Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a multivariate regression predictive model of drift on the Coordinate Measuring Machine (CMM) behaviour. Evaluation tests on a CMM with a multi-step gauge were carried out following an extended version of an ISO evaluation procedure with a periodicity of at least once a week and during more than five months. This test procedure consists in measuring the gauge for several range volumes, spatial locations, distances and repetitions. The procedure, environment conditions and even the gauge have been kept invariables, so a massive measurement dataset was collected over time under high repeatability conditions. A multivariate regression analysis has revealed the main parameters that could affect the CMM behaviour, and then detected a trend on the CMM performance drift. A performance model that considers both the size of the measured dimension and the elapsed time since the last CMM calibration has been developed. This model can predict the CMM performance and measurement reliability over time and also can estimate an optimized period between calibrations for a specific measurement length or accuracy level.
Go to article

Authors and Affiliations

Eduardo Cuesta
Braulio Alvarez
Fernando Sanchez-Lasheras
Daniel Gonzalez-Madruga
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new interim check device for coordinate measuring machines (CMMs) built from an AISI 1020 carbon steel bar with the incorporation of calibrated spheres. This artifact’s construction was made to make the interim checks of machines of this type faster and cheaper. Three devices were designed based on the ISO 10360-2 standard, the good practice guide No. 42 (NPL), and prominent authors’ research on the subject. The three options are presented in detail, but only one was built due to budget, size, and adaptability restrictions. An exploratory study was conducted to verify the device’s usability in two CMMs and concluded that the differences between the measurements are not significant. However, one machine had absolute variation values and a total standard deviation higher than the other, generating a larger expanded uncertainty.
Go to article

Authors and Affiliations

Rodrigo Schons Arenhart
1
Morgana Pizzolato
1
Fernanda Hänsch Beuren
2
Adriano Mendonça Souza
3
Leandro Cantorski da Rosa
1

  1. Federal University of Santa Maria, Department of Production Engineering and Systems, Roraima Avenue, 1000, Santa Maria, Brazil
  2. State University of Santa Catarina, Department of Industrial Technology, Fernando Hastreiter Street, São Bento do Sul, Brazil
  3. Federal University of Santa Maria, Statistics Department, Roraima Avenue, 1000, Santa Maria, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Freeform surfaces have wider engineering applications. Designers use B-splines, Non-Uniform Rational B-splines, etc. to represent the freeform surfaces in CAD, while the manufacturers employ machines with controllers based on approximating functions or splines. Different errors also creep in during machining operations. Therefore the manufactured freeform surfaces have to be verified for conformance to design specification. Different points on the surface are probed using a coordinate measuring machine and substitute geometry of surface established from the measured points is compared with the design surface. The sampling points are distributed according to different strategies. In the present work, two new strategies of distributing the points on the basis of uniform surface area and dominant points are proposed, considering the geometrical nature of the surfaces. Metrological aspects such as probe contact and margins to be provided along the sides have also been included. The results are discussed in terms of deviation between measured points and substitute surface as well as between design and substitute surfaces, and compared with those obtained with the methods reported in the literature.

Go to article

Authors and Affiliations

G. Rajamohan
M. Shunmugam
G. Samuel
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparison of different techniques to capture nominal data for its use in later verification and kinematic parameter identification procedures for articulated arm coordinate measuring machines (AACMM). By using four different probing systems (passive spherical probe, active spherical probe, self-centering passive probe and self-centering active probe) the accuracy and repeatability of captured points has been evaluated by comparing these points to nominal points materialized by a ball-bar gauge distributed in several positions of the measurement volume. Then, by comparing these systems it is possible to characterize the influence of the force over the final results for each of the gauge and probing system configurations. The results with each of the systems studied show the advantages and original accuracy obtained by active probes, and thus their suitability in verification (active probes) and kinematic parameter identification (self-centering active probes) procedures.

Go to article

Authors and Affiliations

Agustín Brau
Margarita Valenzuela
Jorge Santolaria
Juan José Aguilar
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of assessing the accuracy of reconstructing free-form surfaces in the CMM/CAD/CAM/CNC systems. The system structure comprises a coordinate measuring machine (CMM) PMM 12106 equipped with a contact scanning probe, a 3-axis Arrow 500 Vertical Machining Center, QUINDOS software and Catia software. For the purpose of surface digitalization, a radius correction algorithm was developed. The surface reconstructing errors for the presented system were assessed and analysed with respect to offset points. The accuracy assessment exhibit error values in the reconstruction of a free-form surface in a range of ± 0.02 mm, which, as it is shown by the analysis, result from a systematic error.

Go to article

Authors and Affiliations

Artur Wójcik
Magdalena Niemczewska-Wójcik
Jerzy Sładek
Download PDF Download RIS Download Bibtex

Abstract

Reliable measurement uncertainty is a crucial part of the conformance/nonconformance decision-making process in the field of Quality Control in Manufacturing. The conventional GUM-method cannot be applied to CMM measurements primarily because of lack of an analytical relationship between the input quantities and the measurement. This paper presents calibration uncertainty analysis in commercial CMM-based Coordinate Metrology. For the case study, the hole-plate calibrated by the PTB is used as a workpiece. The paper focuses on thermo-mechanical errors which immediately affect the dimensional accuracy of manufactured parts of high-precision manufacturers. Our findings have highlighted some practical issues related to the importance of maintaining thermal equilibrium before the measurement. The authors have concluded that the thermal influence as an uncertainty contributor of CMM measurement result dominates the overall budgets for this example. The improved calibration uncertainty assessment technique considering thermal influence is described in detail for the use of a wide range of CMM users.
Go to article

Bibliography

[1] International Organization for Standardization (2009). Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM) – Part 2: CMMs used for measuring linear dimensions (ISO Standard No. 10360-2:2009). https://www.iso.org/standard/40954.html
[2] International Organization for Standardization (2017). Geometrical product specifications (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 1: Decision rules for proving conformance or non-conformance with specifications (ISO Standard No. 14253-1:2017). https://www.iso.org/standard/70137.html
[3] Mussatayev, M., Huang, M.,&Tang, Zh., (2020). Current issues in uncertainty of dimensional tolerance metrology and the future development in the domain of tolerancing. IOP Conference Series: Materials Science and Engineering, 715(1). https://doi.org/10.1088/1757-899X/715/1/012084
[4] Leach, R., & Smith, S. T. (Eds.). (2018). Basics of Precision Engineering. CRC Press.
[5] David, F., & Hannaford, J. (2012). Good Practice Guide No. 80. National Physical Laboratory.
[6] International Organization for Standardization (2013). Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 1: Overview and metrological characteristics (ISO Standard No. ISO/TS 15530-1). https://www.iso.org/standard/38693.html
[7] Płowucha, W. (2019). Point-straight line distance as model for uncertainty evaluation of coordinate measurement. Measurement, 135, 83–95. https://doi.org/10.1016/j.measurement.2018.11.008
[8] Mussatayev, M., Huang, M., & Beshleyev, S. (2020). Thermal influences as an uncertainty contributor of the coordinate measuring machine (CMM). The International Journal of Advanced Manufacturing Technology, 111, pp. 537–547. https://doi.org/10.1007/s00170-020-06012-3
[9] Sładek, J., & G˛aska, A. (2012). Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement, 45(6), 1564–1575. https://doi.org/10.1016/j.measurement.2012.02.020
[10] Saunders, P., Verma, M., Orchard, N., & Maropoulos, P. (2013). The application of uncertainty evaluating software for the utilisation of machine tool systems for final inspection. 10th International Conference and Exhibition on Laser Metrology, Coordinate Measuring Machine and Machine Tool Performance, LAMDAMAP 2013, 219–228.
[11] International Organization for Standardization (2011). Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards (ISO Standard No. 15530-3). https://www.iso.org/standard/53627.html
[12] International Organization for Standardization (2004). Geometrical Product Specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or standards (ISO Standard No. ISO/TS 15530-3). https://www.iso.org/standard/38695.html
[13] European Cooperation for Accreditation of Laboratories. (1995). Coordinate Measuring Machine Calibration [Publication Reference, EAL-G17].
[14] International Organization for Standardization. (2006). Geometrical product specifications (GPS) – Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty (ISO Standard No. ISO/TS 23165). https://www.iso.org/standard/24236.html
[15] Fang, C. Y., Sung, C. K., & Lui, K. W. (2005). Measurement uncertainty analysis of CMM with ISO GUM. ASPE Proceedings, United States, 1758–1761.
[16] Płowucha, W. (2020). Point plane distances model for uncertainty evaluation of coordinate measurement. Metrology and Measurement Systems, 27(4), 625–639. https://doi.org/10.24425/mms.2020.134843
[17] Ruffa, S., Panciani, G. D., Ricci, F., & Vicario, G. (2013). Assessing measurement uncertainty in CMM measurements: comparison of different approaches. International Journal of Metrology and Quality Engineering, 4(3), 163–168. https://doi.org/10.1051/ijmqe/2013057
[18] Cheng Y. B., Chen X. H., & Li Y. R. (2020). Uncertainty Analysis and Evaluation of Form Measurement Task for CMM. Acta Metrologica Sinica, 41(2), 134–138. https://doi.org/10.3969/j.issn.1000-1158.2020.02.02 (in Chinese).
[19] Rost, K., Wendt, K., & Härtig, F. (2016). Evaluating a task-specific measurement uncertainty for gear measuring instruments via Monte Carlo simulation. Precision Engineering, 44, 220–230. https://doi.org/10.1016/j.precisioneng.2016.01.001
[20] Valdez, M. O.,&Morse, E. P. (2017). The role of extrinsic factors in industrial task-specific uncertainty. Precision Engineering, 49, 78–84. https://doi.org/10.1016/j.precisioneng.2017.01.013
[21] Yang, J., Li, G., Wu, B., Gong, J., Wang, J., & Zhang, M. (2015). Efficient methods for evaluating task-specific uncertainty in laser-tracking measurement. MAPAN-Journal Metrology Society of India, 30(2), 105–117. https://doi.org/10.1007/s12647-014-0126-9
[22] Haitjema, H. (2019). Calibration of displacement laser interferometer systems for industrial metrology. Sensors, 19(19), 4100. https://doi.org/10.3390/s19194100
[23] Doytchinov, I., Shore, P., Nicquevert, B., Tonnellier, X., Heather, A., & Modena, M. (2019). Thermal effects compensation and associated uncertainty for large magnet assembly precision alignment. Precision Engineering, 59, 134–149. https://doi.org/10.1016/j.precisioneng.2019.06.005
[24] Van Gestel, N. (2011). Determining measurement uncertainties of feature measurements on CMMs (Bepalen van meetonzekerheden bij het meten van vormelementen met CMMs) [Doctoral dissertation, Katholieke Universiteit Leuven]. Digital repository for KU Leuven Association. https://lirias.kuleuven.be/retrieve/157334 [25] Mussatayev, M., Huang, M., & Rysbayeva, G. (2019). Role of uncertainty calculation in dimensional metrology using Coordinate Measuring Machine. ARCTIC Journal, 72(6).
[26] International Organization for Standardization (2005). Test code for machine tools – Part 9: Estimation of measurement uncertainty for machine tool tests according to series ISO 230, basic equations (ISO Standard No. ISO/TR 230-9:2005). https://www.iso.org/standard/39165.html
[27] International Organization for Standardization (2008). Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). https://www.iso.org/standard/50461.html
[28] Cheng, Y.,Wang, Z., Chen, X., Li, Y., Li, H., Li, H., &Wang, H. (2019). Evaluation and optimization of task-oriented measurement uncertainty for coordinate measuring machines based on geometrical product specifications. Applied Sciences, 9(1), 6. https://doi.org/10.3390/app9010006
[29] Jakubiec W., & Płowucha W. (2013). First Coordinate Measurements Uncertainty Evaluation Software Fully Consistent with the GPS Philosophy. Procedia CIRP, 10, 317–322. https://doi.org/10.1016/j.procir.2013.08.049
[30] International Organization for Standardization. (2013). Geometrical Product Specifications (GPS) – systematic errors and contributions to measurement uncertainty of length measurement due to thermal influences (ISO Standard No. ISO/TR 16015:2003). https://www.iso.org/standard/29436.html
[31] Huang, Z., Zhao, L., Li, K., Wang, H., & Zhou, T. (2019). A sampling method based on improved firefly algorithm for profile measurement of aviation engine blade. Metrology and Measurement Systems, 26(4), 757–771. https://doi.org/10.24425/mms.2019.130565
[32] Ramesh, R., Mannan, M. A., & Poo, A. N. (2000). Error compensation in machine tools. A review: part I: geometric, cutting-force induced and fixture-dependent errors. International Journal of Machine Tools and Manufacture, 40(9), 1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2
[33] International Organization for Standardization. (2004). Test conditions for numerically controlled turning machines and turning centres – Part 8: Evaluation of thermal distortions (ISO Standard No. ISO 13041-8:2004). https://www.iso.org/standard/34663.html
[34] Doytchinov, I., (2017). Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques. [Doctoral dissertation, Cranfield University]. CERN Document Server. https://cds.cern.ch/record/2299206
[35] Štrbac, B., Radlovacki, V., Spasic-Jokic, V., Delic, M., & Hadžistevic, M. (2017). The difference between GUM and ISO/TC 15530-3 method to evaluate the measurement uncertainty of flatness by a CMM. MAPAN, 32(4), 251–257. https://doi.org/10.1007/s12647-017-0227-3
Go to article

Authors and Affiliations

Meirbek Mussatayev
1
Meifa Huang
1
Marat Nurtas
2
Azamat Arynov
3

  1. Guilin University of Electronic Technology, School of Mechanical & Electrical Engineering, 1 Jinji Rd, Guilin, Guangxi, 541004, China
  2. International Information Technology University, Department of Mathematical and Computer Modelling, Kazakhstan
  3. School of Engineering at Warwick University, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Coordinate Measurement Machines (CMMs) have been extensively used in inspecting mechanical parts with higher accuracy. In order to enhance the efficiency and precision of the measurement of aviation engine blades, a sampling method of profile measurement of aviation engine blade based on the firefly algorithm is researched. Then, by comparing with the equal arc-length sampling algorithm (EAS) and the equi-parametric sampling algorithm (EPS) in one simulation, the proposed sampling algorithm shows its better sampling quality than the other two algorithms. Finally, the effectiveness of the algorithm is verified by an experimental example of blade profile. Both simulated and experimental results show that the method proposed in this paper can ensure the measurement accuracy by measuring a smaller number of points.

Go to article

Authors and Affiliations

Zhi Huang
Liao Zhao
Kai Li
Hongyan Wang
Tao Zhou
ORCID: ORCID

This page uses 'cookies'. Learn more