Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of effect of structural soil backfill parameters on load capacity of culvert made as buried flexible steel structure. The work is divided into two parts. The first part is devoted to the assumptions of the Sundquist-Pettersson method. The principles of the analysis of the structure in terms of ultimate limit strength, serviceability and fatigue in permanent and temporary calculation situations are described. The second part presents a design example of a soil steel composite bridge in the form of a closed profile culvert made of MulitiPlate-type corrugated sheet. The static and strength calculations were conducted according to the Sundquist-Pettersson method and the guidelines presented in the Eurocodes. According to the guidelines, the value of the backfill tangent modulus was determined using the simplified (A) and precise (B) methods. It was found that the modulus values determined by the simplified method were about three times lower than for the exact method, leading to very conservative, uneconomical results. The structural calculations using the tangent modulus determined by the simplified method, indicated that the load capacity of the structure was exceeded, regardless of the thickness of the backfill used (in the range from 0.5 to 5 m). The use of the tangent modulus determined using the precise method resulted in a significant reduction in stress to bearing capacity ratio of analysed parameters. Similar reduction was observed with the increase in the thickness of the backfill.
Go to article

Bibliography


[1] Cz. Machelski, “Modeling of soil–steel composite bridges” [in Polish], 1nd ed., Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, 2008.
[2] A. Wysokowski and L. Janusz, “Soil steel composite bridges. Laboratory destructive testing. Failures during construction and operation” [in Polish], in Proceedings of Conference XXIII Konferencja Naukowo – Techniczna Awarie Budowlane – 23rd International Conference on Structural Failures, Szczecin-Międzyzdroje, 2007, pp. 541–550.
[3] A. Wysokowski and J. Vaslestadt, “Full scale fatigue testing of large-diameter multi-plate corrugated steel culverts”, Archives of Civil Engineering, vol. 48, no. 1, pp. 31–57, 2002.
[4] A. Wysokowski, J. Vaslestad and A. Pryga, “Fatigue resistance of modern corrugated steel culverts” [in Polish], Konstrukcje Stalowe, no. 5, pp. 45–47, 2000.
[5] A. Wysokowski and J. Howis, “Operational durability of steel soil-shell structures as ecological bridges” [in Polish], in Proceedings of Conference XXVII Konferencja Naukowo – Techniczna Awarie Budowlane – 27th International Conference on Structural Failures, Szczecin-Międzyzdroje, 2017, pp. 879–890.
[6] D. Bęben, “Soil-steel bridge structures design problems and construction faults” [in Polish], Drogownictwo, no. 3, pp. 74–79, 2013.
[7] Cz. Machelski, L. Korusiewicz, “Deformation of buried corrugated metal box structure under railway load”, Roads and Bridges – Drogi i Mosty, vol. 16, no. 3: pp. 191–201, 2017. https://doi.org/10.7409/rabdim.017.013
[8] Cz. Machelski, “Steel plate curvatures of soil-steel structures during construction and exploitation”, Roads and Bridges – Drogi i Mosty, vol. 15, no. 3, pp. 207–220, 2016. https://doi.org/10.7409/rabdim.016.013
[9] L. Korusiewicz, “Verification of the method of estimating bending moments in soil-shell structures on the basis of shell deformation”, Roads and Bridges – Drogi i Mosty, vol. 15, no. 3, pp. 221–230, 2016. https://doi.org/10.7409/rabdim.016.014
[10] J. Howis and A. Wysokowski, “Culverts in the communication infrastructure – part 9. Methods for calculating culverts – part III. New calculation methods" [in Polish], Nowoczesne Budownictwo Inżynieryjne, no. 5, pp. 72–81, 2010.
[11] L. Pettersson and H. Sundquist, “Design of soil steel composite bridges”, Trita-BKN, Report 112, 5th Edition, Royal Institute of Technology, Department of Structural Design and Bridges, Stockholm, Sweden, 2014.
[12] PN-EN 1997-1:2008. Projektowanie geotechniczne. Część 1: Zasady ogólne.
[13] PN-EN 1997-2:2009. Projektowanie geotechniczne. Część 2: Rozpoznanie i badanie podłoża gruntowego.
[14] L. Janusz and A. Madaj, “Engineering objects made of corrugated sheets. Design and construction” [in Polish], 1nd ed., Wydawnictwo Komunikacji i Łączności, Warszawa, 2007.
[15] W. Rowińska, A. Wysokowski and A. Pryga, “Design and technological recommendations for engineering structures made of corrugated sheets” [in Polish], 1nd ed., Generalna Dyrekcja Dróg Krajowych i Autostrad, IBDiM, Żmigród, 2004.
[16] D. Bęben, “Soil-steel bridges. Design, maintenance and durability”, 1nd ed., Springer, Cham, 2020.
[17] A. Wysokowski and J. Howis, “Culverts in the communication infrastructure – part 1” [in Polish], Nowoczesne Budownictwo Inżynieryjne, no. 2, pp. 52–56, 2008.
[18] L. Pettersson, “Full scale tests and structural evaluation of soil steel flexible culverts with low height of cover”, PhD Thesis, Royal Institute of Technology, Department of Structural Design and Bridges, Stockholm, Sweden, 2007.
[19] PN-EN 1993-1-1:2006. Projektowanie konstrukcji stalowych. Część 1–1: Reguły ogólne i reguły dla budynków.
[20] L. Pettersson, “Design of soil steel composite bridges according to the Eurocode”, Archives of Institute of Civil Engineering, no. 12, pp. 21–25, 2012.
[21] PN-EN 1993-1-8:2008. Projektowanie konstrukcji stalowych. Część 1–8: Projektowanie węzłów.
[22] PN-EN 1991-2:2007. Oddziaływania na konstrukcje. Część 2: Obciążenia ruchome mostów.
[23] PN-EN 1993-1-9:2008. Projektowanie konstrukcji stalowych. Część 1–9: Zmęczenie.
[24] PN-EN 1993-2:2007. Projektowanie konstrukcji stalowych. Część 2: Mosty stalowe.
[25] www.viacon.pl (access: November 6, 2020).
[26] PN-EN 1990:2004. Podstawy projektowania konstrukcji.
[27] P. G. Kossakowski, “Fatigue Strength of an Over One Hundred Year Old Railway Bridge”, Baltic Journal of Road and Bridge Engineering, vol. 8, no. 3, pp. 166–173, 2013. https://doi.org/10.3846/bjrbe.2013.21
[28] P. G. Kossakowski, “Influence of Initial Porosity on Strength Properties of S235JR Steel at Low Stress Triaxiality”, Archives of Civil Engineering, vol. 58, no. 3, pp. 293–308, 2021. https://doi.org/10.2478/v.10169-012-0017-9
[29] P. G. Kossakowski, “Experimental Determination of the Void Volume Fraction For S235JR Steel at Failure in the Range of High Stress Triaxialities”, Archives of Metallurgy and Materials, vol. 62, no. 1, pp. 167–172, 2017. https://doi.org/10.1515/amm-2017-0023
[30] P. G. Kossakowski, “Analysis of the Void Volume Fraction For S235JR Steel at Failure for Low Initial Stress Triaxiality”, Archives of Civil Engineering, vol. 64, no. 1, pp. 101–115, 2018. https://doi.org/10.2478/ace-2018-0007
[31] P. G. Kossakowski, “Application of Damage Mechanics for Prediction of Failure of Structural Materials and Elements”, DEStech Transactions on Computer Science and Engineering, pp. 62–72, 2020. https://doi.org/10.12783/dtcse/msam2020/34228
[32] E. Bernatowska, “Numerical Simulations of Ductile Fracture in Steel Angle Tension Members Connected with Bolts”, Civil and Environmental Engineering Reports, vol. 30, no. 2, pp. 32–54, 2020. https://doi.org/10.2478/ceer-2020-0018
Go to article

Authors and Affiliations

Michał Bakalarz
1
ORCID: ORCID
Paweł Kossakowski
1
ORCID: ORCID
Wiktor Wciślik
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

This page uses 'cookies'. Learn more