Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There are an increasing number of binaural systems embedded with head-related transfer functions (HRTFs), so listeners can experience virtual environments via conventional stereo loudspeakers or head- phones. As HRTFs vary from person to person, it is difficult to select appropriated HRTFs from already existing databases for users. Once the HRTFs in a binaural audio device hardly match the real ones of the users, poor localization happens especially on the cone of confusion. The most accurate way to obtain personalized HRTFs might be doing practical measurements. It is, however, expensive and time consuming. Modifying non-individualized HRTFs may be an effort-saving way, though the modifications are always accompanied by undesired audio distortion. This paper proposes a flexible HRTF adjustment system for users to define their own HRTFs. Also, the system can keep sounds from suffering intolerable distortion based on an objective measurement tool for evaluating the quality of processed audio.
Go to article

Authors and Affiliations

Shu-Nung Yao
Li Jen Chen
Download PDF Download RIS Download Bibtex

Abstract

Casting process takes a major percentage of manufacturing products into consideration. No-bake casting is swiftly developing technology for foundry industries. In the no-bake family, furan no-bake casting process employs resins and acid catalyst to form a furan binder system. However, this process configures castings with augmented strength and quality surface finish. Compressive strength, transverse strength and tensile strength of moulds are also high in this furan binder system. Hence this method is apt for producing accurately dimensioned castings. Our well thought-out deliberations in the subsequent write up entail the numerous effects of variation of resin and acid catalyst on the surface defect i.e. sulfur diffusion on the surface of FNB casting. Furan resin; used in the production of casting is furfuryl alcohol and acid catalyst is sulphonic acid. Sulfur diffusion is tested by Energy-dispersive X-ray spectroscopy (EDX) analysis and also by the spectrometer with jet stream technology. This paper also comprises economic advantages of optimizing resin because furan resin is expensive and catalyst with reduction of sulfur diffusion defect as it saves machining, labor cost, and energy.

Go to article

Authors and Affiliations

M.V. Sheladiya
S.G. Acharya
K. Mehta
G.D. Acharya
Download PDF Download RIS Download Bibtex

Abstract

The length of crystalline cones (cc) is proportional to krill body length and this proportion can be described by the equation L cc = L krill x 1.679 + 52.032 ( cc — μm; L krill - mm). By measuring cc one can determine the size of krill with the precision of 2—3 mm. The structure of crystalline cones is not crystal, and the elemental composition includes much of S and Ca. Crystalline cones are often found in the stomach and feces of animals feeding on krill.

Go to article

Authors and Affiliations

Stanisław Rakusa-Suszczewski
Download PDF Download RIS Download Bibtex

Abstract

Studies over talus cones in nothwestern Wedel Jarlsberg Land enable to define main parameters of these forms, their morphogenetic features and longitudinal profiles. Three zones of occurrence of talus cones have been distinguished, dependent on microlimatic influence of glaciers. Zone A (below 150 m a.s.l.) is not influenced by glaciers. Zone В (from 150 to 350 m a.s.l.) is influenced by glacier snouts. Zone С (over 350 m a.s.l.) is under influence of firn fields. Most intensive development of talus cones in the studied area occurred during the Little Ice Age.

Go to article

Authors and Affiliations

Jerzy Nitychoruk
Jan Dzierżek
Download PDF Download RIS Download Bibtex

Abstract

The flow of the investigated fluid in a measuring system of a rheometer – a capillary or a slit between rotating parts – may be disturbed by anisotropic behavior of the fluid near the wall. This phenomenon, so-called wall slip, often takes place in concentrated suspensions and solutions of linear polymers and introduces experimental errors to measurement results. There are methods of correction of these errors in the case of capillary and coaxial cylinders measuring systems. In the cone and plate system the correction seems to be more difficult because the width of the gap between cone and plate changes along the radius and thus the influence of the wall slip on the shear stress varies along the radius in an unpredictable and complicated manner. This dependency of the shear stress on the distance from the axis underlies the presented method of correction of experimental results obtained in the cone and plate system. The method requires several series of measurements of shear stress vs. shear rate performed using one measuring set, at various degrees of filling the gap.

Go to article

Authors and Affiliations

Tomasz Kiljański
Download PDF Download RIS Download Bibtex

Abstract

A new notion of a realization of transfer matrix of (P;Q; V)-cone-system for discrete-time linear systems is proposed. Necessary and sufficient conditions for the existence of the realizations are established. A procedure is proposed for computation of a realization of a given proper transfer matrix T(z) of (P;Q; V)-cone-system. It is shown that there exists a realization of T(z) of (P;Q; V)-cone-system if and only if there exists a positive realization of T(z) = V T(z)Q!1, where V;Q and P are non-singular matrices generating the cones V;Q and P respectively.

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

This numerical research is devoted to introducing the concept of helical cone coils and comparing the performance of helical cone coils as heat exchangers to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil. This vortex, known as the Dean Vortex, is a secondary flow superimposed on the primary flow. The Dean number, which is a dimensionless number used in describing the Dean Vortex, is a function of Reynolds Number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean Number. Numerical investigation based on the commercial CFD software fluent is used to study the effect of changing the structural parameters (taper angle of the helical coil, pitch and the base radius of curvature changes while the height is kept constant) on the Nusselt Number, heat transfer coefficient and coil outlet temperature. Six main coils having pipe diameters of 10 and 12.5 mm and base radius of curvature of 70, 80 and 90 mm were used in the investigation. It was found that, as the taper angle increases, both Nusselt Number and the heat transfer coefficient increase, also the pitch at the various taper angles was found to have an influence on Nusselt Number and the heat transfer coefficient. A MATLAB code was built to calculate the Nusselt Number at each coil turn, then to calculate the average Nusselt number for all of the coil turns. The MATLAB code was based on empirical correlation of Manlapaz and Churchill for ordinary helical coils. The CFD simulation results were found acceptable when compared with the MATLAB results.

Go to article

Authors and Affiliations

Mohamed Abo Elazm
Ahmed Ragheb
Ahmed Elsafty
Mohamed Teamah
Download PDF Download RIS Download Bibtex

Abstract

The article presents an assessment of the suitability of the cone penetrometer to determine the soil state. The work describes the principle of the device operation, which is similar to commonly used dynamic DPL probes. Then, the results of research conducted in Polish conditions using the new conical penetrometer were presented. A series of measurements were performed in real field conditions. On their basis, an attempt was made to correlate the results obtained with a conical penetrometer and a static probe CPT. Then, the obtained correlations were validated. On this basis preliminary evaluation of the conical penetrometer suitability for the soil state determining.

Go to article

Authors and Affiliations

M. Maślakowski
K. Brzeziński
A. Zbiciak
K. Józefiak
Download PDF Download RIS Download Bibtex

Abstract

The primary objective is to perform a numerical synthesis of a Williamson fluid that has nanoparticles added to it and is directed toward a vertical cone in a uniform transverse magnetic field, under heat and mass transport, suction and injection, and convective boundary conditions. For this particular fluid flow, by utilising similarity transformations, the partial differential equations are transformed into ordinary differential equations. Calculating these kinds of equations with their suitable bounds requires the Runge–Kutta technique in combining a shooting strategy. The functions of a vast number of parameters are graphically represented and assessed on flow field profiles. The results show the local skin friction, local Nusselt number, and local Sherwood number and the changing values of the flow constraints. Finally, the results are compared to those from the previously published works and found to be in good agreement.
Go to article

Authors and Affiliations

Manthri Sathyanarayana
1
Tamtam Ramakrishna Goud
2

  1. Osmania University, Department of Mathematics, University College of Science, Hyderabad – 500007, Telangana Sate, India
  2. Osmania University, Department of Mathematics, University College of Science, Saifabad, Hyderabad – 500004, Telangana Sate, India
Download PDF Download RIS Download Bibtex

Abstract

In order to simplify the motor structure, to reduce the difficulty of rotor pre-pressure application and to obtain better output performance, a new internal cone type rotating traveling wave ultrasonic motor is proposed. The parametric model of the internal cone type ultrasonic motor was established by the ANSYS finite element software. The ultrasonic motor consists of an internal cone type vibrator and a tapered rotor. The dynamic analysis of the motor vibrator is carried out, and two in-plane third-order bending modes with the same frequency and orthogonality are selected as the working modes. The other advantages of this motor are that pre-pressure can be imposed by the weight of the rotor. The prototype was trial-manufactured and experimentally tested for its vibration characteristics and output performance. When the excitation frequency is 22260.0 Hz, the pre-pressure is 0.1 N and the peak-to-peak excitation voltage is 300 V, the maximum output torque of the prototype is 1.06 N·mm, and the maximum no-load speed can reach 441.2 rpm. The optimal pre-pressure force under different loads is studied, and the influence of the pre-pressure force on the mechanical properties of the ultrasonic motor is analyzed. It is instructive in the practical application of this ultrasonic motor.
Go to article

Authors and Affiliations

Ye Chen
1
Junlin Yang
1
Liang Li
2
Shihao Xiao
1

  1. Institute of Vibration Engineering, Liaoning University of Technology Shiying Street, Guta District, Jinzhou, Liaoning Province, China
  2. College of Science, Liaoning University of Technology, Shiying Street, Guta District, Jinzhou, Liaoning Province, China
Download PDF Download RIS Download Bibtex

Abstract

The work concerns numerical simulations of a cone mill used for emulsion preparation. Hydrodynamics, power consumption and population balance are investigated for various operating conditions at high phase volume emulsions and for different rheologies. Cone mills are usually simplified as a simple gap between rotor and stator but by increasing the complexity of the geometry till it represents the commercial device identifies a wealth of additional features such as recirculation zones above (which enhance breakage) and below (which allow for coalescence) the rotor-stator gap. Two separate sets of population balance modelling constants are required to capture all the experiment results – even with the most complex geometries. Some suggestions are made for improvements and further studies will consider other rotor-stator devices.
Go to article

Authors and Affiliations

Guido Lupieri
1
Ioannis Bagkeris
1
Jo J.M. Janssen
2
Adam J. Kowalski
1

  1. Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, UK
  2. Unilever Foods Innovation Centre, Bronland 14, 6708WH Wageningen, The Nederlands
Download PDF Download RIS Download Bibtex

Abstract

In this work the conical Ni structures were obtained from an electrolyte containing NH4Cl as a crystal modifier. This process is called one-step method and allows to cover large areas with micro- and nanostructures during a single electrodeposition. Presence of NH4Cl promotes a vertical direction of structure growth in order to block a horizontal one. Additionally, this method does not require using chromic acid solution, which is dangerous for the environment. Due to the ferromagnetic properties of Ni, obtained coatings could be applied as magnetic devices. The influence of the parameters such as a preparation of copper substrate, a composition of electrolyte and electrodeposition conditions (time, the electrolyte temperature and current density) was investigated in this work.
Go to article

Bibliography

[1] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 307-326 (2010). DOI: https://doi.org/10.1016/j.pecs.2009.11.002
[2] L . Huang, M. Wei, S. Zaman, A. Ali, B.Y. Xia, Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting, Chem. Eng. J. 398, 125669 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125669
[3] Z . He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater. 13, 1764-1770 (2004). DOI: https://doi.org/10.1016/j.diamond.2004.03.004
[4] M.N. Krstajić Pajić, S.I. Stevanović, V. V. Radmilović, A. Gavrilović- Wohlmuther, P. Zabinski, N.R. Elezović, V.R. Radmilović, S.L. Gojković, V.M. Jovanović, Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method, Appl. Catal. B Environ. 243, 585-593 (2019). DOI: https://doi.org/10.1016/j.apcatb.2018.10.064
[5] D. Kutyła, K. Kołczyk-Siedlecka, A. Kwiecińska, K. Skibińska, R. Kowalik, P. Żabiński, Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study, J. Solid State Electrochem. 23, 3089-3097 (2019). DOI: https://doi.org/10.1007/s10008-019-04374-7
[6] M . Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8, 23-39 (2015). DOI: https://doi.org/10.1007/s12274-014-0591-z
[7] V .D. Jović, B.M. Jović, U. Lačnjevac, N.V. Krstajić, P. Zabinski, N.R. Elezović, Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions, J. Electroanal. Chem. 819, 16-25 (2018). DOI: https://doi.org/10.1016/j.jelechem.2017.06.011
[8] P.R. Zabinski, S. Meguro, K. Asami, K. Hashimoto, Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol·m-3 NaOH, Mater. Trans. 47, 2860-2866 (2006). DOI: https://doi.org/10.2320/matertrans.47.2860
[9] L. Sun, P.C. Searson, C.L. Chien, Magnetic anisotropy in prismatic nickel nanowires, Appl. Phys. Lett. 79, 4429-4431 (2001). DOI: https://doi.org/10.1063/1.1428113
[10] F. Tian, A. Hu, M. Li, D. Mao, Superhydrophobic nickel films fabricated by electro and electroless deposition, Appl. Surf. Sci. 258, 3643-3646 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.130
[11] Z . Chen, F. Tian, A. Hu, M. Li, A facile process for preparing superhydrophobic nickel films with stearic acid, Surf. Coatings Technol. 231, 88-92 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.01.053
[12] S. Rahimi, S. Shahrokhian, H. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem. 810, 78-85 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.01.004
[13] T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19, 035201 (2008). DOI: https://doi.org/10.1088/0957-4484/19/03/035201
[14] T. Hang, A. Hu, H. Ling, M. Li, D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400-2404 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.10.074
[15] N . Wang, T. Hang, S. Shanmugam, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition, CrystEngComm. 16, 6937-6943 (2014). DOI: https://doi.org/10.1039/c4ce00565a
[16] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surf. Coatings Technol. 283, 318-328 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.11.008
Go to article

Authors and Affiliations

K. Skibińska
1
ORCID: ORCID
S. Semeniuk
1
D. Kutyła
1
ORCID: ORCID
K. Kołczyk-Siedlecka
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Positively invariant sets play an important role in the theory and applications of dynamical systems. The stability in the sense of Lyapunov of the equilibrium x = 0 is equivalent to the existence of the ellipsoidal positively invariant sets. The constraints on the state and control vectors of dynamical systems can be formulated as polyhedral positively invariant sets in practical engineering problems. Numerical checking method of positive invariance of polyhedral sets is addressed in this paper. The validation of the positively invariant sets can be done by solving LPs which can be easily done numerically. It is illustrated by examples that our checking method is effective. Compared with the now existing algebraic methods, numerical checking method is an attractive method in that it’s easy to be implemented.

Go to article

Authors and Affiliations

H. Yang
Y. Hu
Download PDF Download RIS Download Bibtex

Abstract

This paper regards the minimum weight problem of spatial systems, known in the literature as Rozvany–Prager archgrids. Their architectural role is to transmit a load of fixed intensity to the line of supports located at the boundary of a given plane domain. The system consists of arches spaced apart from one another, hence the mechanics of such a system is that of a gridwork shell and not a shell continuum. Mathematically, description of an archgrid falls into the class of Michell frames. Therefore, in our approach, we make use of the plastic design paradigm – it states that optimal bar structure is at the verge of plastic failure, with bars uniformly stressed to the limit value in compression, or tension. In the case of archgrid optimization, only compression is allowed and this limitation introduces an additional design constraint. The main goal of this paper is computational, thus the general variational framework of the optimization problem is reformulated in the discrete setting, involving the methods of linear algebra. Numerics of the discrete approach to Rozvany–Prager archgrids is considered from the novel perspective based on second-order cone programming (SOCP). Procedures used for solving the examples are coded in MATLAB combined with MOSEK optimization toolbox for SOCP routines.
Go to article

Authors and Affiliations

Grzegorz Dzierżanowski
1
ORCID: ORCID
Krzysztof Hetmański
1

  1. Warsaw University of Technology, Faculty of Civil Engineering, al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article, the thick truncated cone shell is divided into disk-layers form with their thickness corresponding to the thickness of the cone. Due to the existence of shear stress in the truncated cone, the equations governing disk layers are obtained based on first shear deformation theory. These equations are in the form of a set of general differential equations. Given that the truncated cone is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. The results obtained have been compared with those obtained through the analytical solution and the numerical solution. For the purpose of the analytical solution, use has been made of matched asymptotic method (MAM) and for the numerical solution, the finite element method (FEM).

Go to article

Authors and Affiliations

Mohammad Zamani Nejad
Mehdi Jabbari
Mehdi Ghannad
Download PDF Download RIS Download Bibtex

Abstract

Bertrand Russell formulated neutral monism by default, unguided by any strong idea of a uniform, monistic world. Apparently he worked under the urge to liberate philosophy from the quarrel between physicalists and idealists. But he did not succeed in defusing the controversy, instead he fanned it with his fresh ideas. He argued that matter was indestructible, that some mental regularities occurred independently of our will, and that they unfold as if guided by natural laws. He claimed that some conscious states were to be interpreted as objective events despite the fact that they were accessible only privately. But the concurrence between physical and mental facts indicated a similarity between the principles that guided them, or pointed to their singular common nature. He did not undertake to defend his unitary theory vigorously and did not claim it was indisputable. Possibly he hoped to find an additional support for his theory some day and this paper responds to this unspoken request.
Go to article

Authors and Affiliations

Jacek Hołówka
1
ORCID: ORCID

  1. Uniwersytet Warszawski, Wydział Filozofii, ul. Krakowskie Przedmieście 3, 00-927 Warszawa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of a series of Cone Penetration Test CPTu performed near the city of Wroclaw (Poland). The tests were carried out in 13 testing points located in close distance to each other. To verify the results of the penetration tests, fine-grained soil samples from selected depths were taken for laboratory tests. The study focuses on the evaluation of soil type, unit weight, and undrained shear strength cu, and compression index Cc. The grain size distribution of the soil and its mechanical parameters on the basis of a uniaxial compression and an oedometer tests were estimated. A comparison of laboratory and CPTu for selected values is presented. Determination of soil type was carried out on the basis of ISBT and IC values and good agreement with the granulometric composition was found. For undrained shear strength, commonly used correlations based on Nk, Nkt and Nke were adopted. However, the values obtained from the CPT are significantly lower than the results from laboratory tests. Therefore, values of cone factors suitable for investigated soil type and reference test were proposed. In the case of the compression index, the coefficient values βc and αm obtained agreed with those available in the literature. The findings presented in the paper indicate that laboratory tests remain necessary to identify soil properties from CPTu. The presented results are also a contribution to the knowledge of local soil conditions in the Lower Silesia area (Poland).
Go to article

Bibliography

[1] F.H. Kulhawy, P.W. Mayne, Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA ); Cornell Univ., Ithaca, NY (USA ), Geotechnical Engineering Group (1990).
[2] T . Lunne, P.K. Robertson, J.J.M. Powell, Cone Penetration Testing in Geotechnical Practice. Blackie Academic/ Routledge Publishing, New York (1997).
[3] K . Karlsrud, T. Lunne, D.A. Kort, S. Strandvik, CPTU correlations for clays. In: Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering 16 (2), p. 693 (2005).
[4] P.K. Robertson, Interpretation of cone penetration tests — a unified approach. Can. Geoech. J. 46 (11), 1337-1355 (2009), DOI: https://doi.org/10.1139/T09-065
[5] P .K. Robertson, The James K. Mitchell Lecture: Interpretation of in-situ tests-some insights. In: Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization – ISC 4, 3-24 (2012).
[6] P .W. Mayne, Interpretation of geotechnical parameters from seismic piezocone tests. In: Proc. 3rd Intl. Symposium on Cone Penetration Testing, CPT’14, 47-73 (2014).
[7] A. Eslami, S. Moshfeghi, H. MolaAbasi, M.M. Eslami, Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering. Butterworth-Heinemann (2019).
[8] P.K. Robertson, Soil behaviour type from the CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[9] P.K. Robertson, Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update. Can. Geotech. J. 53 (12), 1910-1927 (2016) DOI: https://doi.org/10.1139/cgj-2016-0044
[10] P.K. Robertson, K.L. Cabal, Estimating soil unit weight from CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[11] P.W. Mayne, J. Peuchen, D. Bouwmeester, Soil unit weight estimation from CPTs. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10, (2010).
[12] L .Y. Ju, C. Miao, Z.J. Cao, P. Hubbard, K. Soga, K., D.Q. Li, Geo-Congress 2020: Modeling. Geomaterials and Site Characterization, 558-568 (2020).
[13] K . Karlsrud, K. Brattlien, T. Lunne, Improved CPTU interpretations based on block samples. NGI (1997).
[14] H.E. Low, T. Lunne, K.H. Andersen, M.A. Sjursen, X. Li, M.F. Randolph, Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays. Géotechnique 60 (11), 843-859 (2010), DOI: https://doi.org/10.1680/geot.9.P.017
[15] Z . Rémai, Correlation of undrained shear strength and CPT resistance. Per. Pol. Civil Eng. 57 (1), 39-44 (2013), DOI: https://doi.org/10.3311/PPci.2140
[16] A .K.M. Zein, International Journal of Geo-Engineering 8 (1), (2017), DOI: https://doi.org/10.1186/s40703-017- 0046-y
[17] P.W. Mayne, J. Peuchen, Evaluation of CPTU Nkt cone factor for undrained strength of clays. In: Proc. 4th Intl. Symposium on Cone Penetration Testing (CPT’18), 423-429 (2018).
[18] A. Drevininkas, G. Creer, M. Nkemitag, Comparison of consolidation characteristics from CPTu, DMT and laboratory testing at Ashbridges Bay, Toronto, Ontario. in: Proceedings of the 64th Canadian Geotechnical Conference and 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Canada (2011).
[19] K . Koster, G. Erkens, C. Zwanenburg, A new soil mechanics approach to quantify and predict land subsidence by peat compression. Geophysical Research Letters 43, 10792-10799 (2016), DOI: https://doi.org/10.1002/2016GL 071116
[20] M. Mir, A. Bouafia, K. Rahmani, N. Aouali, Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests. Geomech. Eng. 13 (1), 119-139 (2017), DOI: https://doi.org/10.12989/ gae.2017.13.1.119
[21] B. Di Buò, J. Selänpää, T. Lansivaara, M. D’Ignazio, Evaluation of existing CPTu-based correlations for the deformation properties of Finnish soft clays. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 185-191 (2018).
[22] Z . Bednarczyk, R. Sandven, Comparison of CPTU and laboratory tests interpretation for Polish and Norwegian clays. In: International Site Characterization Conference, ISC-2. International Society of Rock Mechanics (ISRM), International Association Engineering Geology (IAEG), Geo-Institute of the American Society of Civil Engineers (ASCE), Portuguese Association of Engineers (OE) and British Council (BC). Porto, Portugal (2004).
[23] P . Zawrzykraj, P. Rydelek, A. Bąkowska, Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Eng. Geol. 226, 290-300 (2017), DOI: https://doi.org/10.1016/j.enggeo.2017.07.001
[24] J. Konkol, K. Międlarz, L. Bałachowski, Geotechnical characterization of soft soil deposits in Northern Poland. Eng. Geol. 259, 105187 (2019), DOI: https://doi.org/10.1016/j.enggeo.2019.105187
[25] J. Nawrocki, A. Becker (red.), Atlas geologiczny Polski. Państ. Inst. Geol., Warszawa (2017).
[26] PN -EN ISO 17892, Geotechnical investigation and testing. Laboratory testing of soil.
[27] PN -EN ISO 14688, Geotechnical investigation and testing. Identification and classification of soil.
[28] S. Shimobe, G. Spagnoli, Relationships between undrained shear strength, liquidity index, and water content ratio of clays. Bull. Eng. Geol. Environ. 79, 4817-4828 (2020), DOI: https://doi.org/10.1007/s10064-020-01844-5
[29] P.K. Robertson, C.E. Wride, Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geoecht. J. 35 (3), 442-459 (1998), DOI: https://doi.org/10.1139/t98-017
[30] I. Bagińska, Estimating and verifying soil unit weight determined on the basis of SCPTu tests. Ann. Warsaw Univ. Life Sci. – SGGW. Land Reclam. 48 (3), 233-242 (2016), DOI: https://doi.org/10.1515/sggw-2016-0018
[31] P.W. Mayne, Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT. Australian Geomechanics Journal 51 (4), 27-55 (2016).
[32] A. Cheshomi, Empirical relationships of CPTu results and undrained shear strength. J. GeoEng. 13 (2), 49-57 (2018), DOI: http://dx.doi.org/10.6310/jog.201806_13(2).1
[33] C.P. Wroth, The interpretation of in situ soil tests. Geotechnique 34 (4), 449-489 (1984), DOI: https://doi.org/10.1680/geot.1984.34.4.449
[34] R. Larsson, M. Mulabdic, Piezocone tests in clay. Swedish Geotechnical Institute, Linköping, Report 42, (1991).
[35] Y .J. Shin, D. Kim, Assessment of undrained shear strength based on Cone Penetration Test (CPT) for clayey soils. J. Civ. Eng. 15 (7), 1161-6 (2011), DOI: https://doi.org/10.1007/s12205-011-0808-6
[36] A .H. El-Bosraty, A.M. Ebid, A.L. Fayed, Estimation of the undrained shear strength of east Port-Said clay using the genetic programming. Ain Shams Engineering Journal 11 (4), 961-969 (2020), DOI: https://doi.org/10.1016/j.asej.2020.02.007
[37] L . Bałachowski, K. Międlarz, J. Konkol, Strength parameters of deltaic soils determined with CPTU, DMT and FVT. In: Proc. 4th Int. Symposium on Cone Penetration Testing (CPT’18), 117-121 (2018).
[38] S.J. Hong, M. Lee, J. Kim, W. Lee, Evaluation of undrained shear strength of Busan clay using CPT. In: Proc. 2nd Int. Symposium on Cone Penetration Testing, CPT’10 (2010).
[39] K . Koster, G. De Lange, R. Harting, E. de Heer, H. Middelkoop, Characterizing void ratio and compressibility of Holocene peat with CPT for assessing coastal–deltaic subsidence. Q. J. Eng. Geol. Hydrogeol. 51 (2), 210-218 (2018), DOI: https://doi.org/10.1144/qjegh2017-120
[40] G. Sanglerat, The Penetrometer and Soil Exploration. Dev. Geotech. Eng. (1972).
[41] P.W. Mayne, Cone penetration testing (Vol. 368). Transportation Research Board (2007).



Go to article

Authors and Affiliations

Matylda Tankiewicz
1
ORCID: ORCID
Irena Bagińska
2
ORCID: ORCID

  1. Wrocław University of Environmental and Life Sciences, 25 Norwida Str., 50-375 Wrocław, Poland
  2. Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Considering that the clay content in the western Liaoning region is high, the dominant fraction is <0.045 mm high ash in fine-grained low thermal coal and coal slurry. Self-developed CMC (Cone type Multi-stage Cyclone) multiple multistage small cone angle hydrocyclone groups are used for desliming flotation experiment research, product particle size analysis, hydrocyclone underflow product order evaluation tests and flotability evaluation. The results showed that 150 mm hydrocyclones with small cone angles are more suitable as the main desliming equipment before flotation than those with 75 mm and 50 mm hydrocyclones with small cone angles, but the bottom abortion rate is lower, and the phenomenon of “overflow running” is more serious. In the deslime-flotation process of the CMC multistage and small-cone angle hydrocyclone groups, the removal rate of fine particles with ash contents of 69.82% <0.045 mm in the original coal slime reaches 64.43%, basically solved the problem of “overflow and coarse running” of cyclones, and high ash fine clay minerals such as kaolin were enriched in the overflow. The group of three kinds of CMC hydrocyclone underflow products due to their different size widths shows that the flotability of the three underflows can be mixed into the float. Compared with raw coal direct flotation plants, the yield and combustible recovery rate can increase 2-3 times, and the floatability level is increased from extremely difficult to float to difficult to float, which can also be used for the underflow product floatability. The flotation process is different, strengthening the graded plant recycling process and providing a technological reference for better realization of narrows lime flotation.
Go to article

Authors and Affiliations

Sun Dezhi
1
Li Caixia
2
Guan Zhihao
1
Zhao Tianyang
3
Zhou Hongbo
4
Wang Xingfeng
2
Ning Qin
2

  1. National Energy Group Shendong Coal Group Company, Yulin, Shanxi, China
  2. School of Mining, Liaoning Technical University, Fuxin, China
  3. National Energy Group Yulin Energy Co., Ltd, Washing Center, Yulin, Shanxi, China
  4. Liaoning Nonferrous Investigation Research Institute Company, Shenyang 110013, China
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the use of mechanical cone penetration test CPTM for estimating the soil unit weight of selected organic soils in Rzeszow site, Poland. A search was made for direct relationships between the empirically determined the soil unit weight value and cone penetration test leading parameters (cone resistance qc, sleeve friction fs. The selected, existing models were also analysed in terms of suitability for estimating the soil unit weight and tests were performed to predict the value soil unit weight of local, different organic soils. Based on own the regression analysis, the relationships between empirically determined values of soil unit weight and leading parameters cone penetration test were determined. The results of research and analysis have shown that both existing models and new, determined regression analysis methods are poorly matched to the unit weight values determined in laboratory, the main reason may be the fact that organic soils are characterized by an extremely complicated, diverse and heterogeneous structure. This often results in a large divergence and lack of repeatability of results in a satisfactorily range. Therefore, in addition, to improve the predictive performances of the relationships, analysis using the artificial neural networks (ANN) was carried out.
Go to article

Bibliography


[1] EN 1997-1: 2008. Eurocode 7: Geotechnical Design – Part 1: General rules.
[2] EN 1997-2: 2009. Eurocode 7: Geotechnical Design – Part 2: Ground Investigation and Testing.
[3] P.K. Robertson, K.L. Cabal, “Guide to Cone Penetration Testing for Geotechnical Engineering”. Gregg Drilling & Testing, Inc, 5-th Edition, 2012.
[4] Y. Cal, “Soil classification by neural-network”, Adv. Eng. Softw. 22: pp. 95–97, 1995.
[5] A. Goh, “Empirical design in geotechnics using neural networks”, Geotechnique 45: pp. 709–714, 1995. https://doi.org/10.1680/geot.1995.45.4.709
[6] M. Shahin, M. Jaksa, H. Maier, “Artificial neural network applications in geotechnical engineering”, Aust. Geomech. 36: 49–62, 2001.
[7] N. Nawari, R, Liang, J. Nusairat, “Artificial intelligence techniques for the design and analysis of deep foundations”. Electron. J. Geotech. Eng. 4: pp 1–21, 1999. Available online: http://geotech.civeng.okstate.edu/ejge/ppr9909/index.html (accessed on).
[8] D. Penumadu, C. Jean-Lou, “Geomaterial modeling using artificial neural networks”, In Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, ASCE: Reston, WV, USA, pp 160–184, 1997.
[9] C.H. Zhiming, M. Guotao, Z. Ye, Z. Yanjie, H. Hengyang, “The application of artificial neural network in geotechnical engineering”, In Proceedings of the 2018 International Conference on Civil and Hydraulic Engineering (IConCHE 2018), Qingdao, China, 23–25 November 2018; IOP Publishing: Bristol, UK, 2018; http://dx.doi.org/10.1088/1755-1315/189/2/022054
[10] Z. Wang, Y. Li, “Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model”, Eng. Geol. 91: pp. 168–177, 2007. https://doi.org/10.1016/j.enggeo.2007.01.007
[11] M.J. Sulewska, “Applying Artificial Neural Networks for analysis of geotechnical problems”, Comput. Assist. Methods Eng. Sci. 18: pp. 230–241, 2011.
[12] M.J. Sulewska, “Artificial Neural modeling of compaction characteristics of cohesionless soil”, Comput. Assist. Methods Eng. Sci. 17: pp. 27–40, 2010.
[13] M.J. Sulewska, “Artificial Neural Networks in the Evaluation of Non-Cohesive Soil Compaction Parameters”, Committee Civil Engineering of the Polish Academy of Sciences: Warsaw, Poland, 2009.
[14] M.J. Sulewska, “Prediction Models for Minimum and Maximum Dry Density of Non-Cohesive Soils”, Pol. J. Environ. Stud. 19: pp. 797–804, 2010.
[15] M. Ochmański, J. Bzówka, “Selected examples of the use of artificial neural networks in geotechnics”, Civ. Environ. Eng. 4: pp. 287–294, 2013.
[16] A. Borowiec, K. Wilk, “Prediction of consistency parameters of fen soils by neural networks”, Comput. Assist. Methods Eng. Sci.21: pp. 67–75, 2014.
[17] M. Kłos, M.J. Sulewska, Z. Waszczyszyn, “Neural identification of compaction characteristics for granular soils”, Comput. Assist. Methods Eng. Sci.18: pp. 265–273, 2011.
[18] G. Wrzesiński, M.J. Sulewska, Z. Lechowicz, “Evaluation of the Change in Undrained Shear Strength in Cohesive Soils due to Principal Stress Rotation Using an Artificial Neural Network”, Appl. Sci. 8: p. 781, 2018. https://doi.org/10.3390/app8050781
[19] Z. Lechowicz, M. Fukue, S. Rabarijoely, M.J. Sulewska, “Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks”, Appl. Sci. 8: p. 1395, 2018. https://doi.org/10.3390/app8081395
[20] S. Rabarijoely, “A new Approach to the Determination of Mineral and Organic Soil Types Based on Dilatometer Tests (DMT)”, Appl. Sci.8 (11):, p. 2249, 2018. https://doi.org/10.3390/app8112249
[21] G. Straż, A. Borowiec, “Estimating the Unit Weight of Local Organic Soils from Laboratory Tests Using Artificial Neural Networks”, Appl. Sci. 10 (7): p. 2261, 2020. http://dx.doi.org/10.3390/app10072261
[22] Voivodship Inspectorate for Environmental Protection in Rzeszów, “Report on the state of the environment of the Podkarpackie Voivodeship in 2013–2015”, Environmental Monitoring Library, Rzeszow, 2016.
[23] Geotech, Ltd. Department of Geological Services Design and Construction and the Environment, “Geological and Engineering Geological Conditions for Recognition – Engineering for the Construction of Multi-Storey Building at UL; Witolda in Rzeszów”: Rzeszow, Poland, 2010.
[24] PN-EN ISO 17892-2:2014. Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 2: Determination of Bulk Density.
[25] PN-EN ISO 22476-12:2009. Geotechnical Investigation and Testing – Field Testing – Part 12: Mechanical Cone Penetration Test.
[26] L. Wysokiński, W. Kotlicki, T. Godlewski, “Geotechnical design according to Eurocode 7”, Guide. ITB, Warsaw, 2011.
[27] P.W. Mayne, G.J. Rix, “Correlations Between Shear Wave Velocity and Cone Tip Resistance in Clays”, Soils and Foundations 35 (2): pp. 107–110, 1995.
[28] P.W. Mayne, “The 2nd James K. Mitchell Lecture: Undisturbed Sand Strength from Seismic Cone Tests,” Geomechanics and Geoengineering Vol. 1, No. 4: pp. 239–247, 2006.
[29] P.W. Mayne, “Cone Penetration Testing”, “A Synthesis of Highway Practice”, NCHRP Synthesis 368; Transportation Research Board: Washington, DC, USA, 2007.
[30] P.W. Mayne, J. Peuchen, D. Bouwmeester, “Soil unit weight estimation from CPTs”, In Proceedings of the 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9–11 May, pp 169–176, 2010.
[31] P.W. Mayne, “Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPTu and DMT”, Geotechnical and Geophysical Site Characterisation 5 – Lehane, Acosta-Martínez & Kelly (Eds) © Australian Geomechanics Society, Sydney, Australia, 2016.
[32] P. Robertson, K. Cabal, “Estimating soil unit weight from CPT”, In Proceedings of the 2nd International
[33] Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, 9–11 May, 2010.
[34] A.T. Ozer, S.F. Bartlett, E.C. Lawton, “CPTU and DMT for estimating soil unit weight of Lake Bonneville Clay”, Geotechnical and Geophysical Site Characterization 4: pp. 291–296, 2012.
[35] R.K. Ghanekar, “Unit weight estimation from CPT for Indian offshore soft calcareous clay”, in: “CPTU and DMT in soft clays and organic soils” (eds. Z. Młynarek and J. Wierzbicki), Exlemplum Press, Poznań, Poland, pp. 31–44, 2014.
[36] M.S. Kovacevic, K.G. Gavin, C. Reale, L. Libric, “The use of neural networks to develop CPT correlations for soils in northern Croatia”, Cone Penetration Testing 2018 – Hicks, Pisano & Peuchen (eds), Delft University of Technology, June 2018, The Netherlands.
[37] G. Straż, “Estimating soil unit weight from CPT for selected organic soils”, in: “Selected technical, economic and ecological aspects of contemporary construction” (eds. K. Pujer), Exante, pp. 63–77, 2016.
[38] S.O. Haykin, “Neural Networks and Learning Machines”, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 798, 2009.
[39] M.T. Hagan, H.B. Demuth, M.H. Beale, “Neural Network Design”, PWS Publishing: Boston, MA, USA, 1996.
[40] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, SIAM J. Appl. Math.3: 11, pp. 431–441, 1963.
[41] M.T. Hagan, M. Menhaj, “Training feed-forward networks with the Marquardt algorithm”. IEEE Trans. Neural Netw. 5: pp. 989–993, 1994.
[42] J.E. Dennis, R.B. Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”, Prentice-Hall: Englewood Clis, NJ, USA, 1983.
[43] D.J.C. MacKay, “Bayesian interpolation”, Neural Comput.4: pp. 415–447, 1992.
[44] Beale, M.H.; Hagan, M.T.; Demuth, H.B.Neural Network ToolboxUser’s Guide; TheMathWorks: Natick, MA,USA, 2010.
[45] GEO5. Geotechnical software. Fine – Civil Engineering Softwere. https://www.finesoftware.pl/.
[46] Statistica 13.3. TIBCO Software Inc. https://www.statsoft.pl/Czytelnia .
Go to article

Authors and Affiliations

Grzegorz Straż
1
ORCID: ORCID
Artur Borowiec
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, Powstańców Warszawy 12 Av., 35-959 Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the use of the Casagrande Cup and Cone Penetrometer Methods for determining the liquid limit of selected organic soils in in the south-eastern region of Poland in laboratory conditions in accordance with the latest standard guidelines. 10 methods established on the basis of literature materials were used to interpret the test results: 4 for test in the Casagrande Cup and 6 for the Cone Penetrometer. The results were compared and used to determine the parameters necessary to assessment of consistency of all type of soils, e.g.: plasticity index ���� (%), consistency index ���� (–) or liquidity index ���� (–). The knowledge of these parameters makes it possible to determine the degree of plasticity of the tested soils using the Cassagrande chart. The conducted research and analyses have shown that the results of determining the liquid limit using the selected methods are not always comparable. The application of calculation methods based on the results of laboratory tests organic soils carried out in accordance with the procedures of the one standard (PN-B-04481: 1988), in the case of interpretation with Method No. 5 and Method No. 7, generated results with the widest range and the highest values in relation to the reference values (Method No. 1). In terms of the suitability of a given method, the type of tested soil, extremely complicated, diverse and heterogeneous structure turned out to be important, and most importantly, the content of organic parts, as evidenced by the results of consistency determination.
Go to article

Authors and Affiliations

Grzegorz Straż
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture Civil Engineering, al. Powstanców Warszawy 12, 35-959 Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

O b j e c t i v e s: To identify tooth diseases as potential causative factors in the development of maxillary sinus lesions, with the aid of clinical examination combined with Cone Beam Computed Tomography (CBCT), in the patients with persistent sinus-like ailments, unresponsive to routine treatment offered by otolaryngologists.

M a t e r i a l s a n d M e t h o d s: In 44 patients with suspected odontogenic maxillary sinusitis, a dental examination with tooth vitality test was carried out, in conjunction with CBCT. The study involved 29 women and 15 men (age range 19–69 years, mean age 43 (SD = 13.9) years).

R e s u l t s: In 15 (34.1%) patients the odontogenic lesions were encountered in maxillary sinuses. A total of 33 causative teeth were identified, of which 13 (39%) were after root canal treatment (RCT). Only one of the teeth had a properly reconstructed crown, and only one tooth had the root canals properly filled-in. Most frequently, the lesions in the sinuses were attributed to the inflammation of periapical tissues; the first molar having been established as the most common causative tooth.

C o n c l u s i o n s: A detailed dental examination, pursued in conjunction with CBCT analysis, allow to diagnose odontogenic maxillary lesions. The incidence of long-term ailments originating in the maxillary sinuses should prompt a detailed assessment of the teeth, especially those after RCT.

Go to article

Authors and Affiliations

Katarzyna Dobroś
Joanna Zarzecka
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this paper is to produce an applications-oriented review covering infrared techniques and devices. At the beginning infrared systems fundamentals are presented with emphasis on thermal emission, scene radiation and contrast, cooling techniques, and optics. Special attention is focused on night vision and thermal imaging concepts. Next section concentrates shortly on selected infrared systems and is arranged in order to increase complexity; from image intensifier systems, thermal imaging systems, to space-based systems. In this section are also described active and passive smart weapon seekers. Finally, other important infrared techniques and devices are shortly described, among them being: non-contact thermometers, radiometers, LIDAR, and infrared gas sensors.

Go to article

Authors and Affiliations

A. Rogalski
K. Chrzanowski
Download PDF Download RIS Download Bibtex

Abstract

A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f) algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency). The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.

Go to article

Authors and Affiliations

Andrzej Majkowski
Marcin Kołodziej
Remigiusz J. Rak

This page uses 'cookies'. Learn more