Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bridge crane is exposed to dynamic loads during its non-stationary operations (acceleration and braking). Analyzing these operations, one can determine unknown impacts on the dynamic behavior of bridge crane. These impacts are taken into consideration using selected coefficients inside the dynamic model. Dynamic modelling of a bridge crane in vertical plane is performed in the operation of the hoist mechanism. The dynamic model is obtained using data from a real bridge crane system. Two cases have been analyzed: acceleration of a load freely suspended on the rope when it is lifted and acceleration of a load during the lowering process. Physical quantities that are most important for this research are the values of stress and deformation of main girders. Size of deformation at the middle point of the main crane girder is monitored and analyzed for the above-mentioned two cases. Using the values of maximum deformation, one also obtains maximum stress values in the supporting construction of the crane.
Go to article

Bibliography

[1] Q. Yang, X. Li, H. Cai, Y-M. Hsu, J. Lee, C. Hung Yang, Z. Li Li, and M. Yi Li. Fault prognosis of industrial robots in dynamic working regimes: Find degradation in variations. Measurement, 173:108545, 2021. doi: 10.1016/j.measurement.2020.108545.
[2] S. Wang, Z. Ren, G. Jin, and H. Chen. Modeling and analysis of offshore crane retrofitted with cable-driven inverted tetrahedron mechanism. IEEE Access, 9:86132–86143, 2021. doi: 10.1109/access.2021.3063792.
[3] Q. Jiao, B. Li, Y. Qin, F. Wang, J. Gu, J. Wang, and C. Mi, Research on dynamic characteristics of lifting rope-breaking for the nuclear power crane. Journal of Failure Analysis and Prevention, 21:1220–1230, 2021. doi: 10.1007/s11668-021-01154-2.
[4] D. Cekus, P. Kwiatoń, and T. Geisler. The dynamic analysis of load motion during the interaction of wind pressure. Meccanica, 56:785–796, 2021. doi: 10.1007/s11012-020-01234-x.
[5] J. Yuan, C. Schwingshackl, C. Wong, and L. Salles. On an improved adaptive reduced-order model for the computation of steady-state vibrations in large-scale non-conservative systems with friction joints. Nonlinear Dynamics, 103:3283–3300, 2021. doi: 10.1007/s11071-020-05890-2.
[6] H. Zhu, J. Li, W. Tian, S. Weng, Y. Peng, Z. Zhang, and Z. Chen. An enhanced substructure-based response sensitivity method for finite element model updating of large-scale structures. Mechanical Systems and Signal Processing, 154:107359, 2021. doi: 10.1016/j.ymssp.2020.107359.
[7] I. Golvin and S. Palis. Robust control for active damping of elastic gantry crane vibrations. Mechanical Systems and Signal Processing, 121:264–278, 2019. doi: 0.1016/j.ymssp.2018.11.005.
[8] L. Sowa, W. Piekarska, T. Skrzypczak, and P. Kwiatoń. The effect of restraints type on the generated stresses in gantry crane beam. MATEC Web Conferences, 157:02046, 2018. doi: 10.1051/matecconf/201815702046.
[9] Y.A. Onur and H. Gelen. Design and deflection evaluation of a portal crane subjected to traction load. Materials Testing, 62(11):1131–1137, 2020. doi: 10.3139/120.111597.
[10] Y.A. Onur and H. Gelen. Investigation on endurance evaluation of a portal crane: experimental, theoretical and finite element analysis. Materials Testing, 62(4):357–364. 2020. doi: 10.3139/120.111491.
[11] A. Komarov, A. Grachev, A. Gabriel, and N. Mokhova. Simulation of the misalignment process of an overhead crane in Matlab/Simulink. E3S Web Conferences, 304:02008, 2021. doi: 10.1051/e3sconf/202130402008.
[12] A. Cibicik, E. Pedersen, and O. Egeland. Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders. Mechanism and Machine Theory, 143:103616, 2020. doi: 10.1016/j.mechmachtheory.2019.103616.
[13] D. Cekus and P. Kwiatoń. Effect of the rope system deformation on the working cycle of the mobile crane during interaction of wind pressure. Mechanism and Machine Theory, 153:104011, 2020. doi: 10.1016/j.mechmachtheory.2020.104011.
[14] D. Ostric, N. Zrnic, and A. Brkic. A modeling of bridge cranes for research of dynamic phenomena during their movement. Tehnika – Mašinstvo, 51(3-4):1–6, 1996.
[15] T. Wang, N. Tan, X. Zhang, G. Li, S. Su, J. Zhou, J. Qiu, Z, Wu, Y. Zhai, and R. Donida Labati. A time-varying sliding mode control method for distributed-mass double pendulum bridge crane with variable parameters. IEEE Access, 9:75981–75992, 2021. doi: 10.1109/access.2021.3079303.
[16] M.S. Komarov. Dynamics of load-carrying machines. Madagiz, Moscow, 1962. (in Russian).
[17] S. Dedijer. Dynamic coefficients in operation of bridge cranes of small and medium load capacity. D.Sc. Thesis, Faculty of Mechanical Engineering, Belgrade, Jugoslavia, 1970.
[18] D. Scap. Dynamic loads of the bridge crane when lifting loads. Tehnika - Strojarstvo, 24(6):307–315, 1982.
[19] H.A. Lobov. Dynamics of load-carrying cranes. Mechanical Engineering, Moscow, Russia, 1987. (in Russian).
[20] D. Ostric, A. Brkic, and N. Zrnic. The analysis of influence of swing of the cargo and rigidity of driving shafts of mechanism for moving to the dynamic behaviour of the bridge crane. Proceedings of IX IFToMM Congress, Milano, 1995.
[21] D. Ostric, A. Brkic, and N. Zrnic. The analysis of bridge cranes dynamic behaviour during the work of hoisting mechanism. Proceedings of XIV IcoMHaW, Faculty of Mechanical Engineering, Belgrade, 1996.
[22] M. Delić, M. Čolić, E. Mešić, and N. Pervan. Analytical calculation and FEM analysis main girder double girder bridge crane. TEM Journal, 6(1):48–52, 2017. doi: 10.18421/TEM61-07.
[23] M. Delić, N. Pervan, M. Čolić, and E. Mešić. Theoretical and experimental analysis of the main girder double girder bridge cranes. International Journal of Advanced and Applied Sciences, 6(4):75–80, 2019. doi: 10.21833/ijaas.2019.04.009.
[24] H. A. Hobov. Calculation of dynamic loads of bridge cranes when lifting a load. Bulletin of Mechanical Engineering, 5:37–41, 1977. (in Russian).
[25] D. Ostric, A. Brkic, and N. Zrnic. Influence of driving-shaf to dynamic behavior of the bridge crane in horizontal plane, modeled with several concentrated masses during the acceleration. FME Transactions, 2: 25–30, 1993.
[26] S.G. Kelly. Mechanical Vibrations – Theory and Applications, Global Engineering, Stamford, USA, 2012.
Go to article

Authors and Affiliations

Mirsad Čolić
1
Nedim Pervan
1
ORCID: ORCID
Muamer Delić
1
ORCID: ORCID
Adis J. Muminović
1
ORCID: ORCID
Senad Odžak
2
ORCID: ORCID
Vahidin Hadžiabdić
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
  2. Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors present construction stages of simulation models worked out using SolidWorks and Matlab/Simulink environments. As examples of simulation models, a laboratory truck crane and a forest crane have been shown. These models allow for visualization of movements, tracking of the trajectory, velocity and acceleration of any point of the system.

Go to article

Authors and Affiliations

Dawid Cekus
Bogdan Posiadała
Paweł Waryś
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the numerical model of a supply vessel-load-crane-offshore vessel system for simulation of heave motion and dynamic analysis of the system during critical phases of the handling operation: taking the load off from and lowering it to a moving base. The model enables extreme forces in elements and deflection of the structure to be determined. Different operating and emergency conditions can be simulated (e.g. horizontal motion of a supply vessel). The elaborated software can be applied also for determination of derated load charts and ultimate crane capacity (sequence of failure).
Go to article

Authors and Affiliations

Marek Osiński
Andrzej Maczyński
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

In Nantes, the last shipyard closed in 1986 leaving the city in a desperate situation. The cranes, symbolizing the industrial activity, one by one stopped. Unemployment stroked. The question was between turning the page, tearing down the workshops and reinventing a new story or trying to preserve would appear to most of the population, a kind of modern bulky legacy. In the early 2000’s, the revitalization of Nantes’ former industrial area, led to developing a new way thinking. Instead of designing an urban map with major spots and rows of housing, A. Chemetoff thought better to draw an urban landscape where the past could mix with the future. The industrial heritage has been then preserved in two diff erent ways: construction halls have been reshaped preserving the original structure, everything should be reversed. The intangible heritage, meaning worker’s knowledge, has been reinvested in the cultural industry. This way, the image of the city, its brand, moved from industrial to cultural, attracting a new kind of business, mainly high-tech, students, in a new: “art de Vivre” (Art of living).

Go to article

Authors and Affiliations

Laurent Lescop
Download PDF Download RIS Download Bibtex

Abstract

A method of determination of drive functions of slewing of a mobile crane's upper structure is presented in the paper. The purpose of their determination is to reduce load oscillations at the end of the motion. Drive functions for selected angles and durations of slewing have been calculated using a simple model of the crane and dynamic optimisation. Drive functions for intermediate angles have been determined by means of interpolation. Res ul ts of numerical simulations executed for the model of the crane are presented, taking into consideration flexibilities and damping in the cranes subsystems. Results obtained for drive functions determined using optimisation and interpolation algorithms are compared. An attempt to determine sensitivity of load positioning to selected operating parameters is also presented. Introduction of the notion of a positioning quality coefficient is proposed.
Go to article

Authors and Affiliations

Andrzej Maczyński
Download PDF Download RIS Download Bibtex

Abstract

The article describes optimization of the process of acceleration of the tower crane trolley movement mechanism during the steady mode of the slewing mechanism. A mathematical model of the boom system of the tower crane was used for the optimization of the trolley movement. The model was reduced to a sixth-order linear differential equation with constant coefficients, which represents the relationships between the drive torque and the coordinate of the load and its time derivatives. Non-dimensional complex criterion (objective function), which takes into account the drive torque and its rate of change in time during the transient process, was developed to optimize the mode of the trolley movement mechanism. Based on that, a variational problem was formulated and solved in an analytical form in which root-mean-square (RMS) values of the quantiles were applied. A complex optimal mode of acceleration of the trolley movement mechanism was obtained and compared with the modes optimized based on different criteria. Advantages and disadvantages of the solutions were discussed based on the analysis of the obtained optimal modes of motion. The analysis revealed low- and high-frequency elements oscillations of the trolley movement mechanism during the transient processes. The conditions for their elimination were formulated.
Go to article

Bibliography

[1] Y. Qian and Y. Fang. Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: a disturbance observer-based approach. IEEE Transactions on Automation Science and Engineering, 16(3):1125–1136, 2018. doi: 10.1109/TASE.2018.2872621.
[2] M. Zhang, Y. Zhang, B. Ji, C. Ma, and X. Cheng. Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects. Measurement and Control, 53(1-2):141–150, 2020. doi: 10.1177/0020294019877492.
[3] M. Zhang, Y. Zhang, H. Ouyang, C. Ma, and X. Cheng. Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dynamics, 99(7):2727–2741, 2020. doi: 10.1007/s11071-020-05471-3.
[4] T. Yang, N. Sun, H. Chen, and Y. Fang. Observer-based nonlinear control for tower cranes suffering from uncertain friction and actuator constraints with experimental verification. IEEE Transactions on Industrial Electronics, 68(7):6192–6204, 2021. doi: 10.1109/TIE.2020.2992972.
[5] J. Peng, J. Huang, and W. Singhose. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear Dynamics, 98:1041–1048, 2019. doi: 10.1007/s11071-019-05247-4.
[6] S. Fasih, Z. Mohamed, A. Husain, L. Ramli, A. Abdullahi, and W. Anjum. Payload swing control of a tower crane using a neural network-based input shaper. Measurement and Control, 53(7-8):1171– 1182, 2020. doi: 10.1177/0020294020920895.
[7] D. Kruk and M. Sulowicz. AHRS based anti-sway tower crane controller. 2019 20th International Conference on Research and Education in Mechatronics (REM), 2019. doi: 10.1109/rem.2019.8744117.
[8] R.E. Samin and Z. Mohamed. Comparative assessment of anti-sway control strategy for tower crane system. AIP Conference Proceedings, 1883:020035, 2017. doi: 10.1063/1.5002053.
[9] S.-J. Kimmerle, M. Gerdts, and R. Herzog. Optimal control of an elastic crane-trolley-load system – a case study for optimal control of coupled ODE-PDE systems – (extended version with two appendices). Mathematical and Computer Modelling of Dynamical Systems, 24(2):182–206, 2018. doi: 10.1080/13873954.2017.1405046.
[10] V. Loveikin, Y. Romasevych, I. Kadykalo, and A. Liashko. Optimization of the swinging mode of the boom crane upon a complex integral criterion. Journal of Theoretical and Applied Mechanics, 49(3):285–296, 2019. doi: 10.7546/JTAM.49.19.03.07.
[11] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: design and experiments. IEEE Access, 7:62142–62151, 2019. doi: 10.1109/ACCESS.2019.2915999.
[12] M. Böck and A. Kugi. Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Transactions on Control System Technology, 22(4):1461–1473, 2014. doi: 10.1109/TCST.2013.2280464.
[13] Š. Ileš, J. Matuško, and F. Kolonić. Sequential distributed predictive control of a 3D tower crane. Control Engineering Practice. 79:22–35, 2018. doi: 10.1016/j.conengprac.2018.07.001.
[14] K.W. Cassel. Variational Methods with Applications in Science and Engineering. Cambridge University Press, 2013. doi: 10.1017/CBO9781139136860.
Go to article

Authors and Affiliations

Viatcheslav Loveikin
1
Yuriy Romasevych
1
ORCID: ORCID
Andriy Loveikin
2
Mykola Korobko
1
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the problem of optimization of the motion mode of the tower crane's slewing mechanism in the steady-state mode of trolley movement is stated and solved. An optimization criterion, which includes the RMS values of the drive torque and the rate of its change over time, is minimized. The optimization is carried out taking into account the drive torque constraints, and under the specified boundary conditions of motion. Three optimization problems at different values of the weight coefficients are solved. In the first problem, priority is given to the drive torque, in the third – to the rate of the drive torque change, and in the second problem, the significance of both components is assumed equal. The optimization problems are nonlinear, thus a VСT-PSO method is applied to solve them. The obtained optimal start-up modes of the crane slewing mechanism eliminate pendulum load oscillations and high-frequency elastic oscillations of the tower. Most of the kinematic, dynamical, and power parameters at different values of the weight coefficients are quite close to each other. It indicates that the optimal modes of motion are significantly influenced by the boundary conditions, optimization parameters, and constraints
Go to article

Bibliography

[1] E.M. Abdel-Rahman, A.H. Nayfeh, and Z.N. Masoud. Dynamics and control of cranes: A review. Journal of Vibration and Control, 9(7):863–908, 2003. doi: 10.1177/1077546303009007007.
[2] S.C. Kang and E. Miranda. Physics based model for simulating the dynamics of tower cranes. In 2004 Proceeding of Xth International Conference on Computing in Civil and Building Engineering (ICCCBE), Weimar, Germany, June 2004. doi: 10.25643/bauhaus-universitaet.240.
[3] T. Kuo, Y-C. Chiang, S-Y. Cheng, and S.-C.J. Kang. Oscillation reduction method for fast crane operation. Modular and Offsite Construction (MOC) Summit Proceedings, pages 388–395, 2015. doi: 10.29173/mocs159.
[4] G. Sun and M. Kleeberger. Dynamic responses of hydraulic mobile crane with consideration of the drive system. Mechanism and Machine Theory. 38(12):1489–1508, 2003. doi: 10.1016/S0094-114X(03)00099-5.
[5] T. Čampara, H. Bukvić, D. Sprečić. Ability to control swinging of payload during the movement of the rotary cranes mechanism. In 4th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems. Kaunas University of Technology Panevezys Institute, pages 52–55, Kaunas. Lithuania, 2009.
[6] V. Loveikin, Yu. Romasevych, A. Loveikin, and M. Korobko. Optimization of the trolley mechanism acceleration during tower crane steady slewing. Archive of Mechanical Engineering, 69(3):411–429, 2022. doi: 10.24425/ame.2022.140424.
[7] I.G. Carmona and J. Colado. Control of a two wired hammerhead tower crane. Nonlinear Dynamics, 84(4):2137–2148, 2016. doi: doi.org/10.1109/AIM.2016.7576860">10.1109/AIM.2016.7576860.
[9] R.P. Gerasymyak and V.A. Leshchev. Analysis and Synthesis of Crane Electromechanical Systems. 2008. (in Russian).
[10] R.P. Gerasymyak and O.V. Naidenko. Features of the control of the electric drive of the boom departure mechanism during the rotation of the crane with a suspended load. Electrical Engineering and Electrical Equipment, 68:11–15, 2007. (in Ukrainian).
[11] Naidenko E.V. Electric drive control of horizontal movement mechanisms with a suspended load. Electric Machine Building and Electric Control, 69:17–22, 2007.
[12] M. Čolić, N. Pervan, M. Delić, A.J. Muminović, S. Odžak, and V. Hadžiabdić. Mathematical modelling of bridge crane dynamics for the time of non-stationary regimes of working hoist mechanism. Archive of Mechanical Engineering, 69(2):189–202, 2022. doi: 10.24425/ame.2022.140415.
[13] S. Chwastek. Optimization of crane mechanism to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[14] V. Loveikin, Yu. Romasevych, A. Loveikin, A. Lyashko,and M. Korobko. Minimization of high frequency oscillations of trolley movement mechanism during steady tower crane slewing. UPB Scientific Bulletin, Series D: Mechanical Engineering, 84(1):31-44, 2022.
[15] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: Design and experiments. IEEE Access, 7: 62142–62151, 2019. doi: 10.1109/ACCESS.2019.2915999.
[16] T.K. Nguyen. Combination of feedback control and spring-damper to reduce the vibration of crane payload. Archive of Mechanical Engineering, 68(2):165–181, 2021. doi: 10.24425/ame.2021.137046.
[17] G. Rigatos, M. Abbaszadeh, and J. Pomares. Nonlinear optimal control for the 4-DOF underactuated robotic tower crane. Autonomous Intelligent Systems, 2:21, 2022. doi: 10.1007/s43684-022-00040-4.
[18] A. Al-Fadhli and E. Khorshid. Payload oscillation control of tower crane using smooth command input. Journal of Vibration and Control, 29(3-4):902–915. 2023. doi: 10.1177/10775463211054640.
[19] S.-J. Kimmerle, M. Gerdts, and R. Herzog. An optimal control problem for a rotating elastic crane-trolley-load system. IFAC-PapersOnLine, 51(2):272-277, 2018, doi: 10.1016/j.ifacol.2018.03.047.
[20] Y. Romasevych, V. Loveikin, and Y. Loveikin. Development of a PSO modification with varying cognitive term. 2022 IEEE 3rd KhPI Week on Advanced Technology, KhPI Week 2022 – Conference Proceedings, Kharkiv, Ukraine, 2022. doi: 10.1109/KhPIWeek57572.2022.9916413.
Go to article

Authors and Affiliations

Viacheslav Loveikin
1
ORCID: ORCID
Yuriy Romasevych
1
ORCID: ORCID
Andrii Loveilin
2
ORCID: ORCID
Mykola Korobko
1
ORCID: ORCID
Anastasia Liashko
1
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  2. Taras Shevchenko National University of Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presented the model of a problem of choosing the location of a car crane for the installation of prefabricated elements in a given assembly situation with the solution proposal. The issue relates to the situation, in which the dimensions of the shielding structure (assembled) are specified, sizes and weights of the prefabricated elements with their location on the structure. The solution seeks the best location of a crane from the point of view of the parameters of the crane, scope and height of the lift.

Go to article

Authors and Affiliations

P. Marcinkowski
M. Banach
Download PDF Download RIS Download Bibtex

Abstract

The introduction of the sustainable development elements in the construction industry leads to finding new ways of using waste minerals that are difficult in storage and recycling. Coal combustion products have been already introduced into building materials as a part of cement or concrete but they have been thought insufficiently compatible with the polymer-cement binders [7]. The paper presents results of the mechanical properties of polymer-cement composites containing two types of mineral additives: waste perlite powder that is generated during the perlite expanding process, and calcium fly ash which is the byproduct of burning coal in conventional furnaces. Mechanical tests of polymer-cement composites modified with wastes were carried out after 28 and 90 days of curing. As a part of preliminary study specific surface area and particle size distribution of mineral wastes were determined.

Go to article

Authors and Affiliations

B. Jaworska
J.J. Sokołowska
P. Łukowski
J. Jaworski
Download PDF Download RIS Download Bibtex

Abstract

The author presents an algorithm of slewing motion control in telescopic crane mounted on a chassis of a truck (mobile crane). The control algorithm allows the crane to carry load to a selected point, and it also ensures suppression of swing at the endpoint of the motion. The attention was focussed mainly on the control of slewing motion of the crane body in the case of non-planar distribution of forces acting on the load during its motion.
Go to article

Authors and Affiliations

Jacek Kłosiński
Download PDF Download RIS Download Bibtex

Abstract

We propose a class of m-crane control systems, that generalizes two- and three-dimensional crane systems. We prove that each representant of the described class is feedback equivalent to the second order chained form with drift. In consequence, we prove that it is differentially flat. Then we investigate its control properties and derive a control law for tracking control problem.

Go to article

Authors and Affiliations

M. Nowicki
W. Respondek
J. Piasek
K. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

The peculiarity of offshore cranes, i. e. cranes based on ships or drilling platforms, is not only a significant motion of their base, but also the taut-slack phenomenon. Under some circumstances a rope can temporarily go completely slack, while a moment later, the force in the rope can increase to nominal or even higher value. Periodic occurrence of such phenomena can be damaging to the supporting structure of the crane and its driver. In the paper, mathematical models of offshore cranes that allow for analysis of the taut-slack phenomenon are presented. Results of numerical calculations show that the method of load stabilization proposed by the authors in their earlier works can eliminate this problem.

Go to article

Authors and Affiliations

Andrzej Maczyński
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

In offshore pedestal cranes one may distinguish three components of considerable length: a pedestal, a boom and a frame present in some designs. It is often necessary in dynamical analyses to take into account their flexibility. A convenient and efficient method for modelling them is the rigid finite element method in a modified form. The rigid finite element method allows us to take into account the flexibility of the beam system in selected directions while introducing a relatively small number of additional degrees of freedom to the system. This paper presents a method for modelling the pedestal, the frame and the boom of an offshore column crane, treating each of these components in a slightly different way. A custom approach is applied to the pedestal, using rigid finite elements of variable length. Results of sample numeric computations are included.

Go to article

Authors and Affiliations

Jerzy Krukowski
Andrzej Maczyński
Download PDF Download RIS Download Bibtex

Abstract

Application or a hydropneumaiic boom support system with controlled stiffness and dissipation parameters in a crane in its ready-for-transport position allows for modification of dynamic properties or the crane and for vibration mode control during the ride. Adjusting the support system llexibility to disturbances being the result of uneven terrain may heir to reduce the loading of the bearing structure and to increase speed still maintaining the required safety and comfort standards. That improves the functional quality of mobile machines. The results of this study may be used as the basis for evaluation 01· vibration control methods in mobile cranes in which the boom acts as a dynamic absorber.
Go to article

Authors and Affiliations

Stefan Chwastek
Stanisław Michalowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of determining the efficiency of the slewing drive system applied in tower cranes. An algorithm for the proper selection of a permanent magnet synchronous motor (PMSM) for crane applications is presented. In the first stage of our research the proper PMSM was proposed on the basis of the simulation calculation. Next, the PM motor was examined on a special test bench. The experimental setup allows determining major electrical and mechanical parameters of the motor drive system. The applied slewing system consists of: an inverter, gear, cable drum and a permanent magnet motor. The performance and efficiency of the system were experimentally determined. Selected results of the experimental measurement are presented and discussed.
Go to article

Bibliography

[1] Gansen A.U., Chokkalingam L.N., Self-start synchronous reluctance motor new rotor designs and its performance characteristic, International Transaction on Electrical Energy Systems, vol. 29, no. 11, pp. 1–22 (2019).
[2] Resa J., Cortes D., Marquez-Rubio J.F., Navarro D., Reduction of induction motor energy consumption via variable velocity and flux references, Electronics, vol. 8, no. 740, pp. 1–14 (2019).
[3] Belmans R., Bisschots F., Trimmer R., Practical design considerations for braking problems in overhead crane drives, Annual Meetings of IEEE Industry Applications Society – IAS, vol. 1, pp. 473–479 (1993).
[4] Baranski M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at hight ambient temperature, COMPEL, vol. 38, no. 4, pp. 1120–1132 (2019).
[5] Kometani H., Sakabe S., Nakanishi K., 3-D electro-magnetic analyses of a cage induction motor with rotor skew, IEEE Transactions on Energy Conversion, vol. 11, no. 2, pp. 331–337 (1996).
[6] Torrent M., Perat J.I., Jimenez J.A., Permanent magnet synchronous motor with different rotor structures for traction motor in high speed trains, Energies, vol. 11, no. 1549, pp. 1–17 (2018).
[7] Knypinski Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, 2015, vol. 34, no. 2, pp. 448–455 (2015).
[8] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020).
[9] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5, pp. 1–11 (2020).
[10] Dorell D.G., Popescu M., Evans L., Staton D.A., Knight A.M., Comparison of the permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, Proceedings of International Power Electronics Conference – ICCE ASIA, pp. 1–6 (2010), DOI: 10.1109/IPEC.2010.5543566.
[11] Baranski M., Szel˛agW., Łyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019).
[12] Slusarek B., Kapelski D., Antal L., Zalas P., Gwozdziewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors, vol. 14, pp. 12425–12436 (2014).
[13] Jedryczka C., Szel˛ag W., Piech J., Multiphase permanent magnet synchronous motors with fractional slot windings, COMPEL, vol. 35, no. 6, pp. 1937–1948 (2016).
[14] Wardach M., Pałka R., Paplicki P., Bronisławski M., Novel hybrid excited machine with flux barriers in rotor structure, COMPEL, vol. 37, no. 4, pp. 1489–1499 (2018).
[15] Młynarek P., Łukaniszyn M., Jagiełła M., Kowol M., Modelling of heat transfer in low-power IPM synchronous motors, IET Science, Measurement and Technology, vol. 12, no. 8, pp. 1066–1073 (2018).
[16] Rebelo J.M., Silvestre M.A.R., Development of a coreless permanent magnet synchronous motor for a battery electric shell eco marathon prototype vehicle, Open Engineering, vol. 8, no. 1, pp. 382–390 (2018).
[17] Knypinski Ł., Krupinski J., The energy conversion efficiency in the trolley travelling drive system in tower cranes, Proceedings of 15-th Selected Issue of Electrical Engineering and Electronics – WZEE, pp. 1–4 (2020), DOI: 10.1109/WZEE48932.2019.8979940.
[18] Egrov A., Kozlow K., Belogusev V., Method for evaluation of the chain derive efficiency, Journal of Applied Engineering Science, vol. 341, pp. 277–282 (2015).
[19] Janaszek M., The analysis of the influence unequal parameters of motors on the work of multimotors traction drive, Journal of the Electrical Engineering Institute (in Polish), vol. 286, pp. 1–26 (2015).
[20] Dambrauskas K., Vanagas J., Zimnickas T., Kalvaitisand A., Ažubalis K., A method for efficiency determination of permanent magnet synchronous motor, Energies, vol. 13, no. 1004, pp. 1–15 (2020).
[21] Knypinski Ł., Krupinski J., Application of the permanent magnet synchronous motors for tower cranes, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 27–30 (2020), DOI: 10.15199/48.2020.01.07.
[22] Geng S., Zhang Y., Qiu H., Yang R., Yi R., Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 399–410 (2019).
[23] Dong S., Zhang Q., Ma H., Wang R., Design for the interior permanent magnet synchronous motor drive system based on the Z-source inverter, Energies, vol. 12, no. 3350, pp. 1–14 (2019).
[24] Chen Z., Zhang H., Tu W., Luo G., Manoharan D., Kennel R., Sensorless control for permanent magnet synchronous motor in rail transient applications using segmented synchronous modulation, IEEE Access, vol. 7, pp. 76669–7667 (2019).
[25] Putz Ł., Bednarek K., Kasprzyk L., Analysis of higher harmonics generated by LED lamps, Przegląd Elektrotechniczny, vol. 96, no. 4, pp. 90–93 (2020).
[26] https://www.krupinskicranes.com, accessed July 2020.
Go to article

Authors and Affiliations

Łukasz Knypiński
1
ORCID: ORCID
Jacek Krupiński
2

  1. Poznan University of Technology, Poland
  2. Krupinski Cranes, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Authors present the problems of theoretical analysis and experimental research related to the possibilities of energy recovery in selected phases of operating and running cycles of self-driven crane. Heavy machinery powered by diesel engines is a source of solid toxic emissions. In order to limit these emissions, one install filters and filter regeneration systems. According to the concept presented here, the recovered energy might be utilised for regeneration of these filters by burning off accumulated solid particles (soot). Mechanical energy would be the power source to drive DC generators - the mechanical-into-electric energy converters. Filter's heating resistors, acting as the generators' load, would radiate a power of 3-;-5 MJ to initiate burning of soot in the filter. The calculations of energy consumed during sheave block lowering phase were made for three different lifting capacities taking into account the boom length and crane reach. Three running cycles of the crane: highroad, urban and off-road ones were also analysed. The time functions of variations of crane running speed and power of motion resistance at driving wheels were found. The results provided the background for determination of theoretical values of energy to be regained during braking phase of the analysed cycles. The structure and operation of experimental stands was discussed. The stands contain units that, at proper size factor, represent the processes that occur in real cranes and that are related only to energy recovery. Computer software for system simulation, control and measurement was described. Measurement results and result analysis are presented. The value of energy found theoretically was compared with the energy recovered during experimental tests. The paper also contains simplified kinematic schemes of selected units of crane lifting and driving systems, including an additional DC generator. This concept, however, needs verification in future design solutions.
Go to article

Authors and Affiliations

Jerzy Ocioszyński
Przemysław Majewski
Download PDF Download RIS Download Bibtex

Abstract

Crane selection is an important issue in assembly works planning. Tower and telescopic, stationary and mobile cranes used in construction have essentially different properties. Assembly planning begins in analyzing the possibilities of assembly with a given crane. This is called technical aspect of crane selection. Cranes that meet the technical criteria are then analyzed in terms of other criteria related to the effectiveness of their use on the construction site. The article presents the assessment of the selection criteria and the method of crane selection itself. Surveys conducted among construction managers and planners in Polish companies dealing with assembly works allowed to determine the significance of the selection criteria. For this purpose, an example using SAW (Simple Additive Weighting) and FSAW (Fuzzy Simple Additive Weighting) methods was presented. They also allowed to propose a technique for determining preferences in the use of selected construction cranes. The aim of the research was to increase the usability of computer applications supporting assembly planning by acquiring expert knowledge for the initial selection of organizational solutions.

Go to article

Authors and Affiliations

Roman Marcinkowski
ORCID: ORCID
Maciej Banach
ORCID: ORCID

This page uses 'cookies'. Learn more