Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model of scheduling of multi unit construction project based on an NP-hard permutation flow shop problem, in which the considered criterion is the sum of the costs of the works' execution of the project considering the time of the project as a constraint. It is also assumed that each job in the units constituting the project may be realized in up to three different ways with specific time and cost of execution. The optimization task relies on solving the problem with two different decision variables: the order of execution of units (permutation) and a set of ways to carry out the works in units. The task presented in the paper is performed with the use of a created algorithm which searches the space of solutions in which metaheuristic simulated annealing algorithm is used. The paper presents a calculation example showing the applicability of the model in the optimization of sub-contractors' work in the construction project.

Go to article

Authors and Affiliations

M. Podolski
Download PDF Download RIS Download Bibtex

Abstract

One of the contract awarding systems in public sector in Poland is the Design & Build system. In this system, a client concludes a contract agreement with only one company, a contractor, in order to carry out both design and construction of works. While deciding on this form of delivery of a public project, the client is obliged to conduct a single proceeding aiming to select the contractor. In this paper, public works contracts awarded in the D&B system in Poland are analysed, whilst attention was put on the contracting modes and assessment criteria. The results are assessed against the experience of other countries and recommended methods for selection of the Design and Build contractor.

Go to article

Authors and Affiliations

A. Leśniak
E. Plebankiewicz
K. Zima

This page uses 'cookies'. Learn more