Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The author discusses the problem of reference of (nominal, verbal, adjectival groups, and adverbial) sentence components realized within coordinate relationships. Initially, the author refers to the theory of compactness as an explanation of the processes of generating coordinate constructions in the structure of simple sentences. There are evidences in favor of the thesis that the compactness theory does not explain coordination in semantic aspect. This applies not only to the structure with the main predicate with plural distribution (valence), but also to the entire range of coordination. The author distinguishes two types of references of coordinated phrases (in structure of a simple sentence): a distributional and a collective one. The constructional and semantic peculiarities of the expressions of both types have been described in relation to the contemporary Polish and Russian language.

Go to article

Authors and Affiliations

Aleksander Kiklewicz
Download PDF Download RIS Download Bibtex

Abstract

Reliable measurement uncertainty is a crucial part of the conformance/nonconformance decision-making process in the field of Quality Control in Manufacturing. The conventional GUM-method cannot be applied to CMM measurements primarily because of lack of an analytical relationship between the input quantities and the measurement. This paper presents calibration uncertainty analysis in commercial CMM-based Coordinate Metrology. For the case study, the hole-plate calibrated by the PTB is used as a workpiece. The paper focuses on thermo-mechanical errors which immediately affect the dimensional accuracy of manufactured parts of high-precision manufacturers. Our findings have highlighted some practical issues related to the importance of maintaining thermal equilibrium before the measurement. The authors have concluded that the thermal influence as an uncertainty contributor of CMM measurement result dominates the overall budgets for this example. The improved calibration uncertainty assessment technique considering thermal influence is described in detail for the use of a wide range of CMM users.
Go to article

Bibliography

[1] International Organization for Standardization (2009). Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM) – Part 2: CMMs used for measuring linear dimensions (ISO Standard No. 10360-2:2009). https://www.iso.org/standard/40954.html
[2] International Organization for Standardization (2017). Geometrical product specifications (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 1: Decision rules for proving conformance or non-conformance with specifications (ISO Standard No. 14253-1:2017). https://www.iso.org/standard/70137.html
[3] Mussatayev, M., Huang, M.,&Tang, Zh., (2020). Current issues in uncertainty of dimensional tolerance metrology and the future development in the domain of tolerancing. IOP Conference Series: Materials Science and Engineering, 715(1). https://doi.org/10.1088/1757-899X/715/1/012084
[4] Leach, R., & Smith, S. T. (Eds.). (2018). Basics of Precision Engineering. CRC Press.
[5] David, F., & Hannaford, J. (2012). Good Practice Guide No. 80. National Physical Laboratory.
[6] International Organization for Standardization (2013). Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 1: Overview and metrological characteristics (ISO Standard No. ISO/TS 15530-1). https://www.iso.org/standard/38693.html
[7] Płowucha, W. (2019). Point-straight line distance as model for uncertainty evaluation of coordinate measurement. Measurement, 135, 83–95. https://doi.org/10.1016/j.measurement.2018.11.008
[8] Mussatayev, M., Huang, M., & Beshleyev, S. (2020). Thermal influences as an uncertainty contributor of the coordinate measuring machine (CMM). The International Journal of Advanced Manufacturing Technology, 111, pp. 537–547. https://doi.org/10.1007/s00170-020-06012-3
[9] Sładek, J., & G˛aska, A. (2012). Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement, 45(6), 1564–1575. https://doi.org/10.1016/j.measurement.2012.02.020
[10] Saunders, P., Verma, M., Orchard, N., & Maropoulos, P. (2013). The application of uncertainty evaluating software for the utilisation of machine tool systems for final inspection. 10th International Conference and Exhibition on Laser Metrology, Coordinate Measuring Machine and Machine Tool Performance, LAMDAMAP 2013, 219–228.
[11] International Organization for Standardization (2011). Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards (ISO Standard No. 15530-3). https://www.iso.org/standard/53627.html
[12] International Organization for Standardization (2004). Geometrical Product Specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or standards (ISO Standard No. ISO/TS 15530-3). https://www.iso.org/standard/38695.html
[13] European Cooperation for Accreditation of Laboratories. (1995). Coordinate Measuring Machine Calibration [Publication Reference, EAL-G17].
[14] International Organization for Standardization. (2006). Geometrical product specifications (GPS) – Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty (ISO Standard No. ISO/TS 23165). https://www.iso.org/standard/24236.html
[15] Fang, C. Y., Sung, C. K., & Lui, K. W. (2005). Measurement uncertainty analysis of CMM with ISO GUM. ASPE Proceedings, United States, 1758–1761.
[16] Płowucha, W. (2020). Point plane distances model for uncertainty evaluation of coordinate measurement. Metrology and Measurement Systems, 27(4), 625–639. https://doi.org/10.24425/mms.2020.134843
[17] Ruffa, S., Panciani, G. D., Ricci, F., & Vicario, G. (2013). Assessing measurement uncertainty in CMM measurements: comparison of different approaches. International Journal of Metrology and Quality Engineering, 4(3), 163–168. https://doi.org/10.1051/ijmqe/2013057
[18] Cheng Y. B., Chen X. H., & Li Y. R. (2020). Uncertainty Analysis and Evaluation of Form Measurement Task for CMM. Acta Metrologica Sinica, 41(2), 134–138. https://doi.org/10.3969/j.issn.1000-1158.2020.02.02 (in Chinese).
[19] Rost, K., Wendt, K., & Härtig, F. (2016). Evaluating a task-specific measurement uncertainty for gear measuring instruments via Monte Carlo simulation. Precision Engineering, 44, 220–230. https://doi.org/10.1016/j.precisioneng.2016.01.001
[20] Valdez, M. O.,&Morse, E. P. (2017). The role of extrinsic factors in industrial task-specific uncertainty. Precision Engineering, 49, 78–84. https://doi.org/10.1016/j.precisioneng.2017.01.013
[21] Yang, J., Li, G., Wu, B., Gong, J., Wang, J., & Zhang, M. (2015). Efficient methods for evaluating task-specific uncertainty in laser-tracking measurement. MAPAN-Journal Metrology Society of India, 30(2), 105–117. https://doi.org/10.1007/s12647-014-0126-9
[22] Haitjema, H. (2019). Calibration of displacement laser interferometer systems for industrial metrology. Sensors, 19(19), 4100. https://doi.org/10.3390/s19194100
[23] Doytchinov, I., Shore, P., Nicquevert, B., Tonnellier, X., Heather, A., & Modena, M. (2019). Thermal effects compensation and associated uncertainty for large magnet assembly precision alignment. Precision Engineering, 59, 134–149. https://doi.org/10.1016/j.precisioneng.2019.06.005
[24] Van Gestel, N. (2011). Determining measurement uncertainties of feature measurements on CMMs (Bepalen van meetonzekerheden bij het meten van vormelementen met CMMs) [Doctoral dissertation, Katholieke Universiteit Leuven]. Digital repository for KU Leuven Association. https://lirias.kuleuven.be/retrieve/157334 [25] Mussatayev, M., Huang, M., & Rysbayeva, G. (2019). Role of uncertainty calculation in dimensional metrology using Coordinate Measuring Machine. ARCTIC Journal, 72(6).
[26] International Organization for Standardization (2005). Test code for machine tools – Part 9: Estimation of measurement uncertainty for machine tool tests according to series ISO 230, basic equations (ISO Standard No. ISO/TR 230-9:2005). https://www.iso.org/standard/39165.html
[27] International Organization for Standardization (2008). Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995). https://www.iso.org/standard/50461.html
[28] Cheng, Y.,Wang, Z., Chen, X., Li, Y., Li, H., Li, H., &Wang, H. (2019). Evaluation and optimization of task-oriented measurement uncertainty for coordinate measuring machines based on geometrical product specifications. Applied Sciences, 9(1), 6. https://doi.org/10.3390/app9010006
[29] Jakubiec W., & Płowucha W. (2013). First Coordinate Measurements Uncertainty Evaluation Software Fully Consistent with the GPS Philosophy. Procedia CIRP, 10, 317–322. https://doi.org/10.1016/j.procir.2013.08.049
[30] International Organization for Standardization. (2013). Geometrical Product Specifications (GPS) – systematic errors and contributions to measurement uncertainty of length measurement due to thermal influences (ISO Standard No. ISO/TR 16015:2003). https://www.iso.org/standard/29436.html
[31] Huang, Z., Zhao, L., Li, K., Wang, H., & Zhou, T. (2019). A sampling method based on improved firefly algorithm for profile measurement of aviation engine blade. Metrology and Measurement Systems, 26(4), 757–771. https://doi.org/10.24425/mms.2019.130565
[32] Ramesh, R., Mannan, M. A., & Poo, A. N. (2000). Error compensation in machine tools. A review: part I: geometric, cutting-force induced and fixture-dependent errors. International Journal of Machine Tools and Manufacture, 40(9), 1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2
[33] International Organization for Standardization. (2004). Test conditions for numerically controlled turning machines and turning centres – Part 8: Evaluation of thermal distortions (ISO Standard No. ISO 13041-8:2004). https://www.iso.org/standard/34663.html
[34] Doytchinov, I., (2017). Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques. [Doctoral dissertation, Cranfield University]. CERN Document Server. https://cds.cern.ch/record/2299206
[35] Štrbac, B., Radlovacki, V., Spasic-Jokic, V., Delic, M., & Hadžistevic, M. (2017). The difference between GUM and ISO/TC 15530-3 method to evaluate the measurement uncertainty of flatness by a CMM. MAPAN, 32(4), 251–257. https://doi.org/10.1007/s12647-017-0227-3
Go to article

Authors and Affiliations

Meirbek Mussatayev
1
Meifa Huang
1
Marat Nurtas
2
Azamat Arynov
3

  1. Guilin University of Electronic Technology, School of Mechanical & Electrical Engineering, 1 Jinji Rd, Guilin, Guangxi, 541004, China
  2. International Information Technology University, Department of Mathematical and Computer Modelling, Kazakhstan
  3. School of Engineering at Warwick University, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of computer simulations carried out to determine coordination numbers for a system of parallel cylindrical fibres distributed at random in a circular matrix according to twodimensional pattern created by random sequential addition scheme. Two different methods to calculate coordination number were utilized and compared. The first method was based on integration of pair distribution function. The second method was the modified sequential analysis. The calculations following from ensemble average approach revealed that these two methods give very close results for the same neighbourhood area irrespective of the wide range of radii used for calculation.

Go to article

Authors and Affiliations

Piotr Darnowski
Piotr Furmański
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new interim check device for coordinate measuring machines (CMMs) built from an AISI 1020 carbon steel bar with the incorporation of calibrated spheres. This artifact’s construction was made to make the interim checks of machines of this type faster and cheaper. Three devices were designed based on the ISO 10360-2 standard, the good practice guide No. 42 (NPL), and prominent authors’ research on the subject. The three options are presented in detail, but only one was built due to budget, size, and adaptability restrictions. An exploratory study was conducted to verify the device’s usability in two CMMs and concluded that the differences between the measurements are not significant. However, one machine had absolute variation values and a total standard deviation higher than the other, generating a larger expanded uncertainty.
Go to article

Authors and Affiliations

Rodrigo Schons Arenhart
1
Morgana Pizzolato
1
Fernanda Hänsch Beuren
2
Adriano Mendonça Souza
3
Leandro Cantorski da Rosa
1

  1. Federal University of Santa Maria, Department of Production Engineering and Systems, Roraima Avenue, 1000, Santa Maria, Brazil
  2. State University of Santa Catarina, Department of Industrial Technology, Fernando Hastreiter Street, São Bento do Sul, Brazil
  3. Federal University of Santa Maria, Statistics Department, Roraima Avenue, 1000, Santa Maria, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Organophosphate (OP) pesticides are commonly known for their neurotoxicity. In the current experiments, two OPs used agriculturally, chlorpyrifos and dimethoate, were separately adminis- tered with centrally acting caffeine that is known to affect the pharmacological action of other substances. The aim of this study was to determine whether the combination of OP and caffeine may influence their neurotoxic potential. For this purpose, some neurobehavioral effects of this concomitant exposure were assessed in adult Swiss mice. All substances were given intra- peritoneally (i.p.) as single injections. In the passive avoidance task, chlorpyrifos (100 mg/kg) administered together with caffeine (40 mg/kg) significantly impaired acquisition. In the rota-rod test, the addition of caffeine at doses of 20 and 40 mg/kg, induced motor coordination impairment in chlorpyrifos (100 mg/kg)-treated mice. Neurobehavioral impairments were not observed for caffeine, chlorpyrifos and dimethoate (50 mg/kg) given separately as well as for the combina- tion of dimethoate and caffeine. Chlorpyrifos (100 mg/kg) alone and in combination with caffeine (40 mg/kg) significantly reduced acetylcholinesterase (AChE) activity. The current study shows that concomitant exposure to caffeine and chlorpyrifos can cause neurotoxic effects in mice despite the absence of these effects when caffeine and chlorpyrifos are administered alone. How- ever, the possible mechanisms involved need further investigations.
Go to article

Authors and Affiliations

K. Łukawski
1 2
G. Raszewski
3
K. Kruszyński
1
S.J. Czuczwar
2

  1. Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
  2. Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
  3. Department of Toxicology and Food Protection, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Differential geometry is a strong and highly effective mathematical subject for robot gripper design when grasping within the predetermined trajectories of path planning. This study in grasping focuses on differential geometry analysis utilizing the Lie algebra, geodesic, and Riemann Curvature Tensors (RCT). The novelty of this article for 2RR robot mechanisms lies in the approach of the body coordinate with the geodesic and RCT. The importance of this research is significant especially in grasping and regrasping objects with varied shapes. In this article, the types of workspaces are clarified and classified for grasping and regrasping kinematics.
The regrasp has not been sufficiently investigated of body coordinate systems in Lie algebra. The reason for this is the difficulty in understanding relative coordinates in Lie algebra via the body coordinate system. The complexity of the equations has not allowed many researchers to overcome this challenge. The symbolic mathematics toolbox in the Maxima, on the other hand, aided in the systematic formulation of the workspaces in Lie algebra with geodesic and RCT.
The Lie algebra se(3) equations presented here have already been developed for robot kinematics from many references. These equations will be used to derive the followingworkspace types for grasping and regrasping. Body coordinate workspace, spatial coordinate workspace with constraints, body coordinate workspace with constraints, spatial coordinate workspace with constraints are the workspace types. The RCT and geodesic solutions exploit these four fundamental workspace equations derived using Lie algebra.
Go to article

Authors and Affiliations

Haydar Sahin
1

  1. Istanbul Gedik University, Engineering Faculty, Mechatronics Engineering Department, Istanbul, Türkiye
Download PDF Download RIS Download Bibtex

Abstract

One of the main problems of machining of moulds is the need for an effective monitoring system of wear of cutting tools. This paper presents the results of coordinate measurements of a cutting tool which were obtained by using the non-contact measuring system based on the ACCURA II coordinate measuring machine equipped with the LineScan laser measuring probe and the Calypso metrology software. Inves-tigations were carried out for several measurement strategies including different measurement resolutions and scanning speeds. The results of the coordinate measurements obtained by using the above-mentioned coordinate measuring system were compared to the reference data measured by means of the InfiniteFocus microscope. The measurement results were analysed by means of two software packages: Focus Inspection and Zeiss Reverse Engineering. The point clouds measured by using the LineScan probe were characterized by the selected deviation statistics equal to 4-6 μm when a good match between measurement points and the reference data was obtained. Moreover, these statistics mainly depend on the measurement resolution. The results of the performed experimental research allowed for drawing conclusions concerning the significance of the effect of the adopted measurement strategies on the results of the non-contact coordinate measurements of the selected cutting tool. The application of the non-contact coordinate measurements to the above-mentioned measurement task may contribute to the development of regeneration methods for cutting tools applied for mould manufacturing.
Go to article

Authors and Affiliations

A. Bazan
1
M. Magdziak
1
B. Jamuła
1

  1. Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article the author attempts to define the specificity of the tools for development planning at the local level in the context of: institutional resources of community (gmina) (and means of strengthening them), models of public management as well as the specifics of the Polish public administration system and its ensuing dysfunctions. These dysfunctions rely mainly on a limited awareness of the need to create mechanisms of coordination for: socio-economics, spatial and financial planning. These factors contribute to a decrease in the effectiveness of measures for the development of communities. Socio-economic planning answers the question: WHAT we want to do in the community; spatial planning: WHERE we would like to carry out certain activities, and financial planning: HOW MUCH it will cost and where the financial sources are. We can see the theoretical causal links between the areas of development planning, therefore, the main purpose of this article is to offer conceptual framework and a relevant case study of Kraków serving as its validation attempt.

Go to article

Authors and Affiliations

Michał Kudłacz
Download PDF Download RIS Download Bibtex

Abstract

The EU member states have implemented excise duties on fuel and electricity according to the EU Energy Tax Directive. The purpose of these measures is to motivate a reduction in energy consumption by internalizing external costs of energy. The taxes on energy have success in inciting energy savings. Simultaneously, the price levels of energy in the EU member states have increased to levels significantly higher compared to other countries in the region and the world. The price increase is the result of a cumulative effect of excise duties and other taxes and mechanisms including feed-in tariffs and quota policies. While the Energy Tax Directive gives the member states a level of freedom in setting the exact duty rates, the minimal rates enforced on all member states are relatively high. The policy intends to limit competition between the states on low energy prices and arbitrage trading between countries. We examine the purchasing power for energy products relative to the per capita GDP for a wide set of countries countries within the EU and in the rest of the world. We can identify several groups or clusters of countries based on their GDP per capita and energy prices. The new member states of the EU face a unique combination of low or moderate GDP per capita and very high energy prices. Their relative purchasing power for energy is degraded to levels comparable or lower than the purchasing power in developing countries with significantly lower GDP per capita and underdeveloped energy infrastructure. The calibration of energy taxation in the EU at high price levels suitable for Western European economies with high per capita GDP is leading to strong negative social effects and increasing poverty in Eastern European member states. The current implementation of these policies does not recognize to a sufficient extent income levels, regional social inequalities, and the low price elasticity of demand for energy.

Go to article

Authors and Affiliations

Yavor Kolarov
Download PDF Download RIS Download Bibtex

Abstract

Orthogonal frequency division multiple access (OFDMA) in Long Term Evolution (LTE) can effectively eliminate intra-cell interferences between the subcarriers in a single serving cell. But, there is more critical issue that, OFDMA cannot accomplish to decrease the inter-cell interference. In our proposed method, we aimed to increase signal to interference plus noise ratio (SINR) by dividing the cells as cell center and cell edge. While decreasing the interference between cells, we also aimed to increase overall system throughput. For this reason, we proposed a dynamic resource allocation technique that is called Experience-Based Dynamic Soft Frequency Reuse (EBDSFR). We compared our proposed scheme with different resource allocation schemes that are Dynamic Inter-cellular Bandwidth Fair Sharing FFR (FFRDIBFS) and Dynamic Inter-cellular Bandwidth Fair Sharing Reuse-3 (Reuse3DIBFS). Simulation results indicate that, proposed EBDSFR benefits from overall cell throughput and obtains higher user fairness than the reference schemes.

Go to article

Authors and Affiliations

Mert Yağcıoğlu
Oğuz Bayat
Download PDF Download RIS Download Bibtex

Abstract

In this study, the inverter in a microgrid was adjusted by the particle swarm optimization (PSO) based coordinated control strategy to ensure the stability of the isolated island operation. The simulation results showed that the voltage at the inverter port reduced instantaneously, and the voltage unbalance degree of its port and the port of point of common coupling (PCC) exceeded the normal standard when the microgrid entered the isolated island mode. After using the coordinated control strategy, the voltage rapidly recovered, and the voltage unbalance degree rapidly reduced to the normal level. The coordinated control strategy is better than the normal control strategy.
Go to article

Bibliography

[1] Mohamed A., Lamhamdi T., Moussaoui H.E., Markhi H.E., Intelligent energy management system of a smart microgrid using multiagent systems, Archives of Electrical Engineering, vol. 69, no. 1, pp. 23–38 (2020).
[2] Selakov A., Bekut D., Sari A.T., A novel agent-based microgrid optimal control for grid-connected, planned island and emergency island operations, International Transactions on Electrical Energy Systems, vol. 26, no. 9, pp. 1999–2022 (2016).
[3] Obara S., Sato K., Utsugi Y., Study on the operation optimization of an isolated island microgrid with renewable energy layout planning, Energy, vol. 161, no. OCT.15, pp. 1211–1225 (2018).
[4] Zhang T.F., Li X.X., A Control Strategy for Smooth Switching Between Island Operation Mode and Grid-Connection Operation Mode of Microgrid Containing Photovoltaic Generations, Power System Technology, vol. 39, pp. 904–910 (2015).
[5] Liang H., Dong Y., Huang Y., Zheng C., Li P., Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration, Energies, vol. 11, no. 9 (2018).
[6] Zhang L., Chen K., Lyu L., Cai G., Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm, Energies, vol. 12, no. 6 (2019).
[7] MaY.,Yang P., Guo H.,WangY., Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island, Journal of Electrical Engineering & Technology, vol. 10, no. 4, pp. 1433–1441 (2015).
[8] Worku M., Hassan M., Abido M., Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes, Energies, vol. 12, no. 2 (2019).
[9] Xu X., Zhou X., Control Strategy for Smooth Transfer Between Grid-connected and Island Operation for Micro Grid, High Voltage Engineering, vol. 44, no. 8, pp. 2754–2760 (2018).
[10] Roque J.A.M., Gonzalez R.O., Rivas J.J.R., Castillo O.C., Caporal R.M., Design of aNew Controller for an Inverter Operation in Transitional Regime Within a Microgrid, IEEE Latin America Transactions, vol. 14, no. 12, pp. 4724–4732 (2017).
[11] Ma Y., Yang P., Zhao Z., Wang Y., Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm, Mathematical Problems in Engineering, vol. 2015, pp. 1–10 (2015).
[12] Li P., Xu D., Zhou Z., Lee W., Zhao B., Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle SwarmOptimization, IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 66–73 (2016).
[13] Tan Y., Cao Y., Li C., Li Y., Yu L., Zhang Z., Tang S., Microgrid stochastic economic load dispatch based on two-point estimate method and improved particle swarm optimization, International Transactions on Electrical Energy Systems, vol. 25, no. 10, pp. 2144–2164 (2015).
[14] Radosavljevic J., Jevtic M., Klimenta D., Energy and operation management of a microgrid using particle swarm optimization, Engineering Optimization, vol. 48, no. 5, pp. 1–20 (2015).
[15] Maulik A., Das D., Optimal operation of microgrid using four different optimization techniques, Sustainable Energy Technologies and Assessments, vol. 21, pp. 100–120 (2017), DOI: 10.1016/j.seta.2017.04.005.
Go to article

Authors and Affiliations

Pan Wu
1
ORCID: ORCID
Xiaowei Xu
2

  1. Power Supply Co., Ltd.Luqiao District, Taizhou, Zhejiang Province, China
  2. Power Supply Co., Ltd.Tonglu, Zhejiang Province, China
Download PDF Download RIS Download Bibtex

Abstract

Based on the respective characteristics of line-commutated converter high-voltage direct current (LCC-HVDC) and voltage-source converter high voltage direct cur- rent (VSC-HVDC), two additional emergency DC power support (EDCPS) controllers are designed, respectively. In addition a coordinated control strategy based on a hybrid multi-infeed HVDC system for EDCPS is proposed. Considering the difference in system recovery between LCC-HVDC and VSC-HVDC in EDCPS, according to the magnitude of the amount of potential power loss, the LCC-HVDC and VSC-HVDC priority issues of boosting power for EDCPS are discussed in detail. Finally, a hybrid three-infeed HVDC that consists of two parallel LCC-HVDCs and one VSC-HVDC that is built in PSCAD/EMTDC are simulated. The effectiveness of the proposed approach is verified based on this hybrid three-infeed HVDC system.

Go to article

Authors and Affiliations

Congshan Li
ORCID: ORCID
Yikai Li
ORCID: ORCID
Jian Guo
Ping He
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the problem of the right to social security in the state of residence in the light of Regulation No 883/2004 on the coordination of social security systems. The judgment of the Court of Justice of 8 May 2019 in case C-631/17 SF v Inspecteur van de Belastingdienst served as an inspiration for the above-mentioned topic. In its judgement the Court has made a binding interpretation of Article 11(3)(e) of the said Regulation in the context of the situation of a national of a member state employed as a seaman on board a vessel flying the flag of a third state by an employer established in a member state other than the worker’s state of residence. The aim of the article is to justify the right to social security in the state of residence based on Article 11(3)(e) of the Regulation 883/2004. The analysis shows that it is necessary to introduce appropriate changes to the Polish legislation on the social security system. Simultaneously, as far as seafarers are concerned, it is desirable to consider the specificities of the work at sea, including the introduction of maritime social security as a specific type of social security, similar to French law for instance. The changes should be introduced gradually to avoid the risk of decline in the employment of Polish seafarers by EU shipowners.
Go to article

Authors and Affiliations

Sylwia Majkowska-Szulc
1

  1. Zakład Prawa Prywatnego Międzynarodowego, Katedra Prawa Cywilnego, Wydział Prawa i Administracji Uniwersytetu Gdańskiego
Download PDF Download RIS Download Bibtex

Abstract

Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.

Go to article

Authors and Affiliations

Piotr Darnowski
Piotr Furmański
Roman Domański
Download PDF Download RIS Download Bibtex

Abstract

The loss of power and voltage can affect distribution networks that have a significant number of distributed power resources and electric vehicles. The present study focuses on a hybrid method to model multi-objective coordination optimisation problems for dis- tributed power generation and charging and discharging of electric vehicles in a distribution system. An improved simulated annealing based particle swarm optimisation (SAPSO) algorithm is employed to solve the proposed multi-objective optimisation problem with two objective functions including the minimal power loss index and minimal voltage deviation index. The proposed method is simulated on IEEE 33-node distribution systems and IEEE-118 nodes large scale distribution systems to demonstrate the performance and effectiveness of the technique. The simulation results indicate that the power loss and node voltage deviation are significantly reduced via the coordination optimisation of the power of distributed generations and charging and discharging power of electric vehicles.With the methodology supposed in this paper, thousands of EVs can be accessed to the distribution network in a slow charging mode.

Go to article

Authors and Affiliations

Huiling Tang
Jiekang Wu
Download PDF Download RIS Download Bibtex

Abstract

In the asynchronous interconnected power grid that is composed of the multiterminal voltage-source converter high voltage direct current (VSC-MTDC) system, the control methods of each converter station and the frequency of the connected AC system are not the same. When a fault occurs in any place of the asynchronous interconnected system, it will cause the system to have power shortage or surplus, affecting the safe and stable operation of the interconnected power grid. In order to solve the problem of insufficient regional active power reserve, based on the VSC-MTDC asynchronous regional interconnection system and the principle of regional sharing, the dynamic power controller under disturbance conditions is established, and the controller parameters are set to achieve the accuracy of unbalanced power in the disturbance area measuring. Then, according to the degree of the disturbance power, considering the factors that affect the support effect of the converter station, an emergency DC power support (EDCPS) scheme under different power disturbances is formulated to achieve power compensation for the disturbance area. Based on PSCAD/EMTDC software, the proposed control strategy is simulated. The result shows that the converter station closer to the disturbance area has a better support effect, and the dynamic active power controller can timely and accurately deliver to the disturbance area when the active power reserve is insufficient.
Go to article

Bibliography

[1] Li X., Zeng Q.,Wang Y., Zhang Y., Control strategies of voltage source converter based direct current transmission system, Gaodianya Jishu/High Voltage Engineering, vol. 42, no. 10, pp. 3025–3037 (2016).
[2] Kontos E., Tsolaridis G., Teodorescu R., Bauer P., Full-bridge MMC DC fault ride-through and STATCOM operation in multi-terminal HVDC grids , Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 65, no. 5, pp. 653–662 (2017).
[3] Huang R., Zhu Z., Chen J., Chen M., Zou C., Xu S., Research and Experimental Validation of Control and Protection Strategy of HVDC Circuit Breaker in Fault Condition Application in Nan’ao Multi- Terminal VSC-HVDC System, Dianwang Jishu/Power System Technology, vol. 42, no. 7, pp. 2339–2345 (2018).
[4] Guo X., Zhou Y., Mei N., Zhao B., Construction and Characteristic Analysis of Zhangbei Flexible DC Grid, Dianwang Jishu/Power System Technology, vol. 42, no. 11, pp. 3698–3707 (2018).
[5] Xu T. et al., Design and Application of Emergency Coordination Control System for Multi-infeedHVDC Receiving-end System Coping with Frequency Stability Problem, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 41, no. 8, pp. 98–104 (2017).
[6] Lin Q., Li X., Hu N., Wang X., Li K., A multi-agent based emergency DC power support strategy, Dianwang Jishu/Power System Technology, vol. 38, no. 5, pp. 1150–1155 (2014).
[7] Yu T., Shen D., Ren Z., Research on emergency power shifting control of multi-circuit HVDC systems from Central China Power Grid to East China Power Grid, Power System Technology, vol. 28, no. 12, pp. 1–4+19 (2004).
[8] Yang W., Xue Y., Jing Y., Chao J., Huang W., Hong C., Yang B., Emergency DC power support to AC power system in the south china power grid, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 27, no. 17, pp. 68–72 (2003).
[9] Weng H., Xu Z., Xu F., Tu Q., Dong H., Research on constraint factor of emergency power support of HVDC systems, Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, vol. 34, no. 10, pp. 1519–1527 (2014).
[10] Li G., Fu G., Wang S., Li J., Emergency power support control for MMC flexible HVDC transmission system during AC fault, Power System Protection and Control, vol. 46, no. 13, pp. 107–112 (2018).
[11] Li Cong, Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–12 (2020).
[12] Zhu R., Li X., Ying D., A frequency stability control strategy for interconnected VSC-MTDC transmission system, Dianwang Jishu/Power System Technology, vol. 38, no. 10, pp. 2729–2734 (2014).
[13] Zhang W., Fang X., The Support for Regional Grid Catastrophe Recovery from Multi-terminal DC Asynchronous Interconnection, Power System and Automation, vol. 39, no. 1, pp. 66–69 (2017).
[14] XuT. et al., Coordinated Control Strategy of Multi-DC Emergency Power Support to Improve Frequency Stability of Power Systems, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 42, no. 22, pp. 69–77+143 (2018).
[15] Rakibuzzaman S., Robin P., Mike B., The Impact of Voltage Regulation of Multiinfeed VSC-HVDC on Power System Stability, IEEE Transactions on Energy Conversion, vol. 33, no. 4, pp. 1614-1627 (2018).
[16] Nadew A.B., Cornelis A.P., Analysis of Faults in Multiterminal HVDC Grid for Definition of Test Requirements of HVDC Circuit Breakers, IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 403–411 (2018).
[17] Fuchs A., Imhof M., Demiray T., Morari M., Stabilization of large power systems using vsc-hvdc and model predictive control, IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 480–488 (2014).
[18] Harnefors L., Johansson N., Zhang L., Berggren B., Interarea oscillation damping using active-power modulation of multiterminal HVDC transmissions, IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2529–2538 (2014).
19] Tang G., He Z., Pang H., Research, application and development of VSC-HVDC engineering technology, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 37, no. 15, pp. 3–14 (2013).
[20] Naushath M., Athula D., Aniruddha M., Ioni T., Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, no. 1, pp. 241–250 (2019).
Go to article

Authors and Affiliations

Congshan Li
1
ORCID: ORCID
Tingyu Sheng
1
ORCID: ORCID
Yan Fang
1
ORCID: ORCID
Yikai Li
1
ORCID: ORCID

  1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

The comprehensive evaluation of the smart grid is of great significance to the development of the power grid. This study mainly analyzed the coordinated planning of major networks and power distribution networks of the grid. Firstly, the coordinated planning of major networks and power distribution networks was introduced, then a comprehensive evaluation index system was established based on six domains, i.e., economy, safety, reliability, coordination, environmental protection, and automation. The evaluation of the indexes was realized through the expert scoring method. Finally, taking the power grid planning of Boao Town, Qionghai City, Hainan Province, China, as an example, the current scheme and planning scheme were evaluated. The results showed that the planning scheme had better performance in aspects such as economy and reliability, and its score was 15.39% higher than the current scheme, which verifies the effectiveness of the planning scheme and its feasible application in practical projects.
Go to article

Bibliography

[1] Perles A., Camilleri G., Croteau D., Principle and evaluation of a self-adaptive multi-agent system for state estimation of electrical distribution network, World Congress on Sustainable Technologies, London, UK (2016), DOI: 10.1109/WCST.2016.7886584.
[2] Erol-Kantarci M., Mouftah H.T., Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues, IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 179–197 (2015).
[3] Sroka K., Złotecka D., The risk of large blackout failures in power systems, Archives of Electrical Engineering, vol. 68, no. 2, pp. 411–426 (2019).
[4] Liang F., Lv X., Liu J., ZhangW., Liu X.F., Gao B.T., Evaluation of investment projects on distribution network based on fuzzy algorithms, 2015 IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China (2015), DOI: 10.1109/CYBER. 2015.7288038.
[5] Liu H.Q., Lin W.J., Li Y.C., Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020).
[6] An K., Liu H., Zhu H., Dong Z.Y., Hur K., Evaluation of conservation voltage reduction with analytic hierarchy process: a decision support framework in grid operations planning, Energies, vol. 9, no. 12, pp. 761–766 (2016).
[7] Wei Z.C., Zhao F.Z., Meng X.L., Song X.H., Ye Z.J., Sheng Y., Research on hierarchical evaluation index system of intelligent level in smart distribution grid, Advanced Materials Research, vol. 1092–1093, pp. 443–449 (2015).
[8] Cai B., Liu Y., Ma Y., Huang L., Liu Z., A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults, Energy, vol. 93, pp. 1308–1320 (2015).
[9] Xue M., Zhao B., Zhang X., Jiang Q., Integrated plan and evaluation of grid-connected microgrid, Automation of Electric Power Systems, vol. 39, no. 3, pp. 6–13 (2015).
[10] Azeroual M., Lamhamdi T., El Moussaoui H., El Markhi H., Intelligent energy management system of a smart microgrid using multiagent systems, Archives of Electrical Engineering, vol. 69, no. 1, pp. 23–38 (2020).
[11] Fadel E., Gungor V.C., Nassef L., Akkari N., Malik A., Almasri S., Akyildiz I.F., A survey on wireless sensor networks for smart grid, Computer Communications, vol. 71, no. NOV. 1, pp. 22–33 (2015).
[12] Bayindir R., Colak I., Fulli G., Demirtas K., Smart grid technologies and applications, Renewable and Sustainable Energy Reviews, vol. 66, no. DEC, pp. 499–516 (2016).
[13] Zhou X.S., Kong X.L., Ma Y.J., The Overview of Smart Grid, Applied Mechanics and Materials, vol. 552, pp. 103–106 (2014).
[14] He Y., Wu J., Ge Y., Li D.Z., Yan H.G., Research on Model and Method of Maturity Evaluation of Smart Grid Industry, International Conference on Life System Modeling and Simulation International Conference on Intelligent Computing for Sustainable Energy and Environment, vol. 763 (2017).
[15] Yang Z., Wu R., Yang J., Long K., You P., Economical Operation of Microgrid With Various Devices Via Distributed Optimization, IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 857–867 (2016).
[16] Li Y.B., Li Y., LiW.G., Application Credibility Theory in the Smart Grid Information Network Security Assessment, Advanced Materials Research, vol. 960–961, pp. 841–844 (2014).
[17] Vineetha C.P., Babu C.A., Smart grid challenges, issues and solutions, 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan (2014), DOI: 10.1109/IGBSG. 2014.6835208.
[18] Ou Q., Zhen Y., Li X., Zhang Y., Zeng L., Application of Internet of Things in Smart Grid Power Transmission, IEEE 2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing (MUSIC) – Vancouver, Canada (2012.06.26-2012.06.28) 2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent, pp. 96–100 (2012), DOI: 10.1109/MUSIC.2012.24.
[19] Chen P., Hu P., Selection of the Intelligent Power Distribution Cabinets for the Computer Room of Video Monitoring Data Center, Applied Mechanics and Materials, vol. 416–417, pp. 1076–1079 (2013).
[20] Strand J., Carson R.T., Navrud S., Ortiz-Bobea A., Vincent J., Using the Delphi method to value protection of the Amazon rainforest, Ecological Economics, vol. 131, pp. 475–484 (2017).
Go to article

Authors and Affiliations

Guangtao Ning
1
Bing Fang
1
Dan Qin
1
Yafeng Liang
1
Lijuan Zheng
2

  1. Power Grid Planning and Design Research Center, Hainan Power Grid Co., Ltd., China
  2. Tellhow Software Co., Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

Voltage source converter-based multi-terminal high-voltage direct current (VSCMTDC) transmission system can realize a multi-point power supply, multi-drop power receiving, and mutual coordination between the converter stations to ensure the reliability of the transmission. Based on the PSCAD/EMTDC platform, a five-terminal DC transmission system model is established. According to the fast power regulation capability and overload capacity of theVSC-MTDC power transmission system, an analysis of additional emergency power support for a transmission system under large disturbance conditions was carried out. A new control strategy for emergency power support that introduces its basic principle is proposed in this paper. It uses the short-term overload capability of the DC system. By changing the power reserve of the converter station and the electrical distance between the converter stations, the influence of the power reserve and the electrical distance on the emergency power supply guarantee is analyzed the stability of the system is improved, thereby improving the sudden change of power caused by voltage fluctuations, and the feasibility of the control module is verified by PSCAD simulation. The simulation results show that when the system power supply suddenly changes, the converter stations at a short distance and large power reserve has a better effect on emergency power supply protection. A comparative study of the active power support of a single converter station and multiple converter stations is carried out. The research results show that the use of emergency power support in the DC transmission system has a good effect on maintaining the stability of the inter-connection system and the reliability of the power supply.
Go to article

Authors and Affiliations

Congshan Li
1
ORCID: ORCID
Zikai Zhen
1
ORCID: ORCID
Tingyu Sheng
2
ORCID: ORCID
Yan Liu
1
ORCID: ORCID
Pu Zhong
1
Xiaowei Zhang
1

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
  2. Maintenance Company of State Grid Henan Electric Power Company, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a detailed theoretical background for coordinate measurement uncertainty evaluation by means of Type B evaluation method, taking into account information on accuracy of a coordinate measuring system given with the formula for maximum permissible errors of length measurement and verification test results. A proposal for evaluation of the verification test results is made. A measurement model based on the point-plane distance equation is presented. A detailed analysis of the partial derivatives (sensitivity factors in an uncertainty budget) of the measurement model is presented. The analyses of measurement uncertainty for different geometrical characteristicswere conducted using this measurement model. Examples of uncertainty evaluation for geometrical deviations are presented: position of a point related to a datum plane and flatness in the case of convex or concave surfaces. The examples include detailed uncertainty budgets.

Go to article

Authors and Affiliations

Wojciech Płowucha
Download PDF Download RIS Download Bibtex

Abstract

Coordinate Measurement Machines (CMMs) have been extensively used in inspecting mechanical parts with higher accuracy. In order to enhance the efficiency and precision of the measurement of aviation engine blades, a sampling method of profile measurement of aviation engine blade based on the firefly algorithm is researched. Then, by comparing with the equal arc-length sampling algorithm (EAS) and the equi-parametric sampling algorithm (EPS) in one simulation, the proposed sampling algorithm shows its better sampling quality than the other two algorithms. Finally, the effectiveness of the algorithm is verified by an experimental example of blade profile. Both simulated and experimental results show that the method proposed in this paper can ensure the measurement accuracy by measuring a smaller number of points.

Go to article

Authors and Affiliations

Zhi Huang
Liao Zhao
Kai Li
Hongyan Wang
Tao Zhou
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The contradiction between the restriction of grating manufacturing technology and high-resolution measurement requirements has been the focus of attention. The precision requirement of angle calculation during the digital subdivision processing of a Moiré signal is focused on, the causes of errors in the solution of arcsine function are analysed, and an improved coordinate rotation digital computer (CORDIC)with double-rotation iteration is proposed by discussing the principle of the conventional CORDIC in detail herein. Because the iterative number and data width of the improved CORDIC are limited by the finite digital circuit resources and thus determine the calculation accuracy directly, subsequently the overall quantization error (OQE) of the improved CORDIC is analysed. The approximate error and rounding error of the algorithm are deduced, and the error models of iterative number and data width are established. The validity and application value of the improved CORDIC are proved through simulations and experiments involving a subdividing circuit. The corresponding relation between the approximate error, rounding error and iteration number, as well as the bit width are proved by quantization. The error of subdivision with the improved CORDIC, obtained through a calibration experiment, is within ±0.5′′ and the mean variance is 0.2′′. The results of the research can be applied directly to a digital subdivision system to guide the parameter setting in the iterative process, which is of crucial importance in the quantitative analysis of error separation and error synthesis.

Go to article

Authors and Affiliations

Weibin Zhu
Shengjin Ye
Yao Huang
ORCID: ORCID
Zi Xue
Download PDF Download RIS Download Bibtex

Abstract

The optimum combination of blade angle of the runner and guide vane opening with Kaplan turbine can improve the hydroelectric generating the set operation efficiency and the suppression capability of oscillations. Due to time and cost limitations and the complex operation mechanism of the Kaplan turbine, the coordination test data is insufficient, making it challenging to obtain the whole curves at each head under the optimum coordination operation by field tests. The field test data is employed to propose a least-squares support vector machine (LSSVM)-based prediction model for Kaplan turbine coordination tests. Considering the small sample characteristics of the test data of Kaplan turbine coordination, the LSSVM parameters are optimized by an improved grey wolf optimization (IGWO) algorithm with mixed non-linear factors and static weights. The grey wolf optimization (GWO) algorithm has some deficiencies, such as the linear convergence factor, which inaccurately simulates the actual situation, and updating the position indeterminately reflects the absolute leadership of the leader wolf. The IGWO algorithm is employed to overcome the aforementioned problems. The prediction model is simulated to verify the effectiveness of the proposed IGWO-LSSVM. The results show high accuracy with small samples, a 2.59% relative error in coordination tests, and less than 1.85% relative error in non-coordination tests under different heads.
Go to article

Bibliography

  1.  H.A. Menarin, H.A. Costa, G.L.M. Fredo, R.P. Gosmann, E.C. Finardi, and L.A. Weiss, “Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics”, IEEE Trans. Power Syst. 34(4), 3026‒3034 (2019).
  2.  M.M. Shamsuddeen, J. Park, Y. Choi, and J. Kim, “Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner”, Renew. Energy 162, 861‒876 (2020).
  3.  P. Pennacchi, P. Borghesani, and S. Chatterton, “A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines”, Mech. Syst. Signal Process. 60‒61, 375‒390 (2015).
  4.  A. Javadi and H. Nilsson, “Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations”, Int. J. Heat Fluid Flow 63, 1‒13 (2017).
  5.  D. Kranjcic and G. Štumberger, “Differential Evolution-Based Identification of the Nonlinear Kaplan Turbine Model”, IEEE Trans. Energy Convert. 29(1), 178‒187 (2014).
  6.  Z. Krzemianowski, “Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method”, Bull. Pol. Acad. Sci. tech. Sci. 67(6), 1133–1147 (2019).
  7.  A.B. Janjua, M.S. Khalil, M. Saeed, F.S. Butt, and A.W. Badar, “Static and dynamic computational analysis of Kaplan turbine runner by varying blade profile”, Energy Sustain. Dev. 58, 90‒99 (2020).
  8.  Y. Wu, S. Liu, H. Dou, S. Wu, and T. Chen, “Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine”, Comput. Fluids 56, 128‒142 (2012).
  9. S.J. Daniels, A.A.M. Rahat, G.R. Tabor, J.E. Fieldsend, and R.M. Everson, “Shape optimisation of the sharp-heeled Kaplan draft tube: Performance evaluation using Computational Fluid Dynamics”, Renew. Energy. 160, 112‒126 (2020).
  10.  F. Thiery, R. Gustavsson, and J.O. Aidanpää, “Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts”, Int. J. Mech. Sci. 99, 251‒261 (2015).
  11.  H. Quan, D. Srinivasan, and A. Khosravi, “Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals”, IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303‒315 (2014).
  12.  V. Marano, G. Rizzo, and F.A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage”, Appl. Energy. 97, 849‒859 (2012).
  13.  N. Yang and H.Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands”, Int. J. Electr. Power Energy Syst. 96, 473‒483 (2018).
  14.  J. Park and K.H. Law, “Layout optimization for maximizing wind farm power production using sequential convex programming”, Appl. Energy. 151, 320‒334 (2015).
  15.  T. Ding, R. Bo, F. Li, Y. Gu, Q. Guo, and H. Sun, “Exact Penalty Function Based Constraint Relaxation Method for Optimal Power Flow Considering Wind Generation Uncertainty”, IEEE Trans. Power Syst. 30(3), 1546‒1547 (2015).
  16.  H. Kebriaei, B.N. Araabi, and A. Rahimi-Kian, “Short-Term Load Forecasting With a New Nonsymmetric Penalty Function”, IEEE IEEE Trans. Power Syst. 26 (4), 1817‒1825 (2011).
  17.  A.T. Eseye, J. Zhang, and D. Zheng, “ Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information”, Renew. Energy. 118, 357‒367 (2018).
  18.  Y. Li and X. Wnag, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679–685 (2019).
  19.  H. Koyuncu and R. Ceylan, “A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems”, J. Comput. Des. Eng. 6, 129‒142 (2019).
  20.  H. Liu, H.P. Wu, Y.F. Li, “Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction”, Energy Conv. Manag. 161, 266‒283 (2018).
  21.  M. Gratza, R. Witzmann, Ch.J. Steinhart, M. Finkel, M. Becker, T. Nagel, T. Wopperer, and H. Wackerl, “Frequency Stability in Island Networks: Development of Kaplan Turbine Model and Control of Dynamics”, in 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 2018, pp. 1‒7, doi: 10.23919/PSCC.2018.8442445.
  22.  M. Malvoni, M.G. D. Giorgi, and P.M. Congedo, “Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data”, Neurocomputing 211, 72‒83 (2016).
  23.  Y. Sun, Y. Liu, and H. Liu, “Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator”, IEEE Sensors Journal. 16(3), 798‒805 (2016).
  24.  X. Yan and N.A. Chowdhury, “Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach”, Int. J. Electr. Power Energy Syst. 53, 20‒26 (2013)
  25.  S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw. 69, 46‒61 (2014).
  26.  I.B.M. Taha and E.E. Elattar, “Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser”, IET Gener. Transm. Distrib. 12(14), 3421‒3434 (2018).
  27.  W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”, Appl. Math. Model. 60, 112‒126 (2018).
  28.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 961–972 (2018).
  29.  D. Huang, S. He, X. He, and X. Zhu, “Prediction of wind loads on high-rise building using a BP neural network combined with POD”, J. Wind Eng. Ind. Aerodyn. 170, 1‒17 (2017).
  30.  A.L. Yang, W.D. Li, and X. Yang, “Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines”, Knowledge-Based Syst. 163, 159‒173 (2019).
  31.  N.A. Menad, Z. Noureddine, A. Hemmati-Sarapardeh, and S. Shamshirband, “Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes”, Fuel 242, 649‒663 (2019).
Go to article

Authors and Affiliations

Fannie Kong
1
ORCID: ORCID
Jiahui Xia
1
ORCID: ORCID
Daliang Yang
1
ORCID: ORCID
Ming Luo
1
ORCID: ORCID

  1. School of Electrical Engineering, Guangxi University, Nanning, 530000, China
Download PDF Download RIS Download Bibtex

Abstract

The goal of paper is the development and demonstration of efficiency of algorithm for form finding of a slack cable notwithstanding of the initial position chosen. This algorithm is based on product of two sets of coefficients, which restrict the rate of looking for cable geometry changes at each iteration. The first set restricts the maximum allowable change of absolute values of positions, angles and axial forces. The second set takes into account whether the process is the converging one (the signs of maximal change of parameters remain the same), so that it increases the allowable changes; or it is a diverging one, so that these changes are discarded. The proposed procedure is applied to two different methods of simple slack cable calculation under a number of concentrated forces. The first one is a typical finite element method, with the cable considered as consisting of number of straight elements, with unknown positions of their ends, and it is essentially an absolute coordinate method. The second method is a typical Irvine’s like analytical solution, which presents only two unknowns at the initial point of the cable; due to the peculiarity of implementation it is named here a shooting method. Convergence process is investigated for both solutions for arbitrary chosen, even very illogical initial positions for the ACM, and for angle and force at the left end for SM as well. Even if both methods provide the same correct convergent results, it is found that the ACM requires a much lower number of iterations.
Go to article

Authors and Affiliations

Igor Orynyak
1
ORCID: ORCID
Federico Guarracino
2
ORCID: ORCID
Mariano Modano
2
ORCID: ORCID
Roman Mazuryk
1
ORCID: ORCID

  1. Department of Applied Mathematics at National Technical University Kiev Polytechnic Institute, Peremohystr, 37, Kyiv 03056, Ukraine
  2. Department of Structural Engineering at University of Naples “Federico II”, via Claudio, 21-80125 Napoli, Italy

This page uses 'cookies'. Learn more