Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The quest for airframe weight reduction results in a careful dimensioning cross section areas of structural airframe components depending on the anticipated loading. In the case of flanges of polymeric laminate spars subjected to tension such a dimensioning can be done by means of appropriate ply dropping along the spar flanges. A method for an effective calculation of the number of plies that can be cut off at the cross-section under consideration without excessive stress concentration resulted has been presented. The method takes advantage of the Linear Fracture Mechanics tools combined with simple finite element calculations. In addition, experimental data needed can be easily obtained with the use of inexpensive specimens that are simple for manufacturing and testing.

Go to article

Authors and Affiliations

Piotr Czarnocki
Download PDF Download RIS Download Bibtex

Abstract

The combined fractographic and simple stress analysis showed that there are several mechanisms responsible for a relatively high delamination resistance of laminates reinforced with fabrics. It was concluded that they result from yarn weaves and curvatures produced in the course of weaving.
Go to article

Authors and Affiliations

Piotr Czarnocki
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an attempt was made to explain the causes of surface delamination in high carbon steel wires during the torsion test. For end wires with 1.7 mm diameter drawn at speeds of 5, 10, 15, 20, 25 m/s, technological tests were carried out. Then the susceptibility of the wire to plastic strain was determined. The microstructure analysis complemented the research. Analysis of the fracture torsion test showed that the wires drawn at speeds exceeding 15 m/s are delamination, which disqualify it as a material for a rope and a spring. The source of delamination in high carbon steel wires is their stronger strengthening, especially of the surface layer, which leads to a decrease in the orientation of the cementite laminaes and an increase in the degree of their fragmentation.

Go to article

Authors and Affiliations

M. Suliga
Download PDF Download RIS Download Bibtex

Abstract

The paper presents numerical and experimental research on glulam delamination in a double lap connection with predominant shear stresses. Laboratory tests and wide literature survey enabled to determine timber and glue joint parameters. Cohesive zone theory, generally used for epoxy matrix and fiber reinforced composites, was adopted to modelling glue layer delamination in glulam elements. Numerical models were validated with laboratory tests.

Go to article

Authors and Affiliations

B. Kawecki
J. Podgórski
Download PDF Download RIS Download Bibtex

Abstract

Experimental evaluations on interlaminar and intralaminar fracture of multilayered and sandwich epoxy and polyester fabrics show an interesting behaviour at delamination initiation and crack propagation. Mode I and Mode Il tests were done on layered specimens with same type of ani ficial delamination to investigate the material influence on interlaminar fracture toughness and crack propagation. In sandwich specimens with a rigid foam core, the intralaminar damage failure and propagation are monitored.
Go to article

Authors and Affiliations

D.M. Constantinescu
N. Constantin
T. Goss
Download PDF Download RIS Download Bibtex

Abstract

In recent years, manufacturing industries have demanded high-performance materials for structural components development due to their reduced weight, improved strength, corrosion, and moisture resistance. The outstanding performance of polymer nano-composites substitutes the use of conventional composites materials. This study is concerned with the machining of MWCNT and glass fiber-modified epoxy composites prepared by a cost-effective hand layup procedure. The investigations were carried out to estimate the generation of the thrust force (Th) and delamination factors at entry (DF entry) and exit (DF exit) side during the drilling of fiber composites. The effect of varying constraints on the machining indices was explored for obtaining an adequate quality of hole created in the epoxy nano-composites. The outcome shows that the feed rate (F) is the most critical factor influencing delamination at both entry and exit side, and the second one is the thrust force followed by wt. % of MWCNT. The statistical study shows that optimal combination of S (1650 Level-2), F (165 Level-2), and 2 wt. % of MWCNT (Level-2) can be used to minimize DF entry, DF exit, and Th. The drilling-induced damages were studied by means of a high-resolution microscopy test. The results reveal that the supplement of MWCNT substantially increases the machining efficiency of the developed nano-composites.
Go to article

Bibliography

[1] J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, and K. Liu. A review on machining of carbon fiber reinforced ceramic matrix composites. Ceramics International, 45(15):18155–18166, 2019. doi: 10.1016/j.ceramint.2019.06.112.
[2] N.R.M. Akmam, M. Mullah, and M.Z. Zakaria. Study on tool wear mechanism during milling of JFRP composite. International Journal of Science and Engineering Investigations, 9(98):20–26, 2020.
[3] D. Geng, Y. Liu, Z. Shao, Z. Lu, J. Cai, X. Li, X. Jiang, and D. Zhang. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 216:168–186, 2019. doi: 10.1016/j.compstruct.2019.02.099.
[4] G. Rajaraman, S.K. Agasti, and M.P. Jenarthanan. Investigation on effect of process parameters on delamination during drilling of kenaf-banana fiber reinforced in epoxy hybrid composite using Taguchi method. Polymer Composites, 41(3):994–1002, 2020. doi: 10.1002/pc.25431.
[5] M. Ramesh and A. Gopinath. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites. IOP Conference Series: Materials Science and Enginierring, 197:012056, 2017. doi: 0.1088/1757-899X/197/1/012056.
[6] U.H. Babu, N.V. Sai, and R.K. Sahu. Artificial intelligence system approach for optimization of drilling parameters of glass-carbon fiber/polymer composites. Silicon, 13:2943–2957, 2021. doi: 10.1007/s12633-020-00637-5.
[7] W. Li, A. Dichiara, and J. Bai. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Composites Science and Technology, 74:221–227, 2013. doi: 10.1016/j.compscitech.2012.11.015.
[8] S.G. Ghalme, Y. Bhalerao, and K. Phapale. Analysis of factors affecting delamination in drilling GFRP composite. Journal of Computational and Applied Research in Mechanical Engineering, 10(2):281–289, 2021. doi: 10.22061/jcarme.2019.4397.1530.
[9] S. Manteghi, A. Sarwar, Z. Fawaz, R. Zdero, and H. Bougherara. Mechanical characterization of the static and fatigue compressive properties of a new glass/flax/epoxy composite material using digital image correlation, thermographic stress analysis, and conventional mechanical testing. Materials Science and Engineering: C, 99:940–950, 2019. doi: 10.1016/j.msec.2019.02.041.
[10] J. Samuel, A. Dikshit, R.E. DeVor, S.G. Kapoor, and K.J. Hsia. Effect of carbon nanotube (CNT) loading on the thermomechanical properties and the machinability of CNT-reinforced polymer composites. Journal of Manufacturing Science and Engineering, 131(3):031008, 2009. doi: 10.1115/1.3123337.
[11] A. Babu Arumugam, V. Rajamohan, N. Bandaru, E.P. Sudhagar, and S.G. Kumbhar. Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams. Archives of Acoustics, 44(2):309–320. doi: .
[12] X. Wang, Q. Zheng, S. Dong, A. Ashour, and B. Han. Interfacial characteristics of nano-engineered concrete composites. Construction and Building Matererials, 259:119803, 2020. doi: 10.1016/j.conbuildmat.2020.119803.
[13] A.K. Chakraborty, T. Plyhm, M. Barbezat, A. Necola, and G.P. Terrasi. Carbon nanotube (CNT)-epoxy nanocomposites: A systematic investigation of CNT dispersion. Journal of Nanoparticle Research, 13:6493–6506, 2011. doi: 10.1007/s11051-011-0552-3.
[14] D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray. Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Composites Part A: Applied Science and Manufacturing, 84:364–376, 2016. doi: 10.1016/j.compositesa.2016.02.020.
[15] L. Sun, Y. Zhao, Y. Duan , and Z. Zhang. Interlaminar shear property of modified glass fiber-reinforced polymer with different MWCNTs. Chinese Journal of Aeronautics, 21(4):361–369, 2008. doi: 10.1016/S1000-9361(08)60047-3.
[16] A. Esmaeili, C. Sbarufatti, andA.M.S. Hamouda. Investigation of mechanical properties of MWCNTs doped epoxy nanocomposites in tensile, fracture and impact tests. Materials Science Forum, 990:239–243, 2020. doi: 10.4028/www.scientific.net/msf.990.239.
[17] A. Tabatabaeian and A.R. Ghasemi. The impact of MWCNT modification on the structural performance of polymeric composite profiles. Polymer Bulletin, 77:6563–6576, 2020. doi: 10.1007/s00289-019-03088-0.
[18] A. Gaurav and K.K. Singh. Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation. Composites Part B: Engineering, 172:83–96, 2019. doi: 10.1016/j.compositesb.2019.05.069.
[19] B. Shivamurthy, S. Anandhan, K.U. Bhat, and B.H.S. Thimmappa. Structure-property relationship of glass fabric/MWCNT/epoxy multi-layered laminates. Composites Communications, 22:100460, 2020. doi: 10.1016/j.coco.2020.100460.
[20] A. Uysal. Evaluation of drilling parameters on surface roughness and burr when drilling carbon black reinforced high-density polyethylene. Journal of Composite Materials, 52(20):2719–2727, 2018. doi: 10.1177/0021998317752505.
[21] F. Susac and F. Stan. Experimental investigation, modeling and optimization of circularity, cylindricity and surface roughness in drilling of PMMA using ANN and ANOVA. Materiale Plastice, 57(1):57–68, 2020. doi: 10.37358/MP.20.1.5312.
[22] P. Czarnocki and T. Zagrajek. Growth stability analysis of embedded delaminations with the use of FE node relocation procedure and effective resistance curve concept. Archive of Mechanical Engineering, 67(4):415–433, 2020. doi: 10.24425/ame.2020.131702.
[23] L. Liu, C. Qi, F. Wu, X. Zhang, and X. Zhu. Analysis of thrust force and delamination in drilling GFRP composites with candle stick drills. The International Journal of Advanced Manufacturing Technology, 95:2585–2600, 2018. doi: 10.1007/s00170-017-1369-8.
[24] M.P. Jenarthanan and R. Jeyapaul. Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. International Journal of Engineering, Science and Technology, 5(4):23–36. doi: 10.4314/ijest.v5i4.3.
[25] P. Raveendran and P. Marimuthu. Multi-response optimization of turning parameters for machining glass fiber-reinforced plastic composite rod. Advances in Mechanical Engineering, 7:1–10, 2015. doi: 10.1177/1687814015620109.
[26] D.I. Poór, N. Geier, C. Pereszlai, and J. Xu. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges. Composites Part B: Engineering, 223:109155, 2021. doi: 10.1016/j.compositesb.2021.109155.
[27] R. Higuchi, S. Warabi, W. Ishibashi, and T. Okabe. Experimental and numerical investigations on push-out delamination in drilling of composite laminates. Composites Science and Technology, 198:108238, 2020. doi: 10.1016/j.compscitech.2020.108238.
[28] J. Kumar, R.K. Verma, and A.K. Mondal. Predictive modeling and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Archive of Mechanical Engineering, 67(2):229–258. doi: 10.24425/ame.2020.131692.
[29] N. Hoffmann, G.S.C. Souza, A.J. Souza, and V. Tita. Delamination and hole wall roughness evaluation in air-cooled drilling of carbon fiber-reinforced polymer. Journal of Composite Materials, 55(23):3161–3174, 2021. doi: 10.1177/00219983211009281.
[30] A.T. Erturk, F. Vatansever, E. Yarar, E.A. Guven, and T. Sinmazcelik. Effects of cutting temperature and process optimization in drilling of GFRP composites. Journal of Composite Materials, 55(2):235–249, 2021. doi: 10.1177/0021998320947143.
[31] R. Pramod, S. Basavarajappa, G.B. Veeresh Kumar, and M. Chavali. Drilling induced delamination assessment of nanoparticles reinforced polymer matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021. doi: 10.1177/09544062211030967.
[32] P.K. Kharwar, R.K. Verma, N.K. Mandal, and A.K. Mondal. Swarm intelligence integrated approach for experimental investigation in milling of multiwall carbon nanotube/polymer nanocomposites. Archive of Mechanical Engineering, 67(3):353–376, 2020. doi: 10.24425/ame.2020.131698.
[33] S. Gokulkumar, P.R. Thyla, R. ArunRamnath, and N. Karthi. Acoustical analysis and drilling process optimization of Camellia Sinensis / Ananas Comosus / GFRP / Epoxy composites by TOPSIS for indoor applications. Journal of Natural Fibers, 18(12):2284–2301. doi: 10.1080/15440478.2020.1726240.
[34] S. Liu, T. Yang, C. Liu, Y. Jin, D. Sun, and Y. Shen. Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites. Composite Structures, 236:111907, 2020. doi: 10.1016/j.compstruct.2020.111907.
[35] U. Bhushi, J. Suthar, and S.N. Teli. Performance analysis of metaheuristics optimization techniques for drilling process on CFRP composites. Materials Today: Proceedings, 28(2):1106–1114, 2020. doi: 10.1016/j.matpr.2020.01.091.
[36] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi: 10.1007/s40032-020-00563-w.
[37] M. Mudhukrishnan, P. Hariharan, and K. Palanikumar. Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills. Measurement, 149:106973, 2020. doi: 10.1016/j.measurement.2019.106973.
[38] B.-C. Kwon, N.D.D. Mai, E.S. Cheon, and S.L. Ko. Development of a step drill for minimization of delamination and uncut in drilling carbon fiber reinforced plastics (CFRP). The International Journal of Advanced Manufacturing Technology , 106:1291–1301, 2020. doi: 10.1007/s00170-019-04423-5.
[39] T. Panneerselvam, S. Raghuraman, T.K. Kandavel, and K. Mahalingam. Evaluation and analysis of delamination during drilling on Sisal-Glass Fibres Reinforced Polymer. Measurement, 154:107462, 2020. doi: 10.1016/j.measurement.2019.107462.
[40] A. Landesmann, C.A. Seruti, and E. de Miranda Batista. Mechanical properties of glass fiber reinforced polymers members for structural applications. Materials Research, 18(6):1372–1383, 2015. doi: 10.1590/1516-1439.044615.
[41] K. Askaripour and A. Zak. A survey of scrutinizing delaminated composites via various categories of sensing apparatus. Journal of Composites Science, 3(4):95, 2019 doi: 10.3390/jcs3040095.
[42] M.R. Sanjay and B. Yogesha. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2):2739–2747, 2017. doi: 10.1016/j.matpr.2017.02.151.
[43] M.Y. Abdellah, M.S. Alsoufi, M.K. Hassan,H.A. Ghulman, and A.F. Mohamed. Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite. Archive of Mechanical Engineering, 62(2):217–236, 2015. doi: 10.1515/meceng-2015-0013.
[44] K. Rodsin, Q. Hussain, P. Joyklad, A. Nawaz, and H. Fazliani. Seismic strengthening of nonductile bridge piers using low-cost glass fiber polymers. B Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(6):1457–1470, 2020. doi: 10.24425/bpasts.2020.135383.
[45] R. Bielawski, M. Kowalik, K. Suprynowicz, R. Rządkowski,and P. Pyrzanowski. Experimental study on the riveted joints in glass fibre reinforced plastics (GFRP). Archive of Mechanical Engineering, 64(3):301–313, 2017. doi: 10.1515/meceng-2017-0018.
[46] N. Rasana, K. Jayanarayanan, B.D.S. Deeraj, and K. Joseph. The thermal degradation and dynamic mechanical properties modeling of MWCNT/glass fiber multiscale filler reinforced polypropylene composites. Composites Science and Technology, 169:249–259, 2019. doi: 10.1016/j.compscitech.2018.11.027.
[47] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, and W. Wolany. Comparison of the MWCNTs-Rh and MWCNTs-Re carbon-metal nanocomposites obtained in hightemperature. Archives of Metallurgy and Materials, 60(3):2053–2060, 2015. doi: 10.1515/amm-2015-0348.
[48] Ö Demircan, K. Kadıoğlu, P. Çolak, E. Günaydın, M. Doğu, N. Topalömer, and V. Eskizeybekl. Compression after impact and Charpy impact characterizations of glass fiber/epoxy/MWCNT composites. Fibers and Polymers, 21(8):1824–1831, 2020. doi: 10.1007/s12221-020-9921-9.
[49] P.K. Kharwar and R.K. Verma. Machining performance optimization in drilling of multiwall carbon nano tube /epoxy nanocomposites using GRA-PCA hybrid approach. Measurement, 158:107701, 2020. doi: 10.1016/j.measurement.2020.107701.
[50] C.R.Raajeshkrishna, P. Chandramohan, and V.S. Saravanan. Thermomechanical characterization and morphological analysis of nano basalt reinforced epoxy nanocomposites. International Journal of Polymer Analysis and Characterization, 25(4):216–226, 2020. doi: 10.1080/1023666X.2020.1781479.
[51] K.M. Tripathi, A. Sachan, M. Castro, V. Choudhary, S.K. Sonkar, and J.F. FellerF. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 16:1–11, 2018. doi: 10.1016/j.susmat.2018.01.001.
[52] P. Rawat and K.K. Singh. A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs. IOP Conference Series: Materials Science and Engineering, 149:012105, 2015. doi: 10.1088/1757-899X/149/1/012105.
[53] S. Yeasmin, J.H. Yeum, and S.B Yang. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril. Carbohydrate Polymers, 240:116307, 2020. doi: 10.1016/j.carbpol.2020.116307.
[54] K. Hosseinpour and A.R. Ghasemi. Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes/fiber/polymer composite cylindrical shells. Journal of Sandwich Structures & Materials, 23(4):1272–1291, 2021. doi: 10.1177/1099636219857200.
[55] A.R. Ghasemi, M. Mohandes, R. Dimitri, and F. Tornabene. Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Composites Part B: Engineering, 167:700–716, 2019. doi: 10.1016/j.compositesb.2019.03.028.
[56] G.C. Onwubolu and S. Kumar. Response surface methodology-based approach to CNC drilling operations. Journal of Materials Processing Technology, 171(1):41–47, 2006. doi: 10.1016/j.jmatprotec.2005.06.064.
[57] E. Kilickap, M. Huseyinoglu, and A. Yardimeden. Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 52:79–88, 2011. doi: 10.1007/s00170-010-2710-7.
[58] C.C. Tsao. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. The International Journal of Advanced Manufacturing Technology, 37:1061–1068, 2008. doi: 10.1007/s00170-007-1057-1.
[59] E. Kilickap. Modeling and optimization of burr height in drilling of Al-7075 using Taguchi method and response surface methodology. The International Journal of Advanced Manufacturing Technology, 49:911–923, 2010. doi: 10.1007/s00170-009-2469-x.
[60] A. Ramaswamy and A.V. Perumal. Multi-objective optimization of drilling EDM process parameters of LM13 Al alloy–10ZrB$_2$–5TiC hybrid composite using RSM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42:432, 2020. doi: 10.1007/s40430-020-02518-9.
[61] K.K. Panchagnula and K. Palaniyandi. Drilling on fiber reinforced polymer/nanopolymer composite laminates: A review. Journal of Materials Research and Technology, 7(2):180–189, 2018. doi: 10.1016/j.jmrt.2017.06.003.
[62] D. Kumar and K.K. Singh. An experimental investigation of surface roughness in the drilling of MWCNT doped carbon/epoxy polymeric composite material. IOP Conference Series: Materials Science and Engineering, 149:012096, 2016. doi: 10.1088/1757-899X/149/1/012096.
[63] M. Mudegowdar. Influence of cutting parameters during drilling of filled glass fabric-reinforced epoxy composites. Science and Engineering of Composite Materials, 22(1):81–88, 2013. doi: 10.1515/secm-2013-0198.
[64] Ş Bayraktar and Y. Turgut. Determination of delamination in drilling of carbon fiber reinforced carbon matrix composites/Al 6013-T651 stacks. Measurement, 154:107493, 2020. doi: 10.1016/j.measurement.2020.107493.
[65] K.M. John and T.S. Kumaran. Backup support technique towards damage-free drilling of composite materials: A review. International Journal of Lightweight Materials and Manufacture, 3(4):357–364, 2020. doi: 10.1016/j.ijlmm.2020.06.001.
[66] L.M.P. Durão, J.M.R.S. Tavares, V.H.C. De Albuquerque, J.F.S. Marques, and O.N.G. Andrade. Drilling damage in composite material. Materials, 7(5):3802–3819, 2014. doi: 10.3390/ma7053802.
[67] B.R.N. Murthy, R. Beedu, R. Bhat, N. Naik, and P. Prabakar. Delamination assessment in drilling basalt/carbon fiber reinforced epoxy composite material. Journal of Materials Research and Technology, 9(4):7427–7433, 2020. doi: 10.1016/j.jmrt.2020.05.001.
[68] S.O. Ojo, S.O. Ismail, M. Paggi, and H.N. Dhakal. A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation. Composites Part B: Engineering, 124:207–217, 2017. doi: 10.1016/j.compositesb.2017.05.039.
[69] D. Wang, F. Jiao, and X. Mao. Mechanics of thrust force on chisel edge in carbon fiber reinforced polymer (CFRP) drilling based on bending failure theory. International Journal of Mechanical Sciences, 169:105336, 2020. doi: 10.1016/j.ijmecsci.2019.105336.
[70] N. Kaushik and S. Singhal. Hybrid combination of Taguchi-GRA-PCA for optimization of wear behavior in AA6063/SiC$_{\rm p}$ matrix composite. Production & Manufacturing Research , 6(1):171–189, 2018. doi: 10.1080/21693277.2018.1479666.
[71] K. Aslantas, E. Ekici, and A. Çiçek. Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Measurement, 128:419–427, 2018. doi: 10.1016/j.measurement.2018.06.066.
[72] S. Ragunath, C. Velmurugan, and T. Kannan. Optimization of drilling delamination behavior of GFRP/clay nano-composites using RSM and GRA methods. Fibers and Polymers, 18:2400–2409, 2017. doi: 10.1007/s12221-017-7420-4.
[73] P.M. Gopal and K. Soorya Prakash. Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement, 116:178–192, 2018. doi: 10.1016/j.measurement.2017.11.011.
[74] S.M. Shahabaz, N. Shetty, S.D. Shetty, and S.S. Sharma. Surface roughness analysis in the drilling of carbon fiber/epoxy composite laminates using hybrid Taguchi-Response experimental design. Materials Research Express, 7(1):015322, 2020. doi: 10.1088/2053-1591/ab6198.
[75] D. Kumar, K.K. Singh, and R. Zitoune. Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills. Advanced Manufacturing: Polymer & Composites Science, 2(2):47–56, 2016. doi: 10.1080/20550340.2016.1187434.
[76] K. Palanikumar. Experimental investigation and optimisation in drilling of GFRP composites. Measurement, 44(10):2138–2148, 2011. doi: 10.1016/j.measurement.2011.07.023.
[77] B. Latha and V.S. Senthilkumar. Modeling and analysis of surface roughness parameters in drilling GFRP composites using fuzzy logic. Materials and Manufacturing Processes, 25(8):817-827, 2010. doi: 10.1080/10426910903447261.
[78] F. Ficici. Evaluation of surface roughness in drilling particle-reinforced composites. Advanced Composites Letters, 29:1–11, 2020. doi: 10.1177/2633366X20937711.
Go to article

Authors and Affiliations

Kuldeep Kumar
1
ORCID: ORCID
Rajesh Kumar Verma
1
ORCID: ORCID

  1. Materials and Morphology Laboratory, Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India
Download PDF Download RIS Download Bibtex

Abstract

This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.

Go to article

Authors and Affiliations

K. Dybowski
G. Romaniak
P. Kula
A. Jeziorna
P. Kowalczyk
R. Atraszkiewicz
Ł. Kołodziejczyk
D. Nowak
P. Zawadzki
M. Kucińska
Download PDF Download RIS Download Bibtex

Abstract

The article aims at assessing the influence of the drill bit material on the bearing strength of holes made in glass fabric reinforced epoxy composite. Six twists made of widely used drill materials such as high speed steels and carbides in different configurations were selected to drill holes in the composite. In the first stage of the work, optimum drilling parameters were selected and then used for drilling holes in specimens tested in single lap shear experiments. For each tested specimen two different delamination factors, one based on the delamination area and another - on its diameter, were calculated in order to assess the quality of the holes and then compared to the results of the bearing strength experiments. The results of the bearing tests showed that the highest strength was achieved for the high speed steel drill with titanium coating while the lowest for the cemented carbide drill. This finding is in opposition to the majority of results reported in literature.
Go to article

Bibliography

[1] I.S. Shyha, S.L. Soo, D. Aspinwall, and S. Bradley. Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. Journal of Materials Processing Technology, 210(8):1023–1034, 2010. doi: 10.1016/j.jmatprotec.2010.02.011.
[2] L.N. Lopez de Lacalle, A. Lamikiz, F.J. Campa, A.F. Valdivielso, and I. Etxeberria. Design and test of multi-tooth tool for CFRP milling. Journal of Composite Materials, 43(26):3275–3290, 2009. doi: 10.1177/0021998309345354.
[3] X. Cheng, S. Wang, J. Zhang, W. Huang, Y. Cheng, and J. Zhang. Effect of damage on failure mode of multi-bolt composite joints using failure envelope method. Composite Structures, 160:8-15, 2017. doi: 10.1016/j.compstruct.2016.10.042.
[4] S. Gaugel P. Sripathy, A. Haeger, D. Meinhard, T. Bernthaler, F. Lissek, M. Kaufeld, V. Knoblauch, and G. Schneider. A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Composite Structures, 155:173–183, 2016. doi: 10.1016/j.compstruct.2016.08.004.
[5] Y. Turki, M. Hebak, R. Velasco, Z. Aboura, K. Khellil, and P. Vantomme. Experimental investigation of drilling damage and stitching effects on the mechanical behavior of carbon/epoxy composites. International Journal of Machine Tools and Manufacture, 87:61–72, 2014. doi: 10.1016/j.ijmachtools.2014.06.004.
[6] C.C. Tsao, H. Hocheng, and Y.C. Chen. Delamination reduction in drilling composite materials by active backup force. CIRP Annals – Manufacturing Technology, 61(1):91-94, 2012. doi: 10.1016/j.cirp.2012.03.036.
[7] J. Xu. Manufacturing of fibrous composites for engineering applications. Journal of Composites Science, 6(7):187, 2022. doi: 10.3390/jcs6070187.
[8] J. Xu, X. Huang, M. Chen, and J.P. Davim. Drilling characteristics of carbon/epoxy and carbon/polyimide composites. Materials and Manufacturing Processes, 35(15):1732–1740, 2020. doi: 10.1080/10426914.2020.1784935.
[9] D. Geng, Y, Liu, Z. Shao, Z. Lu, J. Cai, X. Li, X. Jiang, and D. Zhang. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 216:168–186, 2019. doi: 10.1016/j.compstruct.2019.02.099.
[10] R. Stone and K. Krishnamurthy. A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates. International Journal of Machine Tools and Manufacture, 36(9):985–1003, 1996. doi: 10.1016/0890-6955(96)00013-2.
[11] L. Sorrentino, S. Turchetta, and C. Bellini. A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Composite Structures, 186:154–164, 2018. doi: 10.1016/j.compstruct.2017.12.005.
[12] A. Galińska. Mechanical joining of fibre reinforced polymer composites to metals – A review. Part I: bolted joining. Polymers, 12(10):2252, 2020. doi: 10.3390/polym12102252.
[13] R. Bielawski, M. Kowalik, K. Suprynowicz, W. Rządkowski, and P. Pyrzanowski. Investigation of riveted joints of fiberglass composite materials. Mechanics of Composite Materials, 52:199–210, 2016. doi: 10.1007/s11029-016-9573-4.
[14] P. Dobrzański and W. Oleksiak. Design and analysis methods for composite bonded joints. Transactions on Aerospace Research, 2021(1):45–63, 2021. doi: 10.2478/tar-2021-0004.
[15] C.C. Tsao. Effect of pilot hole on thrust force by saw drill. International Journal of Machine Tools and Manufacture, 47(14):2172–2167, 2007. doi: 10.1016/j.ijmachtools.2007.05.008.
[16] X. Qiu, P. Li, Q. Niu, A. Chen, P. Ouyang, C. Li, and T.J. Ko. Influence of machining parameters and tool structure on cutting force and hole wall damage in drilling CFRP with stepped drills. The International Journal of Advanced Manufacturing Technology, 97:857–865, 2018. doi: 10.1007/s00170-018-1981-2.
[17] A. Guputa, H. Ascroft, and S. Barnes. Effect of chisel edge in ultrasonic assisted drilling of carbon fibre reinforced plastics (CFRP). Procedia CIRP, 46:619–622, 2016. doi: 10.1016/j.procir.2016.04.026.
[18] J. Ramkumar, S. Aravindan, S.K. Malhotra, and R. Krishnamurthy. An enhancement of the machining performance of GFRP by oscillatory assisted drilling. International Journal of Advanced Manufacturing, 23:240–244, 2004. doi: 10.1007/s00170-003-1660-8.
[19] Rampal, G. Kumar, S.M. Rangappa, S. Siengchin, and S. Zafar. A review of recent advancements in drilling of fiber-reinforced polymer composites. Composites Part C: Open Access, 9:100312, 2022. doi: 10.1016/j.jcomc.2022.100312.
[20] H. Heidary and M.A. Mehrpouya. Effect of backup plate in drilling of composite laminates, analytical and experimental approaches. Thin-Walled Structures, 136:323–332, 2019. doi: 10.1016/j.tws.2018.12.035.
[21] U. Koklu and S. Morkavuk. Cryogenic drilling of carbon fiber-reinforced composite (CFRP). Surface Review and Letters, 26(9):1950060, 2019. doi: 10.1142/S0218625X19500604.
[22] J. Xu, C. Li, S. Mi, Q. An, and M. Chen. Study of drilling-induced defects for CFRP composites using new criteria. Composite Structures, 201:1076–1087, 2018. doi: 10.1016/j.compstruct.2018.06.051.
[23] D. Kumar, K.K. Singh. And R. Zitoune. Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills. Advanced Manufacturing: Polymer & Composites Science, 2(2):47–56, 2016. doi: 10.1080/20550340.2016.1187434.
[24] L.M. Durão, A.G. Magalhães, J.M.R.S. Tavares, and A.T. Marques. Analyzing objects in images for estimating the delamination influence on load carrying capacity of composite laminates. Electronic Letters on Computer Vision and Image Analysis, 7(2):11–21, 2008. doi: 10.5565/rev/elcvia.187.
[25] C.C. Tsao and H. Hocheng. Taguchi analysis of delamination associated with various drill bits in drilling of composite material. International Journal of Machine Tools and Manufacture, 44(10):1085–1090, 2004. doi: 10.1016/j.ijmachtools.2004.02.019.
[26] H. Hocheng and C.C. Tsao. Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools and Manufacture, 46(12-13):1403–1416, 2006. doi: 10.1016/j.ijmachtools.2005.10.004.
[27] X. Qiu, P. Li, C. Li, Q. Niu, A. Chen, P. Ouyang, and T.J. Ko. Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP. Composite Structures, 203:404–413, 2018. doi: 10.1016/j.compstruct.2018.07.007.
[28] J.C. Rubio, A.M. Abrao, P.E. Faria, A.E. Correia, J.P. Davim. Effects of high speed in the drilling of glass fibre reinforced plastic: Evaluation of the delamination factor. International Journal of Machine Tools and Manufacture, 48(6):715–720, 2008. doi: 10.1016/j.ijmachtools.2007.10.015.
[29] L. Gemi, S. Morkavuk, U. Koklu, and D.S. Gemi. An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Composites Part B: Engineering, 172:186–194, 2019. doi: 10.1016/j.compositesb.2019.05.023.
[30] L.M. Durão, D.J.S. Goncalves, J.M.R.S. Tavares, V.H.C. de Albuquerque, A.A. Vieira, and A.T. Marques. Drilling tool geometry evaluation for reinforced composite laminates. Composite Structures, 92(7):1545–1550, 2010. doi: 10.1016/j.compstruct.2009.10.035.
[31] A.T. Marques, L.M. Durão, A.G. Magalhães, J.F. Silva, and J.M.R.S. Tavares. Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Composites Science and Technology,, 69(14):2376–2382, 2009. doi: 10.1016/j.compscitech.2009.01.025.
[32] N. Feito, J. Díaz-Álvarez, J. López-Puente, and M.H. Miguelez. Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs. Composite Structures, 184:1147–1155, 2018. doi: 10.1016/j.compstruct.2017.10.061.
[33] A.T. Erturk, F. Vatansever, E. Yarar, and S. Karabay. Machining behavior of multiple layer polymer composite bearing with using different drill bits. Composites Part B: Engineering, 176:107318, 2019. doi: 10.1016/j.compositesb.2019.107318.
[34] M. Mudhukrishnan, P. Hariharan, and K. Palanikmer. Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills. Measurement, 149:106973, 2020. doi: 10.1016/j.measurement.2019.106973.
[35] J. Xu, C. Li, M. Chen, M. El Mansori, F. Ren. An investigation of drilling high-strength CFRP composites using specialized drills. International Journal of Advanced Manufacturing Technology, 103 (9-12): 3425-3442, 2019. doi: 10.1007/s00170-019-03753-8.
[36] J. Xu, T. Lin, J.P. Davim, M. Chen, and M. El Mansori. Wear behavior of special tools in the drilling of CFRP composite laminates. Wear, 476:203738, 2021. doi: 10.1016/j.wear.2021.203738.
[37] U. Heisel and T. Pfeifroth. Influence of point angle on drill hole quality and machining forces when drilling CFRP. Procedia CIRP, 1:471–476, 2012. doi: 10.1016/j.procir.2012.04.084.
[38] V.N. Gaitonde, S.R. Karnik, J.C. Rubio, A.E. Correia, A.M. Abrão, and J.P. Davim. Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. International Journal of Machine Tools and Manufacture, 203(1-3):431–438, 2008. doi: 10.1016/j.jmatprotec.2007.10.050.
[39] I.S. Shyha, D.K. Aspinwall, S.L. Soo, and S. Bradley. Drill geometry and operating effects when cutting small diameter holes in CFRP. International Journal of Machine Tools and Manufacture, 49(12-13):1008–1014, 2009. doi: 10.1016/j.ijmachtools.2009.05.009.
[40] D. Iliescu, D. Gehin, M.E. Gutierrez, and F. Girot. Modeling and tool wear in drilling of CFRP. International Journal of Machine Tools and Manufacture, 50(2):204–213, 2010. doi: 10.1016/j.ijmachtools.2009.10.004.
[41] A. Çelik, I. Lazoglu, A. Kara, and F. Kara. Investigation on the performance of SiAlON ceramic drills on aerospace grade CFRP composites. Journal of Materials Processing Technology, 223:39–47, 2015. doi: 10.1016/j.jmatprotec.2015.03.040.
[42] E. Kilickap. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications, 37(8):6116–6122, 2010. doi: 10.1016/j.eswa.2010.02.023.
[43] N. Feito, A.S. Milani, and A. Muñoz-Sánchez. Drilling optimization of woven CFRP laminates under different tool wear conditions: a multi-objective design of experiments approach. Structural and Multidisciplinary Optimization, 53(2):239–251, 2016. doi: 10.1007/s00158-015-1324-y.
[44] J. Xu, Y. Yin, J.P. Davim, L. Li, M. Ji, N. Geier, and M. Chen. A critical review addressing drilling-induced damage of CFRP composites. Composite Structures, 294:115594, 2022. doi: 10.1016/j.compstruct.2022.115594.
[45] D.I. Poor, N. Geier, C. Pereszlai, and J. Xu. A critical review of the drilling of CFRP composites: Burr formation, characterisation and challenges. Composites Part B: Engineering, 223:109155, 2021. doi: 10.1016/j.compositesb.2021.109155.
[46] V. Krishnaraj, A. Prabukarthi, A. Ramanathan, N. Elanghovan, M.S. Kumar, R. Zitoune, and J.P. Davim. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Composites Part B: Engineering,. 43(4):1791–1799, 2012. doi: 10.1016/j.compositesb.2012.01.007.
[47] S. Rawat and H. Attia. Characterization of the dry high speed drilling process of woven composites using Machinability Maps approach. CIRP Annals – Manufacturing Technology, 58:105–8, 2009. doi: 10.1016/j.cirp.2009.03.100.
[48] J. Xu, T. Lin, M. Chen, and J.P. Davim. Machining responses of high-strength carbon/epoxy composites using diamond-coated brad spur drills. Materials and Manufacturing Processes, 36(6):722–729, 2021. doi: 10.1080/10426914.2020.1854475.
[49] D. Kumar and K.K. Sing. Experimental analysis of delamination, thrust force and surface roughness on drilling of glass fibre reinforced polymer composites material using different drills. Materials Today: Proceedings, 4(8):7618–7627, 2017. doi: 10.1016/j.matpr.2017.07.095.
[50] U.A. Khashaba, I.A. El-Sonbaty, A.I. Selmy, and A.A. Megahed. Machinability analysis in drilling woven GFR/epoxy composites: Part I – Effect of machining parameters. Composites Part A: Applied Science and Manufacturing, 41(3):391–400, 2010. doi: 10.1016/j.compositesa.2009.11.006.
[51] K. Weinert and C. Kempmann. Cutting temperatures and their effects on the machining behaviour in drilling reinforced plastic composites. Advanced Engineering Materials, 6(8):684-689, 2004. doi: 10.1002/adem.200400025.
[52] A. Dogrusadik and A. Kentli. Comparative assessment of support plates’ influences on delamination damage in micro-drilling of CFRP laminates. Composite Structures, 173:156–167, 2017. doi: 10.1016/j.compstruct.2017.04.031.
[53] D. Liu, Y. Tang, and W.L. Cong. A review of mechanical drilling for composite laminates. Composite Structures, 94(4):1265-1279, 2012. doi: 10.1016/j.compstruct.2011.11.024.
[54] C.A. Schneider, W.S. Rasband, and K.W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9:671–675, 2012. doi: 10.1038/nmeth.2089.
[55] P. Pieśko and M. Zawada-Michałowska, Influence of technological parameters and type of drill bit on the accuracy of holes machining in carbon fibrous composites. Mechanik, 90(12):1113–1115, 2017. doi: 10.17814/mechanik.2017.12.190.
[56] J. Fernandez-Perez, J.L. Cantero, J. Diaz-Alvarez, and M.H. Miguelez. Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Composite Structures, 178:157–161, 2017. doi: 10.1016/j.compstruct.2017.06.043.
[57] A. Faraz, D. Biermann, and K. Weinert. Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. International Journal of Machine Tools and Manufacture, 49(15):1185–1196, 2009. doi: 10.1016/j.ijmachtools.2009.08.002.
[58] X. Wang, X. Shen, C. Zeng, and F. Sun. Combined influences of tool shape and as-deposited diamond film on cutting performance of drills for CFRP machining. Surface and Coatings Technology, 347:390–397, 2018. doi: 10.1016/j.surfcoat.2018.05.024.
Go to article

Authors and Affiliations

Anna Galińska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Embedded delamination growth stability was analysed with the help of the FEM combined with a specially developed procedure for node relocation to obtain a smooth variation of the SERR components along the delamination contour. The procedure consisted in the replacement of the actual material with the very compliant fictitious one and the displacement of the delamination front nodes by the previously determined distance in a local coordinate system. Due to this loading, the new delamination front was created. Subsequently, the original material was restored. Evolution under inplane compression of three initially circular delaminations of diameters d = 30, 40 and 50 mm embedded in thin laminates of two different stacking sequences were considered. It was found that the growth history and the magnitude of the load that triggers unstable delamination growth depended mainly on the combined effects of the initial delamination size, delamination contour, out of plane post-buckling geometry of the disbonded layers, reinforcement arrangement, and magnitude and variation of the SERR components along the delamination contour. To present the combined effect of these features, an original concept of the effective resistance curve, G Reff , was introduced.
Go to article

Bibliography


[1] C. Kassapoglou and J. Hammer. Design and analysis of composite structures with manufacturing flaws. Journal of American Helicopter Society, 35(4):46–52, 1990. doi: 10.4050/JAHS.35.46.
[2] R.C. Yu and A. Pandolfi. Modelling of delamination fracture in composites: a review. In: S. Sridharan (ed.), Delamination Behaviour of Composites, pages 429–451. Woodhead Publishing Ltd., Cambridge, 2008.
[3] H. Chai, C.D. Babcock, and W.G. Knausss. One dimensional modelling of failure in laminated plates by delamination buckling. International Journal of Solids and Structures, 17(11):1069–1083. 1981.
[4] J.D. Whitcomb. Finite element analysis of instability related delamination growth. Journal of Composite Materials, 15(5):403–426, 1981. doi: 10.1177/002199838101500502.
[5] V.V. Bolotin. Defects of the delamination type in composite structures. Mechanics of Composite Materials, 20(2):173–188, 1984. doi: 10.1007/BF00610358.
[6] L.M. Kachanov. Delamination Buckling of Composite Materials, pages 57–67, Kuwer Academic Press, 1988.
[7] G.R. Irwin. Fracture, Handbook der Physik (Fracture, Handbook of Physics), pages 551–590. Springer, Berlin, 1958. (in German).
[8] E.F. Rybicki and M.F. Kanninen. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4):931–938, 1977. doi: 10.1016/0013-7944(77)90013-3.
[9] C. Bisagni, R. Vesccovini, and C.G. Davila. Assessment of the damage tolerance of post-buckled hat-stiffened panels using single-stringer specimens. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, paper no. AIAA2010-2696, Orlando, USA, 12–15 April, 2010. doi: 10.2514/6.2010-2696.
[10] J.D. Whitcomb. Three-dimensional analysis of a postbuckled embedded delamination. Journal of Composite Materials, 23(9):862–889, 1989. doi: 10.1177/002199838902300901.
[11] J.D. Whitcomb. Analysis of a laminate with a postbuckled embedded delamination, including contact effect. Journal of Composite Materials, 26(10):1523–1535, 1992. doi: 10.1177/002199839202601008.
[12] H. Okada, M. Higashi, M. Kikuchi, Y. Fukui, and N. Kumazawa. Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front. Engineering Fracture Mechanics, 72(11):1717–1737, 2005. doi: 10.1016/j.engfracmech.2004.12.005.
[13] D. Xie and S.B. Biggers Jr. Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design, 42(11):977–984, 2006. doi: 10.1016/j.finel.2006.03.007.
[14] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Finite Elements in Analysis and Design, 73(6):771–785, 2006. doi: 10.1016/j.engfracmech.2005.07.013.
[15] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details. Finite Elements in Analysis and Design, 73(6):786–801, 2006. doi: 10.1016/j.engfracmech.2005.07.014.
[16] A.C. Orifici, R.S. Thomson, R. Egenhardt, C. Bisagni, and J. Bayandor. Development of a finite element analysis methodology for the propagation of delaminations in composite structures. Mechanics of Composite Materials, 43(1):9–28, 2007. doi: 10.1007/s11029-007-0002-6.
[17] A. Riccio, A. Raimondo, and F. Scaramuzzino. A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression. Composites Part B: Engineering, 71:131–142, 2015. doi: 10.1016/j.compositesb.2014.11.007.
[18] D. Zou and C. Bisagni. Study of skin-stiffer separation in T-stiffened composite specimens in post-buckling condition. Journal of Aerospace Engineering, 31(4), 2018. doi: 10.1061/(ASCE)AS.1943-5525.0000849.
[19] A.C. Orifici, R.S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor. A finite element methodology for analysing degradation and collapse in postbuckling composite aerospace structures. Journal of Composite Materials, 43(26):3239–3263, 2009. doi: 10.1177/0021998309345294.
[20] C.G. Dávila and C. Bisagni. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination. Composite Structures, 161:73–84, 2017. doi: 10.1016/j.compstruct.2016.11.033.
[21] E. Pietropaoli and A. Riccio. On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Composites Science and Technology, 70(8):1288–1300, 2010. doi: 10.1016/j.compscitech.2010.04.006.
[22] E. Pietropaoli and A. Riccio. Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Composites Science and Technology, 71(6):836–846, 2011. doi: 10.1016/j.compscitech.2011.01.026.
[23] Y.P. Liu, G.Q. Li, and C.Y. Chen. Crack growth simulation for arbitrarily shaped cracks based on the virtual crack closure technique. International Journal of Fracture, 185:1–15, 2014. doi: 10.1007/s10704-012-9790-3.
[24] Y.P. Liu, C.Y. Chen, and G.Q. Li. A modified zigzag approach to approximate moving crack front with arbitrary shape. Engineering Fracture Mechanics, 78(2):234–251, 2011. doi: 10.1016/j.engfracmech.2010.08.007.
[25] A. Riccio, M. Damiano, A. Raimondo, G. di Felice, and A. Sellitto. A~fast numerical procedure for the simulation of inter-laminar damage growth in stiffened composite panels. Composite Structures, 145:203–216, 2016. doi: 10.1016/j.compstruct.2016.02.081.
[26] K.F. Nilsson, L.E. Asp, J.E. Alpman, and L. Nysttedt. Delamination buckling and growth for delaminations at different depths in a slender composite panel. International Journal of Solids and Structures, 38(17):3039–3071, 2001. doi: 10.1016/S0020-7683(00)00189-X.
[27] R.A. Jurf and R.B. Pipes. Interlaminar fracture of composite materials. Journal of Composite Materials, 16(5):386–394, 1982. doi: 10.1177/002199838201600503.
[28] R.L. Ramkumar and J.D. Whitcomb. Characterisation of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy. In: W. Johnson (ed.), Delamination and Debonding of Materials, pages 315–335, ASTM, Philadelphia, 1985. doi: 10.1520/STP36312S.
[29] S. Hashemi, A.J. Kinloch, and J.G. Williams. The effects of geometry, rate and temperature on mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly(ether-ether-ketone) composites. Journal of Composite Materials, 24(9):918–956, 1990. doi: 10.1177/002199839002400902.
[30] S. Hashemi, A.J. Kinloch, and J.G. Williams. Mixed-mode fracture in fiber-polymer composite laminates. In: T. O'Brien (ed.) Composite Materials: Fatigue and Fracture, vol. 3, pages 143–168, ASTM ASTM, Philadelphia, 1991. doi: 10.1520/STP17717S.
[31] C. Hwu, C.J. Kao, and L.E. Chang. Delamination fracture criteria for composite laminates. Journal of Composite Materials, 29(15):1962–1987, 1995. doi: 10.1177/002199839502901502.
[32] M.L. Benzeggagh and M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56:439–449, 1996.
[33] N.B. Adeyemi, K.N. Shivakumar, and V.S. Avva. Delamination fracture toughness of woven-fabric composites under mixed-mode loading. AIAA Journal, 37(4):517–520, 1999. doi: 10.2514/2.747.
[34] J.R. Reeder. 3D mixed-mode delamination fracture criteria – an experimentalist's perspective. In: American Society for Composites 21st Annual Technical Conference, document ID: 20060048260, Dearborn, USA, 2006.
[35] R. Kruger. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 57(2):109–143, 2004. doi: 10.1115/1.1595677.
[36] E.J. Barbero. Finite Element Analysis of Composite Materials, CRC Press, Boca Raton, 2014.
[37] J.W. Hutchinson, M.E. Mear, and J.R. Rice. Crack paralleling an interface between dissimilar materials. Journal of Applied Mechanics, 54(4):828–832, 1987. doi: 10.1115/1.3173124.
[38] M.A. Tashkinov. Modelling of fracture processes in laminate composite plates with embedded delamination. Frattura ed Integrita Strutturale, 11(39):248–262, 2017.
[39] A.B. Pereira and A.B. de Morais. Mode II interlaminar fracture of glass/epoxy multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 35(2):265–272, 2004. doi: 10.1016/j.compositesa.2003.09.028.
[40] A.B. Pereira and A.B. de Morais. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates. Composites Science and Technology, 64(13-14):2261–2270, 2004. doi: 10.1016/j.compscitech.2004.03.001.
Go to article

Authors and Affiliations

Piotr Czarnocki
1
Tomasz Zagrajek
1

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.
Download PDF Download RIS Download Bibtex

Abstract

Laminated Aluminum Composite Structure (LACS) has shown great potential for replacing traditional bulk aluminum parts, due to its ability to maintain low manufacturing costs and create complex geometries. In this study, a LACS, that consists of 20 aluminum layers joined by a structural tape adhesive, was fabricated and tested to understand its impact performance. Three impact tests were conducted: axial drop, normal and transverse three-point bending drop tests. Numerical simulations were performed to predict the peak loads and failure modes during impacts. Material models with failure properties were used to simulate the cohesive failure, interfacial failure, and aluminum fracture. Various failure modes were observed experimentally (large plastic deformation, axial buckling, local wrinkling, aluminum fracture and delamination) and captured by simulations. Cross-section size of the axial drop model was varied to understand the LACS buckling direction and force response. For three-point bending drop simulations, the mechanism causing the maximum plastic strain at various locations in the aluminum and adhesive layers was discussed. This study presents an insight to understand the axial and flexural responses under dynamic loading, and the failure modes in LACS. The developed simulation methodology can be used to predict the performance of LACS with more complex geometries.

Go to article

Bibliography

[1] D. Zangani, M. Robinson, and A.G. Gibson. Evaluation of stiffness terms for z-cored sandwich panels. Applied Composite Materials, 14:159–175, 2007. doi: 10.1007/s10443-007-9038-y.
[2] J. Yu, E. Wang, J. Li, and Z. Zheng. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. International Journal of Impact Engineering, 35(8):885–894, 2008. doi: 10.1016/j.ijimpeng.2008.01.006.
[3] Q. Sun, Z. Meng, G. Zhou, S.-P. Lin, H. Kang, S. Keten, H. Guo, and X. Su. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions. Composite Structures, 196:30–43, 2018. doi: 10.1016/j.compstruct.2018.05.025.
[4] G.S. Dhaliwal and G.M. Newaz. Modeling low velocity impact response of carbon fiber reinforced aluminum laminates (CARALL). Journal of Dynamic Behavior of Materials, 2:181–193, 2016. doi: 10.1007/s40870-016-0057-3.
[5] G.-C. Yu, L.-Z. Wu, L. Ma, and J. Xiong. Low velocity impact of carbon fiber aluminum laminates. Composite Structures, 119:757–766, 2014. doi: 10.1016/j.compstruct.2014.09.054.
[6] M. Koc, F.O. Sonmez, N. Ersoy, and K. Cinar. Failure behavior of composite laminates under four-point bending. Journal of Composite Materials, 50(26): 3679–3697, 2016. doi: 10.1177/0021998315624251.
[7] A. Shojaei, G. Li, P.J. Tan, and J. Fish. Dynamic delamination in laminated fiber reinforced composites: A continuum damage mechanics approach. International Journal of Solid and Structures, 71:262–276, 2015. doi: 10.1016/j.ijsolstr.2015.06.029.
[8] J. Wang, R. Bihamta, T.P. Morris, and Y.-C. Pan. Numerical and experimental investigation of a laminated aluminum composite structure. Applied Composite Materials, 26:1177–1188, 2019. doi: 10.1007/s10443-019-09773-7.
[9] D. Zangani, M. Robinson, and A.G. Gibson. Energy absorption characteristics of web-core sandwich composite panels subjected to drop-weight impact. Applied Composite Materials, 15:139–156, 2008. doi: 10.1007/s10443-008-9063-5.
[10] Q.-R. Yang, J.-X. Liu, S.-K. Li, and T.-T. Wu. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite. Rare Metals, 35(12): 915–919, 2016. doi: 10.1007/s12598-014-0271-x.
[11] M. Kinawy, R. Butler, and G.W. Hunt. Bending strength of delaminated aerospace composites. Philosophical Transactions of The Royal Society, 370:1780–1797, 2012. doi: 10.1098/rsta.2011.0337.
[12] C. Kabogu, I. Mohagheghian, J. Zhou, Z. Guan, W. Cantwell, S. John, B.R.K. Blackman, A.J. Kinloch, and J.P. Dear. High-velocity impact deformation and perforation of fibre metal laminates. Journal of Materials Science, 53:4209–4228, 2018. doi: 10.1007/s10853-017-1871-2.
[13] X. Wang, X. Zhao, Z. Wu, Z. Zhu, and Z. Wang. Interlaminar shear behavior of basalt FRP and hybrid FRP laminates. Journal of Composite Materials, 50(8):1073–1084, 2016. doi: 10.1177/0021998315587132.
[14] C. Liu, D. Du, H. Li, Y. Hu, Y. Xu, J. Tian, G. Tao, and J. Tao. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Composites Part B: Engineering, 97:361–367, 2016. doi: 10.1016/j.compositesb.2016.05.003.
[15] A. Yapici and M. Metin. Effect of low velocity impact damage on buckling properties. Engineering, 1:161–166, 2009. doi: 10.4236/eng.2009.13019.
[16] J. Sarkar, T.R.G. Kutty, D.S. Wilkinson, J.D. Embury, and D.J. Lloyd. Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Materials Science and Engineering: A, 369(1-2):258–266, 2004. doi: 10.1016/j.msea.2003.11.022.
[17] 3M Automotive Division, 3M TM Structureal Adhesive Tape SAT1010M Technical Data Sheet, 3M, St. Paul, 2019.
[18] C.J. Corbett, L. Laszczyk, and O. Rebuffet. Assessing and validating the crash behavior of Securalex HS, a high-strength crashworthy aluminum alloy, using the GISSMO model. In 14th International LS-Dyna Users Conference, Detroit, 2016.
[19] G. Falkinger, N. Sotirov, and P. Simon. An investigation of modeling approaches for material instability of aluminum sheet metal using the GISSMO-model. In 10th European LS-DYNA Conference, Wurzburg, 2015.
[20] Livermore Softwar Technology Corporation (LSTC), LS-DYNA®KEYWORD USER'S MANUAL VOLUME II Material Models, 2012.
[21] A. Mostafa, K. Shankar, and E.V. Morozov. Experimental, theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with PVC foam core. Applied Composite Materials, 21:661–675, 2014. doi: 10.1007/s10443-013-9361-4.
[22] G.A.O. Davies and I. Guiamatsia. The problem of the cohesive zone in numerically simulating delamination/debonding failure modes. Applied Composite Materials, 19:831–838, 2012. doi: 10.1007/s10443-012-9257-8.
[23] F. Dogan, H. Hadavinia, T. Donchev, and P.S. Bhonge. Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact. Central European Journal of Engineering, 2(4):612–626, 2012. doi: 10.2478/s13531-012-0018-0.
[24] C. Hesch and P. Betsch. Continuum mechanical considerations for rigid bodies and fluid-structure interaction problems. Archive of Mechanical Engineering, 60(1):95–108, 2013. doi: 10.2478/meceng-2013-0006.
[25] J.J.C. Remmers and R. de Borst. Delamination buckling of fibre-metal laminates. Composites Science and Technology, 61(15):2207–2213, 2001. doi: 10.1016/S0266-3538(01)00114-2.
Go to article

Authors and Affiliations

Jifeng Wang
1
Tyler P. Morris
1
Reza Bihamta
1
Ye-Chen Pan
1

  1. General Motors Global Technical Center, 29360 William Durant Boulevard, Warren, Michigan 48092-2025, USA.
Download PDF Download RIS Download Bibtex

Abstract

The interface characteristics, bending and impact behavior, as well as fracture characteristics of stainless steel clad plates fabricated by vacuum hot rolling at different rolling temperatures of 1100°C, 1200°C and 1300°C are investigated in detail. The interface bonding strength is gradually increased with the increasing rolling temperature due to the sufficient diffusion behavior of alloy element. The bending toughness and impact toughness are gradually decreased, while the bending strength increase with the increase of the rolling temperature, which is attributed to mechanisms of matrix softening and interface strengthening at high rolling temperature. Due to the weak interface at 1100°C, the bending and impact crack propagation path was displaced by delamination cracks, which in turn lead to reduction in stress intensity of the main crack, playing an effective role in toughening the stainless steel clad plates. Moreover, the impact fracture morphologies of clad plates show a typical ductile-brittle transition phenomenon, which is attributed to the matrix softening behavior with the increasing rolling temperature.

Go to article

Authors and Affiliations

Q. An
K.Y. Fan
Y.F. Ge
B.X. Liu
J. He
S. Wang
C.X. Chen
P.G. Ji
O. Tolochko

This page uses 'cookies'. Learn more