Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 82
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study the results of simultaneous measurements of dynamic viscosity, thermal conductivity, electrical conductivity and pH of two nanofluids, i.e., thermal oil/Al2O3and thermal oil/TiO2are presented. Thermal oil is selected as a base liquid because of possible application in ORC systems as an intermediate heating agent. Nanoparticles were tested at the concentration of 0.1%, 1%, and 5% by weight within temperature range from 20°C to 60°C. Measurement devices were carefully calibrated by comparison obtained results for pure base liquid (thermal oil) with manufacturer’s data. The results obtained for tested nanofluids were compared with predictions made by use of existing models for liquid/solid particles mixtures.
Go to article

Authors and Affiliations

Janusz T. Cieśliński
Katarzyna Ronewicz
Sławomir Smoleń
Download PDF Download RIS Download Bibtex

Abstract

Conductivity measurements of distilled water and some electrolytic solution due to the SO2 and CO2 absorption have been performed in the laboratory and on the site. CO2, has been found to cause a decrease in the conductivity of alkaline solutions and an increase in that of CaCO3, and MgCO3, aqueous suspensions. The importance of the direct SO2 absorption was proved to be limited to the zones of extremely high concentrations of this gas in the ambient air.
Go to article

Authors and Affiliations

Krystian Leonard Chrzan
Anna Zwoździak
Download PDF Download RIS Download Bibtex

Abstract

Powdered polyaniline (PANI) was synthesised chemically with different doping anions namely hydrochloric acid, sulphuric acid and para-toluenesulfonic acid (pTSA). Two-step synthetic procedure was utilised at low temperature. The highest reaction efficiency was found for chlorine-doped PANI. Structural characterization with FTIR revealed the vibration bands characteristic to formation of the emeraldine salt. The surface morphology of doped PANIs was studied by SEM images which showed near globular shape and porous structures with different size of the aggregated particles. They were smaller for Cl–- or pTS–-doped PANI while for SO42– the size was markedly larger. The XRD patterns revealed that there are ordered regions especially for pTS– doped PANI, while the highest conductivity value was recorded for Cl– doped one followed by organic pTS– doped and SO42– doped one.

Go to article

Authors and Affiliations

S. Golba
M. Popczyk
S. Miga
J. Jurek-Suliga
M. Zubek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of how the nonlinear boundary condition [1] may be applied in nonlinear problems of electromagnetic field theory. It is introduced for problems with nonlinear conductivity. An analytical procedure has been constructed, which seeks to reduce calculations related with the nonlinear region. In order to verify the proposed solutions, two problems have been formulated: one of linear and the other of cylindrical symmetry. These have been additionally solved by the authors’ modification of the perturbation method that has been described in previous papers [7, 8, 10]. The electromagnetic field distribution obtained thereby has served as a referential result since it can obtain very accurate solutions [10]. Relative errors of electric and magnetic field strength are introduced to verify the results.

Go to article

Authors and Affiliations

Marcin Sowa
Dariusz Spałek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30

vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper

was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of

hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic

alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS). Thermal

conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic

particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400

Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles

are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after

binding agent used during preparation of ceramic preforms.

Go to article

Authors and Affiliations

J.W. Kaczmar
K. Granat
A. Kurzawa
E. Grodzka
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is to evaluate the self- healing properties of a commercially-available geosynthetic clay liner (GCL) using flexible-wall permeameter. The GCLs are produced by the same factory, but the contents of bentonite are different. Also the hydraulic conductivities (HC) of GCLs with no defect are different. In this study, specimens were completely saturated under the backpressure of 20 kPa before the test. Permeability tests were performed on GCL specimens with penetrating flaw and also on specimens permeated with distilled water and CaCl2 solutions. The test results were presented and discussed. Experimental results showed that the GCL with penetrating flaw did not exhibit complete self-healing in the case of flaw. After 120 days, the hydraulic conductivity increased by approximately an order of magnitude. In addition, CaCl2 solutions had a significant influence on the hydraulic conductivity. The research findings might be of interest to researchers and engineers who design liners for landfills and other liquid containment facilities

Go to article

Authors and Affiliations

Guang-Wei Zhang
Hu-Yuan Zhang
Jin-Fang Wang
Lang Zhou
Ping Liu
Xiao Jiang
Download PDF Download RIS Download Bibtex

Abstract

This article presents test results for hydraulic conductivity and porosity structure of hardening slurries prepared of Portland cement, betonite, water and fluidal ashes from the combustion of hard and brown coal. The slurries were exposed to persistent filtering action (180 days) of liquids chemically aggressive to cement binders, i.e. distilled water, 0.5% solution of nitric acid, 1% solution of sodium sulphate, 1% solution of magnesium nitrate and 1% solution of ammonium nitrate. Samples exposed to filtration of tap water constituted the reference base. The research was into relations between hydraulic conductivity and pore structure parameters in slurries, as well as into the influence of the type of aggressive medium on leak tightness of slurries (their porosity and hydraulic conductivity).

Go to article

Authors and Affiliations

Paweł Falaciński
Download PDF Download RIS Download Bibtex

Abstract

Until now, dust arising from lime manufacture has been considered harmless to the environment so it has been investigated marginally from the standpoint of environmental protection, especially when it came to magnetic properties and heavy metal content. The aim of the research was filling the gap in this area. The research comprised measurements of magnetic susceptibility, the content of heavy metals, reaction (pH) and specific conductivity of lime dust and also raw material and fuel used for lime production. The samples were taken from one of the lime plants located in Opole Province. Similar investigations were also performed for dust taken from the nearby cement plant using dry method of cement production. It was proven that magnetic susceptibility, heavy metal content and conductivity of lime dust was lower in comparison to cement dust, which resulted from the fact that the lime plant used neither low raw materials nor additives. Due to the high atmosphere dust level in the vicinity of the investigated plants, extremely basic reaction of the tested dust and high content of metals, the studied dust cause alkalization of soils and contribute to the increase of heavy metal content in soils, posing a threat to the environment.

Go to article

Authors and Affiliations

B. Gołuchowska
Z. Strzyszcz
G. Kusza
Download PDF Download RIS Download Bibtex

Abstract

This article presents ways of possible utilization and application of fl uidal combustion wastes as active additives to hardening slurries which are used to seal environment protection structures, i.e. cut-off walls in waste dumps and wastewater treatment plants. Cut-off walls are often exposed to fi ltrating action of eluates - polluted (aggressive) waters. Results of hydraulic conductivity tests of slurries after their long-term (210 days) fi ltration with eluates from a municipal waste dump and with tap water are presented. Porosity tests were also conducted to show the porosity structure of the fi ltered slurries. Additionally, compressive strength of slurries maturing in tap water and waste dump eluates was tested in parallel.
Go to article

Authors and Affiliations

Paweł Falaciński
Download PDF Download RIS Download Bibtex

Abstract

Heavy metal pollutants in the leachate of waste landfill are a potential threat to the environment. In this study, the feasibility of using municipal sewage sludge as barrier material for the containment of heavy metal pollutants from solid waste landfills was evaluated by compaction test and hydraulic conductivity test concerning compaction property, impermeability and heavy metal retardation. Results of the compaction test showed that the maximum dry density of 0.79 g·cm−3 was achieved at the optimum water content of about 60%. The hydraulic conductivities of compacted sewage sludge permeated with synthetic heavy metal solutions were in the range of 1.3×10−8 – 6.2×10−9 cm·s−1, less than 1.0 ×10−7cm·s−1 recommended by regulations for barrier materials. Chemical analyses on the effluent from the hydraulic conductivity tests indicated that the two target heavy metals, Zn and Cd in the permeants were all retarded by compacted sewage sludge, which might be attributed to the precipitation and adsorption of heavy metal ions. The results of this study suggest that specially prepared material from sewage sludge could be used as a barrier for waste landfills for its low permeability and strong retardation to heavy metal pollutants.

Go to article

Authors and Affiliations

Huyuan Zhang
Bo Yang
Guangwei Zhang
Xuechao Zhang
Download PDF Download RIS Download Bibtex

Abstract

Main goal of the paper is to present the algorithm serving to solve the heat conduction inverse problem. Authors consider the heat conduction equation with the Riemann-Liouville fractional derivative and with the second and third kind boundary conditions. This type of model with fractional derivative can be used for modelling the heat conduction in porous media. Authors deal with the heat conduction inverse problem, which, in this case, consists in identifying an unknown thermal conductivity coefficient. Measurements of temperature, in selected point of the region, are the input data for investigated inverse problem. Basing on this information, a functional describing the error of approximate solution is created. Minimizing of this functional is necessary to solve the inverse problem. In the presented approach the Ant Colony Optimization (ACO) algorithm is used for minimization.

Go to article

Authors and Affiliations

R. Brociek
D. Słota
Download PDF Download RIS Download Bibtex

Abstract

In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5 wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m–1·K–1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.

Go to article

Authors and Affiliations

Min-Jin Lee
Hyun-Ah Jung
Kyong-Jin Lee
Haejin Hwang
Download PDF Download RIS Download Bibtex

Abstract

The article presents the prototype of a measurement system with a hot probe, designed for testing thermal parameters of heat insulation materials. The idea is to determine parameters of thermal insulation materials using a hot probe with an auxiliary thermometer and a trained artificial neural network. The network is trained on data extracted from a nonstationary two-dimensional model of heat conduction inside a sample of material with the hot probe and the auxiliary thermometer. The significant heat capacity of the probe handle is taken into account in the model. The finite element method (FEM) is applied to solve the system of partial differential equations describing the model. An artificial neural network (ANN) is used to estimate coefficients of the inverse heat conduction problem for a solid. The network determines values of the effective thermal conductivity and effective thermal diffusivity on the basis of temperature responses of the hot probe and the auxiliary thermometer. All calculations, like FEM, training and testing processes, were conducted in the MATLAB environment. Experimental results are also presented. The proposed measurement system for parameter testing is suitable for temporary measurements in a building site or factory.

Go to article

Authors and Affiliations

Stanisław Chudzik
Waldemar Minkina
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a new contactless conductivity detector, whose electrodes are constructed of microchannels filled with solution of KCl - called pseudoelectrodes. The lab-on-a-chip microdevice was fabricated in poly(dimethylsiloxane) PDMS, using a moulding technique. The mould was made from a dry negative photoresist with a thickness of 50 μm. During the tests, the dimension! and arrangement of pseudoelectrodes` microchannels were evaluated. The analyte was pumped into the microchannel using a syringe pump with a flow rate of 50 μL/min. Reproducible!changes of the signal were obtained.

Go to article

Authors and Affiliations

Karolina Blaszczyk
Michal Chudy
Zbigniew Brzózka
Artur Dybko
Download PDF Download RIS Download Bibtex

Abstract

The article presents a novel method that allows measurement of thermal conductivity that is based on Stefan-Boltzmann law. The developed method can be used to determine thermal conductivity of ceramic investment casting molds. The methodology for conducting thermal conductivity tests of ceramic material samples is presented. Knowledge of the value of thermal capacity and thermal conductivity as a function of temperature enables computer simulations of the process of cooling and solidification of liquid metal in a mold.

Go to article

Authors and Affiliations

W. Leśniewski
E. Czekaj
P. Wieliczko
M. Wawrylak
Download PDF Download RIS Download Bibtex

Abstract

In the present article, we introduced a new model of the equations of general ized thermoelasticity for unbounded orthotropic body containing a cylindrical cavity. We applied this model in the context of generalized thermoelasticity with phase-lags under the effect of rotation. In this case, the thermal conductivity of the material is considered to be variable. In addition, the cylinder surface is traction free and subjected to a uniform unit step temperature. Using the Laplace transform technique, the distributions of the temperature, displacement, radial stress and hoop stress are determined. A detailed analysis of the effects of rotation, phase-lags and the variability thermal conductivity parameters on the studied fields is discussed. Numerical results for the studied fields are illustrated graphically in the presence and absence of rotation.

Go to article

Authors and Affiliations

D.S. Mashat
Ashraf M. Zenkour
A.E. Abouelregal
Download PDF Download RIS Download Bibtex

Abstract

Nonlinear excitation of the entropy perturbations by magnetosonic waves in a uniform and infinite plasma model is considered. The wave vector of slow or fast mode forms an arbitrary angle θ (0≤θ≤π) with the equilibrium straight magnetic field, and all perturbations are functions of the time and longitudinal coordinate. Thermal conduction is the only factor which destroys isentropicity of wave perturbations and causes the nonlinear excitation of the entropy mode. A dynamic equation is derived which describes excitation of perturbation in the entropy mode in the field of dominant magnetosonic mode. Effects associatiated with temperature dependent and anisotropic thermal conduction are considered and discussed.
Go to article

Bibliography

1. Afanasyev A.N., Nakariakov V.M. (2014), Nonlinear slow magnetoacoustic waves in coronal plasma structures, Astronomy and Astrophysics, 573: A32, doi: 10.1051/0004-6361/201424516.
2. Ballai I. (2006), Nonlinear waves in solar plasmas – a review, Journal of Physics: Conference Series, 44(20): 20–29, doi: 10.1088/1742-6596/44/1/003.
3. Braginskii S.I. (1965), Transport processes in plasma, Reviews of Plasma Physics, M.A. Leontovich [Ed.], Vol. 1, p. 205, Consultants Bureau, New York.
4. Callen J.D. (2003), Fundamentals of Plasma Physics, Lecture Notes, University of Wisconsin, Madison.
5. Chin R., Verwichte E., Rowlands G., Nakariakov V.M. (2010), Self-organization of magnetoacoustic waves in a thermal unstable environment, Physics of Plasmas, 17(32): 107–118, doi: 10.1063/1.3314721.
6. Dahlburg R.B., Mariska J.T. (1988), Influence of heating rate on the condensational instability, Solar Physics, 117(1): 51–56, doi: 10.1007/BF00148571.
7. Field G.B. (1965), Thermal instability, The Astrophysical Journal, 142: 531–567, doi: 10.1086/148317.
8. Heyvaerts J. (1974), The thermal instability in a magnetohydrodynamic medium, Astronomy and Astrophysics, 37(1): 65–73.
9. Hollweg J.V. (1985), Viscosity in a magnetized plasma: Physical interpretation, Journal of Geophysical Research, 90(A8): 7620–7622, doi: 10.1029/JA090iA08p07620.
10. Ibáñez S.M.H., Parravano A. (1994), On the thermal structure and stability of configurations with heat diffusion and a gain-loss function. 3: Molecular gas, The Astrophysical Journal, 424(2): 763–771, doi: 10.1086/173929.
11. Krall N.A., Trivelpiece A.W. (1973), Principles of Plasma Physics, McGraw Hill, New York.
12. Kumar N., Kumar P., Singh S. (2006), Coronal heating by MHD waves, Astronomy and Astrophysics, 453: 1067–1078, doi: 10.1051/0004-6361:20054141.
13. Leble S., Perelomova A. (2018), The Dynamical Projectors Method: Hydro and Electrodynamics, CRC Press.
14. De Moortel I., Hood A.W. (2004), The damping of slow MHD waves in solar coronal magnetic fields, Astronomy and Astrophysics, 415: 705–715, doi: 10.1051/0004-6361:20034233.
15. Nakariakov V.M., Mendoza-Briceño C.A., Ibáñez M.H. (2000), Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas, The Astrophysical Journal, 528(2, Part 1): 767–775, doi: 10.1086/308195.
16. Ofman L., Wang T. (2002), Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction, The Astrophysical Journal, 580(1): L85–L88, doi: 10.1086/345548.
17. Parker E.N. (1953), Instability of thermal fields, The Astrophysical Journal, 117: 431–436, doi: 10.1086/145707.
18. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357: 42–47, doi: 10.1016/j.physleta.2006.04.014.
19. Perelomova A. (2008), Modelling of acoustic heating induced by different types of sound, Archives of Acoustics, 33(2): 151–160.
20. Perelomova A. (2018a), Magnetoacoustic heating in a quasi-isentropic magnetic gas, Physics of Plasmas, 25: 042116, doi: 10.1063/1.5025030.
21. Perelomova A. (2018b), Magnetoacoustic heating in nonisentropic plasma caused by different kinds of heating-cooling function, Advances in Mathematical Physics, 2018: Article ID 8253210, 12 pages, doi: 10.1155/2018/8253210.
22. Perelomova A. (2020), Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow, Physics of Plasmas, 27(10): 102101, doi: 10.1063/5.0015944.
23. Ruderman M.S., Verwichte E., Erdélyi R., Goossens M. (1996), Dissipative instability of the MHD tangential discontinuity in magnetized plasmas with an isotropic viscosity and thermal conductivity, Journal of Plasma Physics, 56(2): 285–306, doi: 10.1017/S0022377800019279.
24. Sabri S., Poedts S., Ebadi H. (2019), Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point, Astronomy and Astrophysics, 623, doi: 10.1051/0004-6361/201834286.
25. Soler R., Ballester J.L., Parenti S. (2012), Stability of thermal modes in cool prominence plasmas, Astronomy and Astrophysics, 540: A7, doi: 10.1051/0004-6361/201118492.
26. Spitzer L. (1962), Physics of Fully Ionized Gases, 2nd ed., New York, Interscience.
27. Vesecky J.F., Antiochos S.K., Underwood J.H. (1979), Numerical modeling of quasi-static coronal loops. I – Uniform energy input, The Astrophysical Journal, 233(3): 987–997, doi: 10.1086/157462.
28. Wang T. (2011), Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology, Space Science Reviews, 158: 397–419, doi: 10.1007/s11214-010-9716-1.
29. Zavershinskii D.I., Molevich N.E., Riashchikov D.S., Belov S.A. (2020), Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability, Physical Review E, 101(4): 043204, doi: 10.1103/PhysRevE.101.043204.
Go to article

Authors and Affiliations

Anna Perelomova
1

  1. Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Studied was a small (4.6 ha) meromictic lake situated in a deep land hollow surrounded by a highinclination slope. The lake was made shallower two times (from 20 to 18 m) by collapsed shores. It is fed by underground waters and has relatively constant outflow. Limited water dynamics reduced the epilimnion thickness (from 4 to 2 m) and influenced the monimolimnion setting below 13 m depth with a characteristic small (0.2°C) temperature increase in the vertical profile and a permanent deoxygenation of the water below 7-11 m depth. The relationship between the organic matter parameters BOD; and COD-Mn before the shore collapse revealed the dominance of matter produced in the reservoir. In the final period the situation was opposite. In the monimolimnion allochthonous matter accumulated which due to anaerobic decomposition generated large amounts of ammonium. Observed in the same water layer was also a decrease of the conductivity.
Go to article

Authors and Affiliations

Renata Tandyrak
Mariusz Teodorowicz
Joanna Gorchowska
Download PDF Download RIS Download Bibtex

Abstract

The suitability of a new wireless smart farming system for controlling irrigation and fertilization of horticultural plants was assessed in the study. The system (name: AGREUS®) includes sensors (soil moisture, salinity, weather data), executive modules (valve modules), and an application available on the web portal (accessed through computers and mobile devices). The studies were performed under laboratory and field conditions. Laboratory tests included appraisal of the precision of soil moisture and salinity measurements carried out with the soil probe (comparison with the results obtained by laboratory methods). Operational tests were conducted in field trials. In these trials, assessment of the possibility of practical control of irrigation and monitoring soil salinity was performed in an apple orchard. The conducted analyses have shown the usefulness of the system, not only for automatic control of irrigation but also for making decisions about the necessity to fertilize plants. The system enables continuous monitoring of changes in soil moisture and salinity, including the migration of minerals across the soil profile (using a probe with several measuring elements) as a result of the applied irrigation or rainfall. The system allows for automatic application of irrigation or fertigation depending on the adopted soil moisture and salinity thresholds. However, the tests showed that a salinity index calculated by the system does not directly correspond to the salinity values determined by laboratory methods. For this reason individual interpretation and determination of optimal ranges for plants is required.
Go to article

Authors and Affiliations

Waldemar Treder
1
ORCID: ORCID
Krzysztof Klamkowski
1
ORCID: ORCID
Anna Tryngiel-Gać
1
ORCID: ORCID
Katarzyna Wójcik
1
ORCID: ORCID

  1. The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the thermal and mechanical properties of a composite made from a combination of 2063-epoxy resin and three different braided carbon-fiber fabric reinforcements. These fibres consist of HTS carbon, HTS carbon braided with nickel coated carbon and HTS carbon braided with nickel coated copper, respectively. The composites were manufactured through resin transfer molding (RTM) route. The thermal diffusivity of carbon fibers composites was measured at different temperature by using a flash method. The transverse and planar thermal conductivities were determined by measuring the specific heat, density and thermal diffusivities, respectively. The current research highlights the influence of adding nickel coated carbon and nickel-plated copper wires on the braided composites. The evaluation shows that the HTS carbon braided manufactured with nickel-plated copper wires presents higher in-plane thermal conductivity (in direction parallel of the fibres) when comparing to HTS carbon and HTS carbon braided manufactured with nickel coated carbon. The thermal conductivity benefits of those composite were achieved at the expenses of lower mechanical properties of braided composites investigated.
Go to article

Authors and Affiliations

Jamal Arbaoui
1 2
ORCID: ORCID
Jérémie Aucher
1
ORCID: ORCID
Moussa Gomina
1
ORCID: ORCID
Joel Breard
1
ORCID: ORCID

  1. Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen Cedex 4, France
  2. University of Cadi Ayyad, National School of Applied Sciences, Laboratory of Materials, Processes, Environment and Quality, B.P. 63, 46000, Safi, Morocco

This page uses 'cookies'. Learn more