Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 101
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a conception of power electronics voltage controlled current source (VCCS) which is able much more precise mapping of its an output current in a reference signal, compared to a typical converter solution. It can be achieved by means of such interconnection of two separate converters that one of them corrects a total output current towards a reference signal. An output power of auxiliary converter is much smaller than an output power of main one. Thanks to continuous work of this converter also pulse modulation components in this current are minimized. These benefits are paid for by a relatively small increase in the complexity and the cost of the system. This conception of a converter has been called the double-converter topology (DCT). In the author opinion presented solution of the system can find application in many power electronics equipment and, therefore, will be developed. In the paper DCT basics, simulation experiments, and possible practical arrangement of the DCT are presented.
Go to article

Authors and Affiliations

Michał Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

In the description of small-signal transmittances of switch-mode power converters several characteristic frequencies are usually used, corresponding to poles and zeros of transmittances. The knowledge of these frequencies is important in the design of control circuits for converters and usually are assumed to be constant for a given power stage of a converter. The aim of the paper is to evaluate the influence of converter primary parameters and load conductance on characteristic frequencies. Analytical derivations and numerical calculations are performed for an ideal and non-ideal BUCK converter working in continuous or discontinuous conduction mode.

Go to article

Authors and Affiliations

Włodzimierz Janke
Download PDF Download RIS Download Bibtex

Abstract

This elaboration presents the concept of a unidirectional DC–DC switchedcapacitor converter operating as a voltage tripler. The system consists of two resonant cells with switched capacitors and chokes. This proposed converter topology achieves low voltages on semiconductor switches (diodes and transistors) compared to the classic SC series-parallel converter or the boost topology. The output voltage on the capacitors is reduced in the proposed converter because it is divided into two series-connected capacitors with asymmetric distribution. The presented results describe the analytical description of the system operation and the analytical equation for semiconductor currents. A simulation and experimental results have been performed. The system efficiency and three voltage gain values were measured in the experimental setup. The efficiency measured was also compared with the analytical determination curve for loss analysis and further converter optimization.
Go to article

Authors and Affiliations

Maciej Chojowski
1
Robert Sosnowski
1
Marcin Baszyński
1

  1. AGH University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to propose a model of a novel quasi-resonant boost converter with a tapped inductor. This converter combines the advantages of zero voltage quasi-resonant techniques and different conduction modes with the possibility of obtaining a high voltage conversion ratio by using a tapped inductor, which results in high converter efficiency and soft switching in the whole output power range. The paper contains an analysis of converter operation, a determination of voltage conversion ratio and the maximum voltage across power semiconductor switches as well as a discussion of control methods in discontinuous, critical, and continuous conduction modes. In order to verify the novelty of the proposed converter, a laboratory prototype of 300 W power was built. The highest efficiency η  = 94.7% was measured with the output power Po =  260 W and the input voltage Vin = 50 V. The lowest efficiency of 90.7% was obtained for the input voltage Vin  = 30 V and the output power Po = 75 W. The model was tested at input voltages (30–50) V, output voltage 380 V and maximum switching frequency 100 kHz.

Go to article

Bibliography

  1.  M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, and B. Lehman, “Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications”, IEEE Trans. Power Electron. 32(12), 9143‒9178 (2017), doi: 10.1109/ TPEL.2017.2652318.
  2.  W. Li and X. He, “Review of Nonisolated High-Step-Up DC/DC Converters in Photovoltaic Grid-Connected Applications”, IEEE Trans. Ind. Electron. 58(4), 1239‒1250 (2011), doi: 10.1109/TIE.2010.2049715.
  3.  H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, “Overview of High-Step-Up Coupled-Inductor Boost Converters”, IEEE IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 689‒704 (2016), doi: 10.1109/JESTPE.2016.2532930.
  4.  A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/DC converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475‒483 (2011), doi: 10.2478/v10175-011-0059-1.
  5.  W. Janke, M. Bączek, and J. Kraśniewski, “Input characteristics of a non-ideal DC-DC flyback converter”, Bull. Pol. Ac.: Tech. 67(5), 841‒849 (2019), doi: 10.24425/bpasts.2019.130884.
  6.  F.C. Lee, “High-frequency quasi-resonant converter technologies”, Proc. IEEE 76(4), 377‒390 (1988), doi: 10.1109/5.4424.
  7.  W.A. Tabisz, P.M. Gradzki, and F.C.Y. Lee, “Zero-voltage-switched quasi-resonant buck and flyback converters-experimental results at 10 MHz”, IEEE Trans. Power Electron. 4(2), 194‒204, 1989, doi: 10.1109/63.24904.
  8.  M. Harasimczuk and A. Borchert, “Single switch quasi-resonant ZVS converter with tapped inductor”, Prz. Elektrotechniczny 3, 44‒48 (2018).
  9.  S. Sathyan, H.M. Suryawanshi, M.S. Ballal, and A.B. Shitole, “Soft-Switching DC-DC Converter for Distributed Energy Sources With High Step-Up Voltage Capability”, IEEE Trans. Ind. Electron. 62(11), 7039‒7050 (2015), doi: 10.1109/TIE.2015.2448515.
  10.  T.F. Wu, Y.S. Lai, J.C. Hung, and Y.M. Chen, “Boost Converter With Coupled Inductors and Buck-Boost Type of Active Clamp”, IEEE Trans. Ind. Electron. 55(1), 154‒162 (2008), doi: 10.1109/TIE.2007.903925.
  11.  J.H. Yi, W. Choi, and B.H. Cho, “Zero-Voltage-Transition Interleaved Boost Converter With an Auxiliary Coupled Inductor”, IEEE Trans. Power Electron. 32(8), 5917‒5930 (2017), doi: 10.1109/TPEL.2016.2614843.
  12.  Y. Chen, Z. Li, and R. Liang, “A Novel Soft-Switching Interleaved Coupled-Inductor Boost Converter With Only Single Auxiliary Circuit”, IEEE Trans. Power Electron. 33(3), 2267‒2281 (2018), doi: 10.1109/TPEL.2017.2692998.
  13.  R. Stala et al., “A family of high-power multilevel switched capacitor-based resonant DC-DC converters – operational parameters and novel concepts of topologies”, Bull. Pol. Ac.: Tech. 65(5), 639‒651 (2017).
  14.  M. Harasimczuk, “A QR-ZCS Boost Converter With Tapped Inductor and Active Edge-Resonant Cell”, IEEE Trans. Power Electron. 35(12), 13085‒13095 (2020), doi: 10.1109/TPEL.2020.2991363.
  15.  M. Harasimczuk, “Przekształtniki podwyższające napięcie z dławikami dzielonymi”, PL Patent, Poland, P.423354, 2017.
Go to article

Authors and Affiliations

Jakub Dawidziuk
1
ORCID: ORCID
Michał Harasimczuk
2
ORCID: ORCID

  1. Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Bialystok, Poland
  2. Department of Electrical Engineering, Power Electronics and Electrical Power Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Advanced power electronic converters can provide the means to control power flow and ensure proper and secure operation of the future power grid. The small electrical energy sources dispersed in electrical power systems referred to as distributed generation are one of the most significant parts of future grids - Smart Grids. The threephase, direct matrix converter is an alternative solution to the conventional AC-DC-AC converter for interfacing two AC systems in distributed power generation with different voltage and/or frequency parameters. This paper presents a control analysis of a threephase matrix converter employed as a power interface of future electrical grids. The proposed system has been successfully tested for bidirectional power flow operation with different grid operating conditions, such as, frequency and voltage variation.
Go to article

Authors and Affiliations

P. Szcześniak
Z. Fedyczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents abilities and advantages following from the use of the harmonicbalance method for analysis of steady state of a multiphase system with switching devices on example of a matrix converter. Switching elements are modelled as resistances with step-wise variable parameters, what allows to describe the converter by a linear infinite set of equations. The analysis in frequency domain is presented on example of the one-periodic control strategy. External systems were also added using the Thevenin method approach. The numerical calculation results of a linear equations set were verified by the variable structure method in a time domain and the numerical convergence was confirmed. Furthermore, the exemplary complex system was analysed using the cascade method and current waveforms were obtained.

Go to article

Authors and Affiliations

Dariusz Borkowski
Tadeusz J. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a computationally efficient method for modelling an impact of the converter drive on the power grid. The formalized variable structure method (FVSM) allows for comprehensive studies of the effect on the power grid and examining the relation between this effect and the number of drive and feeding line parameters. In order to obtain a comprehensive model along with the model of the power grid, the parameters that are applied originate from a drive of a coal-fired power station. These parameters have been determined based on assessment and estimation. The estimation process was conducted with the aid of a model that allows for the commutation of power electronic elements. The authors confirmed that the model was correct by comparing empirical and theoretical voltage and current waveforms. Harmonic content of the voltage and current in the power grid which feeds the drive are considered to be the measure of the converter drive impact on the power grid. The standard method for the reduction of a harmonic content in the voltage and current involves the application of line reactors and distribution or converter transformers. As an example, the authors determine the impact of the drive on the power grid with respect to the adopted parameters of the line reactor. This example presents FVSM abilities with regard to simulation of complex systems that contain power grid components and converter drives.

Go to article

Authors and Affiliations

Ryszard Beniak
Arkadiusz Gardecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents investigation results of the natural balancing phenomena in the flying-capacitor SEPIC converters. The SEPIC converters topologies can be reconfigured to the flying-capacitor topology. Owing to this modification the advantageous increase of frequency of the current in the chokes and the decrease of semiconductors voltages can be achieved which is shown in this paper. Similarly to other multilevel flying capacitor topologies the adequate voltage sharing of the flying capacitors is an important issue for safe operation of the converter. The paper focuses on the analysis of the flying capacitor voltages balancing in the converter by natural currents as well as by the application of the additional RLC balancing booster. The paper proves that the natural balancing can be achieved by the specific application of the balancing circuit in the flying-capacitor SEPIC topology and proves the specific differences in the balancing process by natural currents of converter and with the usage of the balancing circuit. An operation of the converter with the balancing circuit and the natural balancing ability is studied here.

Go to article

Authors and Affiliations

Adam Kawa
Robert Stala
Download PDF Download RIS Download Bibtex

Abstract

A novel current-inversion type negative impedance converter (CNIC) is presented. It is built without the use of any resistors. Furthermore, a second-order low-pass filter based on this CNIC is also analysed. It shows a bandwidth of 50 MHz at 320 µW power consumption and 2 V supply voltage when realized in a 0.35 µm CMOS process.

Go to article

Authors and Affiliations

W. Jendernalik
Download PDF Download RIS Download Bibtex

Abstract

A microgrid is an appropriate concept for urban areas with high penetration of renewable power generation, which improves the reliability and efficiency of the distribution network at the consumer premises to meet various loads such as domestic, industrial, and agricultural types. Microgrids comprising inverter-based and synchronous generator-based distribution generators can lead to the instability of the system during the islanded mode of operation. This paper presents a study on designing stable microgrids to facilitate higher penetration of solar power generation into a distribution network. Ageneralized small signal model is derived for a microgrid with static loads, dynamic loads, energy storages, solar photovoltaic (PV) systems, and diesel generators, incorporating the features of dynamic systems. The model is validated by comparing the transient curves given by the model and a transient simulator subjected to step changes. The result shows that full dynamic models of complex systems of microgrids can be built accurately, and the proposed microgrid is stable for all the considered loading situations and solar PV penetration levels according to the small signal stability analysis.
Go to article

Authors and Affiliations

W.E.P. Sampath Ediriweera
1
N.W.A. Lidula
1
H. Dayan B.P. Herath
2

  1. Department of Electrical Engineering, University of Moratuwa, Moratuwa, Sri Lanka
  2. Colombo City, Ceylon Electricity Board, Sri Lanka
Download PDF Download RIS Download Bibtex

Abstract

A smart control based on neural networks for multicellular converters has been developed and implemented. The approach is based on a behavioral description of the different converter operating modes. Each operating mode represents a well-defined configuration for which an operating zone satisfying given invariance conditions, depending on the capacitors’ voltages and the load current of the converter, is assigned. A control vector, whose components are the control signals to be applied to the converter switches is generated for each mode. Therefore, generating the control signals becomes a classification task of the different operating zones. For this purpose, a neural approach has been developed and implemented to control a 2-cell converter then extended to a 3-cell converter. The developed approach has been compared to super-twisting sliding mode algorithm. The obtained results demonstrate the approach effectiveness to provide an efficient and robust control of the load current and ensure the balancing of the capacitors voltages.
Go to article

Bibliography

[1] Benmansour K., Réalisation d’un banc d’essai pour la Commande et l’Observation des Convertisseurs Multicellulaires séries, Approche Hybride, PhD Thesis, Université de Cergy Pontoise, France (2009).
[2] Colak I., Kabalci E., Bayindira R., Review of multilevel voltage source inverter topologies and control schemes, Energy Conversion and Management Journal, vol. 52, iss. 2, pp. 1114–1128 (2011).
[3] Laidi K., Benmansour K., Ferdjouni A., Bouchhida O., Real-time implementation of an interconnected observer design for p-cells chopper, Archives of Electrical Engineering, vol. 59, no. 2, pp. 5–20 (2010).
[4] Meynard T., Foch H., Multilevel choppers for high voltage applications, European Power Electronics and Drives Journal, vol. 2, no. 1, pp. 45–50 (1992).
[5] Meynard T., Foch H., Electronic device for electrical energy conversion between a voltage source and a current source by means of controllable switching cells, European Patent 92/91 6336.8 (1992).
[6] Laidi K., Benmansour K., High Order Sliding Mode Controller of Mid-point Multi-cellular Converter, 2nd International Symposium on Friendly Energy and Applications, Newcastle Upon Tyne, pp. 493–498 (2012).
[7] Pinon D., Commande des Convertisseurs Multicellulaires par Mode de Glissement, PhD Thesis, INPT, Toulouse (2000).
[8] Skender M.R., Tlemçani A., A New Algorithme Observer of Higher Order Sliding Mode Applied to Serial Multicell Converter, Revue Roumaine des Sciences Techniques – Série Électrotechnique et Énergétique, vol. 61, no. 2, pp. 126–130 (2016).
[9] Zhang H., Dong H., Zhang B., Tong Wu, Changwen Chen, Research on beam supply control strategy based on sliding mode control, Archives of Electrical Engineering, vol. 69, no 2, pp. 349–364 (2020).
[10] Amet L., Ghanes M., Barbot J.P., Direct control based on sliding mode techniques for multicells serial chopper, American Control Conference, San Francisco, CA, USA (2011).
[11] Laamiri S., Ghanes M., Amet L., Santomenna.G, Direct Control Strategy for a Three Phase Eight-Level Flying-Capacitor Inverter, IFAC Journal of Systems and Control, vol. 50, iss. 1, pp. 15786–15791 (2017).
[12] Benzineb O., Taibi F., Benbouzid M.E., Boucherit M.S., Tadjine M., Multicell Converters Hybrid Sliding Mode Control, IFAC World Congress 2014, Cape Town, South Africa, pp. 11659–11666 (2014).
[13] Bensaid S., Bensaad K., Benrejeb M., On Two Control Strategies for Multicellular Converters, International Journal of Control, Energy and Electrical Engineering (CEEE), vol. 1, pp. 37–42 (2014).
[14] Djondine P., Barbot J.P., Ghanes M., Comparison of sliding mode and petri nets control for multicellular chopper, International Journal of Nonlinear Science, vol. 25, no. 2, pp. 67–75 (2018).
[15] Salinas S., Ghanes M., Barbot J.P., Escalante F., Amghar B., Modeling and Control Design Based on Petri Nets for Serial Multicellular Choppers, IEEE Transactions on Control Systems Technology, vol. 23, no. 1 (2015).
[16] Derugo P., Zychlewicz M., Reproduction of the control plane as a method of selection of settings for an adaptive fuzzy controller with Petri layer, Archives of Electrical Engineering, vol. 69, no. 3, pp. 609–624 (2020).
[17] Manon P., Valentin C.R., Gilles G., Optimal Control of Hybrid Dynamical Systems: Application in Process Engineering, Control Engineering Practice, pp. 133–149 (2002).
[18] Teel A.R., Bonivento C., Isidori A., Marconi L., Rossi C., Robust hybrid control systems: an overview of some recent results, Advances in Control Theory and Applications, Springer, vol. 353, pp. 279–302 (2007).

Go to article

Authors and Affiliations

Kamel Laidi
1
Ouahid Bouchhida
1
Mokhtar Nibouche
2
Khelifa Benmansour
1

  1. University of Medea, Algeria
  2. University of the West of England, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The operating modes of the automatic control system for electromechanical converters for synchronization of rotor speeds have been developed and investigated. The proposed automatic speed control system allows adjusting the slave engine to the master one in a wide range from 0 to 6000 rpm. To improve the synchronization accuracy an adaptive algorithm is proposed that allows to increase the synchronization accuracy by 3-4 times. The proposed model of an adaptive automatic control system with an observing identification tool makes it possible to minimize the error in the asynchrony of the rotation of the rotors of two electromechanical converters.
Go to article

Authors and Affiliations

Aidana Kalabayeva
1 2
Waldemar Wójcik
3
Gulzhan Kashaganova
4
Kulzhan Togzhanova
5
Zhaksygul Sarybayeva
1

  1. Academy of Logistics and Transport, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications Almaty, Kazakhstan
  3. Lublin University of Technology, Lublin, Poland
  4. Turan University, Almaty, Kazakhstan
  5. Almaty Technological University, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept and the results of an investigation of a DC–DC boost converter with high voltage gain and a reduced number of switches. The novel concept assumes that the converter operates in a topology composed of series connection switched- capacitor-based multiplier (SCVM) sections. Furthermore, the structure of the sections has significant impact on parameters of the converter which is discussed in this paper. The paper demonstrates the basic benefit such a multisection SCVM idea in the converter, which is the significant reduction in the number of switches and diodes for high voltage gain in comparison to an SCVM converter. Aside from the number of switches and diodes, such parameters as efficiency and volume of passive components in the multisection converter are analyzed in this paper. In figures, the analysis is demonstrated using the example of 100 kW thyristor-based converters. All the characteristics of the converter are compared between various configurations of switching cells in the particular sections, thus the paper can be useful for a design approach for a high voltage gain multicell converter.

Go to article

Authors and Affiliations

Stanisław Piróg
Robert Stala
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel fault detection algorithm for a three-phase interleaved DC–DC boost converter integrated in a photovoltaic system. Interleaved DC–DC converters have been used widely due to their advantages in terms of efficiency, ripple reductions, modularity and small filter components. The fault detection algorithm depends on the input current waveform as a fault indicator and does not require any additional sensors in the system. To guarantee service continuity, a fault tolerant topology is achieved by connecting a redundant switch to the interleaved converter. The proposed fault detection algorithm is validated under different scenarios by the obtained results.
Go to article

Authors and Affiliations

Bilal Boudjellal
1
ORCID: ORCID
Tarak Benslimane
1
ORCID: ORCID

  1. Laboratory of Electrical Engineering, University of M’sila, Seat of the wilaya of M’sila, M’sila 28000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

DC-DC converters are popular switch-mode electronic circuits used in power supply systems of many electronic devices. Designing such converters requires reliable computation methods and models of components contained in these converters, allowing for accurate and fast computations of their characteristics. In the paper, a new averaged model of a diodetransistor switch containing an IGBT is proposed. The form of the developed model is presented. Its accuracy is verified by comparing the computed characteristics of the boost converter with the characteristics computed in SPICE using a transient analysis and literature models of a diode and an IGBT. The obtained results of computations proved the usefulness of the proposed model.

Go to article

Authors and Affiliations

Paweł Górecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a three-phase grid-tied converter operated under unbalanced and distorted grid voltage conditions, using a multi-oscillatory current controller to provide high quality phase currents. The aim of this study is to introduce a systematic design of the current control loop. A distinctive feature of the proposed method is that the designer needs to define the required response and the disturbance characteristic, rather than usually unintuitive coefficients of controllers. Most common approach to tuning a state-feedback controller use linear-quadratic regulator (LQR) technique or pole-placement method. The tuning process for those methods usually comes down to guessing several parameters. For more complex systems including multi-oscillatory terms, control system tuning is unintuitive and cannot be effectively done by trial and error method. This paper proposes particle swarm optimization to find the optimal weights in a cost function for the LQR procedure. Complete settings for optimization procedure and numerical model are presented. Our goal here is to demonstrate an original design workflow. The proposed method has been verified in experimental study at a 10 kW laboratory setup.

Go to article

Authors and Affiliations

A. Gałecki
M. Michalczuk
A. Kaszewski
B. Ufnalski
L.M. Grzesiak
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the power factor correction system consisted of: bridge converter, parallel resonant circuit, high frequency transformer, diode rectifier and LFCF filter is presented. This system is controlled by a pulse density modulation method and the principle of its operation is based on the boost technique. The modeling approach is illustrated by an example using AC/HF/DC converter. Verification of the derived model is provided, which demonstrated the validity of the proposed approach.
Go to article

Authors and Affiliations

Antoni Bogdan
Download PDF Download RIS Download Bibtex

Abstract

The paper investigates a significant influence of transients on steady states in a matrix converter with the one-periodic control strategy. Proposed controller can be used as an interconnection device within a power system for a power flow control. However, the presence of inductances in external systems has the significant influence on steady state of a matrix converter operation. The special current injection method has been developed to ensure a proper operation of a matrix converter. Presented analysis of steady states is carried out in a frequency domain using the harmonic balance method. Obtained numerical results, which are confirmed by a time domain analysis, prove the effectiveness of the proposed method.
Go to article

Authors and Affiliations

Dariusz Borkowski
Tadeusz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

The matrix rectifier modulated by the classical space vector modulation (SVM) strategy generates common-mode voltage (CMV). The high magnitude and high du/dt of the CMV causes serious problems such as motor damage, electromagnetic noise and many others. In this paper, an improved SVM strategy is proposed by replacing the zero vectors with suitable couple of active ones that substantially eliminate the CMV. Theoretical analysis proves that the proposed strategy can reduce the amplitude of the CMV to half of the original value. In addition, the quality of the input and output waveforms is not affected by extra active vectors. Simulation and experimental results demonstrate the feasibility and effectiveness of the proposed strategy are shown.

Go to article

Authors and Affiliations

Xiao Liu
Qingfan Zhang
Dianli Hou
Download PDF Download RIS Download Bibtex

Abstract

The matrix converter is a new generation of power electronic converters and is an alternative to back-to-back converters in applications that dimensions and weight are important. In this paper, a simple control algorithm for a three-phase asynchronous motor based on a direct torque control technique, which is fed through a three-phase direct matrix converter, is presented. For direct matrix converters, 27 switching modes are possible, which using the predictive control technique and for the different modes of the matrix converter, the motor behavior is estimated at the next sampling interval. Then the objective function is determined and the optimal possible mode is selected. Finally, the best switching mode is applied to the direct matrix converter. In order to evaluate the proposed method, simulation of the system in Matlab/Simulink software environment is performed. The results show the effectiveness of the proposed method.

Go to article

Authors and Affiliations

Vahid Talavat
Sadjad Galvani
Mahdi Hajibeigy
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept of an NxM Matrix Converter (MC) modeling under periodic control strategy patented in Poland. This strategy allows to change an Nphase input system of voltages and current with the frequency fi to the M-phase output system with the frequency fo, maintaining both systems symmetrical and providing small distortions of voltage and current waveforms at rather high frequencies. In this paper the control strategy is extended for dynamic states when one of the frequencies is changed. Matrix converter equations have been derived using the constrain matrix, which is determined by the switch states. The equations have the hybrid form of a multi-port circuit. To simplify these equations the symmetrical components of input and output voltages and currents have been applied. As a result, rather simple equations have been found. They can be interpreted to an equivalent scheme. All considerations are illustrated using an exemplary 6H3 matrix converter.
Go to article

Authors and Affiliations

Tomasz Sieńko
Tadeusz J. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper briefly describes direct power control methods for two- and threelevel AC/DC converters and their modified DPC 3H 2-? and the DPC 5H2-? algorithms. It also presents two new control methods DPC-3Am (direct power control 3 areas with modification) and the DPC-3L-3Am (direct power control 3 levels 3 areas with modification). The research results were used to compare the described methods. The comparison was based on an average value of switching frequency and current distortion coefficient. Experimental investigations into the methods have shown that the use of the modified DPC methods reduces the number of switchings by more than 70% compared with the standard DPC method.

Go to article

Authors and Affiliations

Krzysztof Kulikowski
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.

Go to article

Authors and Affiliations

Piotr Bogusz
Mariusz Korkosz
Jan Prokop
Download PDF Download RIS Download Bibtex

Abstract

In this paper a system of a grid side and a generator side converters, both working with a common capacitor, is presented. The 6-phase asymmetric inset-type SMPMSM generator is used. A large pole pair number of this generator enables a gearless wind turbine operation. The fundamental and 3rd harmonic cooperation is used to increase the generator performance. This is accomplished by means of the 3rd harmonic current injection. For that reason the generator side converter must have a neutral connection.

Go to article

Authors and Affiliations

Marek Gołębiowski
Lesław Gołębiowski
Damian Mazur
Matthias Humer

This page uses 'cookies'. Learn more