Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide is considered an outstanding photocatalyst candidate, but its low photo-corrosion resistance is a problem to be solved. In the ZnO-ZnS core-shell structure, ZnS acts as a protective layer for the ZnO core, and thus, it can enhance stability and long-term performance. The ZnO-ZnS core-shell structure is synthesized into various nanoscale morphologies with high specific surface areas to improve photocatalytic efficiency. However, they are easily agglomerated and are hard to separate from reaction media. In this study, micro-sized bumpy spheres of ZnO-ZnS core-shell structure were prepared via facile chemical transformation of as-prepared ZnO. After sulfurization of the ZnO template, it was confirmed through SEM, TEM, EDS, and XPS analysis that a uniform ZnS shell layer was formed without significant change in the initial ZnO morphology. The ZnO-ZnS core-shell microsphere has shown superior efficiency and stability in the photocatalytic degradation of Rhodamine B compared with pristine ZnO microspheres
Go to article

Authors and Affiliations

Hee Yeon Jeon
1
ORCID: ORCID
Mijeong Park
1
ORCID: ORCID
Seungheon Han
1
ORCID: ORCID
Dong Hoon Lee
1
ORCID: ORCID
Young-In Lee
2
ORCID: ORCID

  1. Seoul National University Of Science and Technology, Department Of Materials Science and Engineering, Seoul 01811, Republic Of Korea
  2. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, a molybdenum alloy with dispersed high-entropy particles was fabricated using the powder metallurgy method. The high-entropy powder, composed of Nb, Ta, V, W, and Zr elements with a same atomic fraction, was prepared via high-energy ball milling. Using this powder, an ideal core-shell powder, composed of high-entropy powder as core and Mo powder as shell, was synthesized via the milling and reduction processes. These processes enabled the realization of an ideal microstructure with the high-entropy phase uniformly dispersed in the Mo matrix. The sintered body was successfully fabricated via uniaxial compaction followed by pressureless sintering. The sintered body was analyzed by X-ray diffraction and scanning electron microscope, and the high-entropy phase is uniformly dispersed in the Mo matrix.

Go to article

Authors and Affiliations

Won June Choi
CheonWoong Park
Jongmin Byun
ORCID: ORCID
Young Do Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The goals of this work are to design and develop a technology for fabrication and study of multifunctional properties of core/shell nanoparticles (NPs) as magnetic/luminescent markers. The new hybrid core/shell Fe3O4/Gd2O3:1% Er3+, 18% Yb3+, 2.5% Mg2+, x% Nd3+ NPs doped with different concentrations of neodymium ions, where x = 0%, 0.5%, 0.75%, 1%, 2%, 4%, were synthesized by the co-precipitation method. The NPs were characterised using XRD, TEM, SEM, EDX, confocal microscopy and photoluminescence. Fe3O4 (core) consists of several 13 nm NPs. The core/shell NPs have sizes from 220 nm to 641 nm. In this latter case, the shell thicknesses were 72, 80, and 121 nm. The upconversion efficiency properties and magnetic properties of the hybrid NPs were investigated. In the core/shell NPs, the addition of Nd3+ quenches the luminescence. The magnetic response of core/shell samples is rather paramagnetic and does not differ significantly from that registered for the shell material alone. For Gd2O3:1% Er3+, 18% Yb3+ and Fe3O4/Gd2O3:1% Er3+, 18% Yb3+, 2.5% Mg2+, 0.5% Nd3+, at 300 K, the values of the magnetization registered at ~ 40 kOe are similar and equal to ~ 5.3 emu·g−1. The survivability of the HeLa tumor cells with the presence of the core/shell NPs was investigated for 24 h. The NPs are non-toxic up to a concentration of 1000 µg·ml−1 and penetrate cells in the process of endocytosis which has been confirmed by confocal microscope studies.
Go to article

Authors and Affiliations

Izabela Kamińska
1
ORCID: ORCID
Kamil Sobczak
2
Yaroslav Zhydachevskyy
1
ORCID: ORCID
Tomasz Wojciechowski
1 3
ORCID: ORCID
Roman Minikayev 
1
ORCID: ORCID
Bożena Sikora-Dobrowolska
1
ORCID: ORCID
Sabina Lewińska
1
ORCID: ORCID
Michał Chojnacki
1 3
ORCID: ORCID
Krzysztof Fronc
1 3
ORCID: ORCID

  1. Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  2. Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw 02-089, Poland
  3. International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland

This page uses 'cookies'. Learn more