Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The occurrence of gas confined in shales allows us to consider it as a component of the host rock. During drilling wells, the gas is released into the drilling fluid from finely ground gas-bearing rock particles. The amount of gas released can be determined on the basis of mud-gas logging; in addition, it is possible to determine the gas-content in shales expressed by the volume of gas released per mass unit of rock [m3/ton]. The gas content in the Ordovician and Silurian shales (Sasin formation and Jantar member respectively) in two selected wells in northern Poland was determined using this method. It has been found that clearly distinguishable, highly gas-bearing sections, which are separated by very poorly gas-bearing ones, can be determined in the well log. The increased gas content in shales can be observed in zones generally enriched in TOC. No direct correlation between TOC and gas-bearing capacity was found however, but the structure of TOC variability and the gas-bearing capacity described using variograms is identical. Correlations of the distinguished gas-bearing layers in the wells under consideration suggest a multi-lens or multi-layered reservoir model. The lack of natural boundaries in the shale gas reservoir means that they must be determined arbitrarily based on the assumed marginal gas-bearing capacity. In the case of several gas-bearing zones, numerous variants of interpretation are possible. In any case the low, best and high estimated resources may be evaluated, assigned to each borehole in the area with radii equal to the range of variogram of gas content in horizontal part of the well.

Go to article

Authors and Affiliations

Marek Nieć
ORCID: ORCID
Angelika Musiał
Justyna Auguścik
Download PDF Download RIS Download Bibtex

Abstract

The fused deposition modeling process of digital printing uses a layer-by-layer approach to form a three-dimensional structure. Digital printing takes more time to fabricate a 3D model, and the speed varies depending on the type of 3D printer, material, geometric complexity, and process parameters. A shorter path for the extruder can speed up the printing process. However, the time taken for the extruder during printing (deposition) cannot be reduced, but the time taken for the extruder travel (idle move) can be reduced. In this study, the idle travel of the nozzle is optimized using a bioinspired technique called "ant colony optimization" (ACO) by reducing the travel transitions. The ACO algorithm determines the shortest path of the nozzle to reduce travel and generates the tool paths as G-codes. The proposed method’s G-code is implemented and compared with the G-code generated by the commercial slicer, Cura, in terms of build time. Experiments corroborate this finding: the G-code generated by the ACO algorithm accelerates the FDM process by reducing the travel movements of the nozzle, hence reducing the part build time (printing time) and increasing the strength of the printed object.
Go to article

Authors and Affiliations

Sundarraj Sridhar
ORCID: ORCID
K Aditya
1
Ramamoorthi Venkatraman
ORCID: ORCID
M. Venkatesan
1
ORCID: ORCID

  1. School of Mechanical Engineering, SASTRA Deemed University, Tamil Nadu, Thanjavur-613401, India

This page uses 'cookies'. Learn more