Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Geothermal waters are a source of clean energy. They should be used in a rational manner especially in energyand economic terms.

Key factors that determine the conditions in which geothermal waters are used, the amount of energy obtainedand the manner in which cooled water is utilised include water salinity. Elevated salinity levels and the presence oftoxic microelements may often lead to difficulties related to the utilisation of spent waters. Only a few Polishgeothermal facilities operate in a closed system, where the water is injected back into the formation after havingbeen used. Open (with water dumped into surface waterways or sewerage systems) or mixed (only part of the wateris re-injected into the formation via absorption wells while the rest is dumped into rivers) arrangements are morefrequently used. In certain circumstances, the use of desalinated geothermal water may constitute an alternativeenabling local needs for fresh water to be met (e.g. drinking water).

The assessment of the feasibility of implementing the water desalination process on an industrial scale islargely dependent on the method and possibility of disposing of, or utilising, the concentrate. Due to environmentalconsiderations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the desalinationprocess in a geothermal system on an industrial scale largely depends on the factors related to its operation,including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters ofthe wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water,local demand for drinking and household water, etc. The decrease in the pressure required to inject water into theformation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors.Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing tothe electrical power required to conduct the desalination process

Go to article

Authors and Affiliations

Barbara Tomaszewska
ORCID: ORCID
Leszek Pająk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

M embrane-based water desalination processes and hybrid technologies are often considered as a technologically and economically viable alternative for desalination of geothermal waters. This has been confirmed by the results of pilot studies concerning the UF-RO desalination of geothermal waters extracted from various geological structures in Poland. The assessment of the feasibility of implementing the water desalination process analysed on an industrial scale is largely dependent on the method and possibility of disposing or utilising the concentrate. The analyses conducted in this respect have demonstrated that it is possible to use the solution obtained as a balneological product owing to its elevated metasilicic acid, fluorides and iodides ions content. Due to environmental considerations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the UF-RO process in a geothermal system on an industrial scale largely depends on the factors related to its operation, including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters of the wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water, local demand for drinking and household water, etc. The decrease in the pressure required to inject water into the formation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors. Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing to the electrical power required to conduct the UF-RO process.
Go to article

Authors and Affiliations

Michał Bodzek
Barbara Tomaszewska
Leszek Pająk
Download PDF Download RIS Download Bibtex

Abstract

In this article, a comparison of economic effectiveness of various heating systems dedicated to residential applications is presented: a natural gas-fueled micro-cogeneration (micro-combined heat and power – μCHP) unit based on a free-piston Stirling engine that generates additional electric energy; and three so-called classical heating systems based on: gas boiler, coal boiler, and a heat pump. Calculation includes covering the demand for electricity, which is purchased from the grid or produced in residential system. The presented analyses are partially based on an experimental investigation. The measurements of the heat pump system as well as those of the energy (electricity and heat) demand profiles in the analyzed building were conducted for a single-family house. The measurements of the μCHP unit were made using a laboratory stand prepared for simulating a variable heat demand. The overall efficiency of the μCHP was in the range of 88.6– 92.4%. The amounts of the produced/consumed energy (electricity, heat, and chemical energy of fuel) were determined. The consumption and the generation of electricity were settled on a daily basis. Operational costs of the heat pump system or coal boiler based heating system are lower comparing to the micro-cogeneration, however no support system for natural gas-based μCHP system is included.

Go to article

Authors and Affiliations

Wojciech Uchman
Leszek Remiorz
Janusz Kotowicz
Download PDF Download RIS Download Bibtex

Abstract

The engine is the most important component of a vehicle. It attaches to the main frame via the engine mounting bracket which supports weight and operating loads. The engine mount therefore plays a crucial role in the durability and comfort of the vehicle. This article contributes to the search for the most optimal model from the point of view of resistance, environmental impact, and manufacturing cost. This involves, on the one hand, optimizing the support by reducing its initial mass by 30%, and on the other hand, seeking suitable material and manufacturing process with the least environmental impact. To this end, topology optimization will be combined with an environmental assessment and a manufacturing cost analysis. Four materials will be tested and evaluated. Finally, a cost analysis will present a comparison between a conventional process and 3D printing.
Go to article

Authors and Affiliations

Hicham Fihri FASSI
Hadji ANIYOU
Download PDF Download RIS Download Bibtex

Abstract

Starting in May 2021, green building is mandatory for new buildings in Indonesia. Greenship is a green building certification system in Indonesia issued by the Green Building Council Indonesia (GBCI) which is a member of the World GBC for the conservation and efficiency of resources (energy, water, land, materials, and nature). Greenship will be implemented in MICE which is a building for Meetings, Incentives, Conventions, and Exhibitions that has a strong economic attractiveness in Indonesia, which has a population of 270 million. Using the SEM-PLS it was quickly concluded that energy is the most influential factor in achieving platinum ratings from GBCI.With the value engineering (VE) method and life cycle cost analysis (LCC), it is needed an additional 4,689% cost for the platinum grade green costs through energy optimization will get a payback period of 3 years and 10 months. The novelty of this research, since the design, it is necessary to take steps to measure energy efficiency and other resources with a selection of materials/machines and working methods of the green concept to know the amount of additional initial costs that do not much burden investment costs compared with some future benefits of green MICE.
Go to article

Authors and Affiliations

Sutikno Sutikno
1
ORCID: ORCID
Albert Eddy Husin
1
ORCID: ORCID
Maria Magdalena Enny Yuliati
1
ORCID: ORCID

  1. Mercu Buana University, Jalan Meruya Selatan No 1 Kembangan, Jakarta Barat, Jakarta 11650, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article presents the issues of costs analysis of iron casts manufacturing using automated foundry lines. Particular attention was paid to departmental costs, conversion costs and costs of in-plant transport. After the Pareto analysis had been carried out, it was possible to set the model area of the process and focus on improving activities related to finishing of a chosen group of casts. In order to eliminate losses, the activities realised in this domain were divided into activities with added value, activities with partially added value and activities without added value. To streamline the production flow, it was proposed to change the location of workstations related to grinding, control and machining of casts. Within the process of constant improvement of manufacturing processes, the aspect of work ergonomics at a workstation was taken into account. As a result of the undertaken actions, some activities without added value were eliminated, efficiency was increased and prime costs of manufacturing casts with regard to finishing treatment were lowered.

Go to article

Authors and Affiliations

S. Kukla
Download PDF Download RIS Download Bibtex

Abstract

In green concept hospital work, several provisions must be obeyed so that all processes, including material selection, project implementation, and building operations, must refer to green principles. Green building planning and construction costs higher than conventional by 10–20%. By using theValue Engineering (VE) method and combined with the Lifecycle Cost Analysis (LCCA), the researcher applies the green hospital concept to a project which is a case study but is still cost-effective even lower than the original Bill of Quantity. To see the strong influence of effectiveness on the hospital project, the researcher distributed a questionnaire to stakeholders. The results of the questionnaire were processed and analyzed using the Statistics Products and Solution Services (SPSS) tool. VE is implemented after first creating a Function Analysis System Technique (FAST) diagram, before and after adding functions for certain work items. It turns out that the use of the VE and LCCA methods is very influential in improving cost performance. From the calculation of the VE method, the resulting costs are up to 2.62% of the initial cost and LCCA shows the payback period of the Solar Power Plant with time = 9:64 years 9 years 7 months. The novelty of this research is the selection materials and the green concept of working methods is still cost efficient and the installation of Photovoltaics (PV) on the roof of Hospital reaches a payback period which is feasible for new investment.
Go to article

Authors and Affiliations

Ali Imron
1
ORCID: ORCID
Albert Eddy Husin
1
ORCID: ORCID

  1. Universitas Mercu Buana, Department of Civil Engineering, Jakarta Barat 11650, Indonesia

This page uses 'cookies'. Learn more