterwheel and air-blowing tube or hydraulic trompe, found near the village of Santa Eulalia de Oscos (province of Asturias, Spain). Three procedures using ad hoc methods were applied: 3D modelling, finite element analysis (FEA), and computational-fluid dynamics (CFD). The CFD results indicated the proper functioning of the trompe, which is a peculiar device based on the Venturi effect to take in air. The maximum air volume flow rate supplied to the forge by the trompe was shown to be 0.091 m3/s, and certain parameters of relevance in the trompe design presented optimal values, i.e. offering maximum air-flow supply. Furthermore, the distribution of stress over the motion-transmission system revealed that the stress was concentrated most intensely in the cogs of the transmission shaft (a kind of camshaft), registering values of up to 7.50 MPa, although this value remained below half of the maximum admissible work stress. Therefore, it was confirmed that the oak wood from which the motion system and the trompe were made functioned properly, as these systems never exceeded the maximum admissible working stress, demonstrating the effectiveness of the materials used in that period.

Go to article

Authors and Affiliations

J.I. Rojas-Sola
J.B. Bouza-Rodríguez
A. Comesaña-Campos
Download PDF Download RIS Download Bibtex

Abstract

FEM (finite element method) is an essential and powerful numerical method that can explicitly optimize the design process of electrical devices. In this paper, the employment of FEM tools such as SolidWorks, COMSOL and ANSYS is proposed in order to aid electrical apparatuses engineering and modeling – those are arc chambers of modular circuit breakers. Procured models of arc chambers have been undergoing simulations concerning heating, electric potential distribution, electric charge velocity and traverse paths. The data acquired has been juxta-positioned against experimental data procured in the Short-Circuit Laboratory, Warsaw University of Technology. The reflection of the theoretical approach was clearly noted in the experimental results. Mutual areas of the modeled element expressed the same physical properties and robustness errors when tested under specific conditions – faithfully reflecting those which were experimented with. Moreover, the physical phenomena essential for electrical engineering could be determined already at the model stage. This procedure proved highly valuable during designing/engineering work in terms of material economy.

Go to article

Authors and Affiliations

Ł. Kolimas
S. Łapczyński
M. Szulborski
M. Świetlik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study on flowmeters oscillatory motion when subjected to periodical, enforced vibrations induced by vortex-shedding. The proposed mathematical modelling of flow was compared to corresponding numerical simulation, in form of modal analysis. The frequencies of vortices generation and detachment were calculated for a number of flow velocities in two different flowmeter profile variants. The performed modal evaluation enabled estimating their natural frequencies, and in consequence the acquired data helped us to determine flow velocity for which the analyzed structures were prone to resonant vibrations.

Go to article

Authors and Affiliations

Mirosław Kabaciński
Cyprian T. Lachowicz
Janusz Pospolita
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.

Go to article

Authors and Affiliations

Paulina Pianko-Oprych
Zdzisław Jaworski
Tomasz Zinko
Mateusz Palus

This page uses 'cookies'. Learn more