Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of ammonium nitrate due to its high nitrogen content (> 26%) has made it the most utilized fertilizer in agricultural areas. However, being easily accessible with this feature encouraged its use for different purposes. Ammonium nitrate is usually produced with large tonnage (> 50 ton/h) and high cost (> $20 million) production processes. Therefore, any changes that can be made in the process must be applied in the process so that the result can be achieved easily without increasing the cost in any way. In this study, it is aimed to reduce the explosion sensitivity of ammonium nitrate used for explosive purposes in terrorist attacks. Thus, it was aimed to solve the problem by adding various chemicals to the ammonium nitrate production process so that it can only be used for agricultural purposes. For this purpose, the production process was examined by adding carboxymethyl cellulose and polyethylene glycol to the ammonium nitrate production process and the accuracy of the results was tested by instrumental analysis methods.

Go to article

Authors and Affiliations

Ahmet Ozan Gezerman
Download PDF Download RIS Download Bibtex

Abstract

Influence of magnetic field on parameters of normal detonation wave and cumulation process of cylindrical detonation wave in gaseous explosive mixture was examined. A review of applications of generalised Chester-Chisnell-Whitham (CCW) method used for analysis of implosion processes of detonation waves is presented.
Go to article

Authors and Affiliations

Jerzy Tyl
Download PDF Download RIS Download Bibtex

Abstract

The blasting technique is currently the basic excavation method in Polish underground copper mines. Applied explosives are usually described by parameters determined on the basis of specific standards, in which the manner and conditions of the tests performance were defined. One of the factors that is commonly used to assess the thermodynamic parameters of the explosives is the velocity of detonation. The measurements of the detonation velocity are carried out according to European Standard EN ­13631-14:2003 based on a point-to-point method, which determines the average velocity of detonation over a specified distance. The disadvantage of this method is the lack of information on the detonation process along the explosive sample. The other method which provides detailed data on the propagation of the detonation wave within an explosive charge is a continuous method. It allows to analyse the VOD traces over the entire length of the charge. The examination certificates of a given explosive usually presents the average detonation velocities, but not the characteristics of their variations depending on the density or blasthole diameter. Therefore, the average VOD value is not sufficient to assess the efficiency of explosives. Analysis of the abovementioned problem shows, that the local conditions in which explosives are used differ significantly from those in which standard tests are performed. Thus, the actual detonation velocity may be different from that specified by the manufacturer. This article presents the results of VOD measurements of a bulk emulsion explosive depending on the diameter of the blastholes carried out in a selected mining panel of the Rudna copper mine, Poland. The aim of the study was to determine the optimal diameter of the blastholes in terms of detonation velocity. The research consisted of diameters which are currently used in the considered mine.

Go to article

Authors and Affiliations

Piotr Mertuszka
Marcin Szumny
Krzysztof Fuławka
Jarosław Maślej
David Saiang
Download PDF Download RIS Download Bibtex

Abstract

In drill and blast tunneling method (D&B), non-electric detonators are the most commonly used initiation system. The constant development of excavation technology provides advanced tools for achieving better results of excavation. The research presented in this paper was focused on the attempt to evaluate the influence of electronic detonators, which nowadays are unconventional in tunnelling engineering, on the quality of the excavated tunnel contour. Based on the data form Bjørnegård tunnel in Sandvika, where electronic detonators were tested in five blasting rounds, detailed analysis of drilling was performed. The analysis was made based on the data from laser scanning of the tunnel. 103 profile scans were used for the analysis: 68 from non-electric detonators and 35 from electronic detonators rounds. The results analyzed in terms of contour quality showed that comparing to the results from rounds blasted with non-electric detonators, there was not significant improvement of the contour quality in rounds with electronic detonators.
Go to article

Bibliography


[1] D. Chapman, N. Metje, A. Stark, “Introduction to tunnel construction” Second edition. CRC Press. Taylor&Francis Group, LLC, 2018. https://doi.org/10.1201/9781315120164
[2] S. Zare, A. Bruland, J. Rostami, “Evaluating D&B and TBM tunnelling using NTNU prediction models”, Tunnelling and Underground Space Technology 59: pp. 55–64, 2016. https://doi.org/10.1016/j.tust.2016.06.012
[3] Norwegian Tunnelling Technology, Publication no. 23: pp. 13–16, pp. 99–113. Norwegian Tunnelling Society, Oslo, 2014.
[4] B. Maidl, M. Thewes, U. Maidl, “The handbook of tunnel engineering. Drill and blast tunneling” (chapter 5), WILEY‐VCH Verlag GmbH, 2013. https://doi.org/10.1002/9783433603499.ch5
[5] D. Zou, “Contour Blasting for Underground Excavation”. In: Theory and Technology of Rock Excavation for Civil Engineering. Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-1989-0_17
[6] C. Jimeno, E. L. Jimeno, F. J .A. Carcedo, T. V. Ramiro, “Drilling and Blasting of Rocks”, Taylor & Francis Group, 2017. https://doi.org/10.1201/9781315141435
[7] Y. Kim, A. Bruland, “Analysis and Evaluation of Tunnel Contour Quality Index”, Automation in Construction 99: pp. 223–237, 2019. https://doi.org/10.1016/j.autcon.2018.12.008
[8] A. Skłodowska, M. Mitew-Czajewska, “Contour quality in drill and blast method in Norwegian Tunnelling Method”, Inżynieria i Budownictwo 3/2017: pp. 159–161, 2017 (in Polish).
[9] H. L. Arora, D. V. Singh, “Overbreak in underground excavations-some key insights”, 12th International Symposium on Rock Fragmentation by Blasting, Luleå Sweden, 11–13 June 2018.
[10] J. A. Ibarra, N. H. Maerz, J. A. Franklin, “Overbreak and underbreak in underground openings Part 2: causes and implications”, Geotechnical and Geological Engineering, Vol. 14, No. 3: pp. 325–340, 1996. https://doi.org/10.1007/BF00421947
[11] E. Costamagna, C. Oggeri, P. Segarra, R. Castedo, J. Navarro, “Assessment of contour profile quality in D&B tunneling”, Tunnelling and Underground Space Technology 75: pp. 67–80, 2018. https://doi.org/10.1016/j.tust.2018.02.007
[12] G. M. Foderà, A. Voza, G. Barovero, F. Tinti, D. Boldini, “Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel – BBT”, Tunnelling and Underground Space Technology 105: pp. 103–475, 2020. https://doi.org/10.1016/j.tust.2020.103475
[13] H. K. Verma, N. K. Samadhiya, M. Singh, R. K. Goel, P. K. Singh, “Blast induced rock mass damage around tunnels”, Tunnelling and Underground Space Technology 71: pp. 149–158. 2018. https://doi.org/10.1016/j.tust.2017.08.019
[14] B. Zou, Z. Xu, J. Wang, Z. Luo, L. Hu, "Numerical investigation on influential factors for quality of smooth blasting in rock tunnels", Advances in Civil Engineering 2020: 9854313, 2020. https://doi.org/10.1155/2020/9854313
[15] P. Montagneux, P. Buffard Vercelli, “A new approach for qualifying blasting works in underground”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation – Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
[16] A. Mottahedi, F. Sereshki, M. Ataei, “Development of overbreak prediction models in drill and blast tunneling using soft computing methods”, Engineering with Computers 34: pp. 45–58, 2018. https://doi.org/10.1007/s00366-017-0520-3
[17] A. H. Salum, V. M. S. R. Murthy, “Optimizing blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes”, Tunnelling and Underground Space Technology 85: pp. 307–318, 2019. https://doi.org/10.1016/j.tust.2018.11.029
[18] E. Salas Garcia, A. Diaz Butron, “Tunnels: Blasting Optimization for advance 100%, with overbreak and underbreak lower than 5%. Work Cycle Quality, direct improvement of the efficiency and profitability of an underground work”, DNA-TEC-N-013-B-TUNNEL & MINING, 2019.
[19] A. F. McKown, “Perimeter controlled blasting for underground excavations in fractured and weathered rocks”, Environmental and Engineering Geoscience, xxiii (4): pp. 461–478, 1986. https://doi.org/10.2113/gseegeosci.xxiii.4.461
[20] N. Innaurato, R. Mancini, M. Cardu, “On the influence of rock mass quality on the quality of blasting work in tunnel driving”, Tunnelling and Underground Space Technology 13 (1): pp. 81–89, 1998. https://doi.org/10.1016/S0886-7798(98)00027-3
[21] S. Zare, “Prediction Model and Simulation Tool for Time and Cost of Drill and Blast Tunnelling”, Ph.D Thesis, Norwegian University of Science and Technology, Trondheim, 2007.
[22] K. Dey, V. M. S. R. Murthy, “Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class”, Tunnelling and Underground Space Technology 28: pp. 49–56, 2012. https://doi.org/10.1016/j.tust.2011.09.004
[23] H. Mohammadi, A. Azad, “Applying rock engineering systems approach for prediction of overbreak produced in tunnels driven in hard rock”, Geotechnical and Geological Engineering 38: pp. 2447–2463, 2020. https://doi.org/10.1007/s10706-019-01161-z
[24] H. Mohammadi, B. Barati, A. Y. Chamzini, “Prediction of blast-induced overbreak based on geo-mechanical parameters, blasting factors and the area of tunnel face”, Geotechnical and Geological Engineering 36: pp. 425–437, 2018. https://doi.org/10.1007/s10706-017-0336-3
[25] J. van Eldert, “Measuring of over-break and the excavation damage zone in conventional tunneling”, Proceedings of the World Tunnel Congress 2017: Surface challenges – Underground solutions [Internet], 2017.
[26] H. Jang, Y. Kawamura, U. Shinji, “An empirical approach of overbreak resistance factor for tunnel blasting”, Tunnelling and Underground Space Technology 92: 103060, 2019. https://doi.org/10.1016/j.tust.2019.103060
[27] A. Mottahedi, F. Sereshki, M. Ataei, “Overbreak prediction in underground excavations using hybrid ANFIS-PSO model”, Tunnelling and Underground Space Technology 80: pp. 1–9, 2018. https://doi.org/10.1016/j.tust.2018.05.023
[28] W. Zhang, J. Tang, D-S. Zhang, L. Zhang, Y. Sun, W-S. Zhang, “Experimental study on the joint application of innovative techniques for the improved drivage of roadways at depths over 1km: a case study”, Archives of Mining Sciences 65 (2020), 1: pp. 159–178, 2020. https://doi.org/10.24425/ams.2020.132713
[29] J. Pengfei, X. Zhang, X. Li, B. Jiang, B. Liu, H. Zhang, “Optimization analysis of construction scheme for large-span highway tunnel under complex conditions”, Archives of Civil Engineering 64(4): pp. 55–68, 2018. https://doi.org/10.2478/ace-2018-0044
[30] Q. Gao, W. Lu, Z. Leng, Z. Yang, Y. Zhang, H. Hu, "Effect of initiation location within blasthole on blast vibration field and its mechanism", Shock and Vibration 2019: 5386014, 2019. https://doi.org/10.1155/2019/5386014
[31] R. König, “Improvement of tunnel profile by means of electronic detonators”, Modern Trends in Tunnelling and Blast Design: pp. 123–130, 2000.
[32] H. P. Rossmanith, "The mechanics and physics of electronic blasting", Proceedings of the 29th ISEE Annual Conference on Explosives and Blasting Technique, Nashville, Tennessee, 2-5 February, vol. 1: pp. 83–101, 2003.
[33] H. P. Grobler, “Using Electronic Detonators to Improve All-Round Blasting Performances”, Fragblast, 7:1, pp. 1–12, 2003, https://doi.org/10.1076/frag.7.1.1.14061
[34] Y. Bleuzen, F. Monath, M. Quaresma, M. Joao, “Tunnel blasting in a sensitive environment using electronic detonators”, The Journal of Explosives Engineering, sept./oct.: 6–14, 2005.
[35] A. Fauske, “La construccion de tuneles urbanos en Noruega”, Rocas y Minerales, July: pp. 62–74, 1998.
[36] M. Stratmann, “Moderne Bohr-und Sprengverfahren beim Vortrieb des Mitholztunnel”, Nobel Hefte, 1/2: pp. 31–39, 1996.
[37] M. Yamamoto, T. Ichijo, Y. Tanaka, “Smooth blasting with the electronic delay detonator”, 21 st ISEE Int. Conf. on Explosives & Blasting Technique, International Society of Explosives Engineers: pp. 144–156, 1995. https://doi.org/10.1080/13855149909408030
[38] H. Fu, L. N. Y. Wong, Y. Zhao, Z. Shen, C. Zhang, Y. Li, “Comparison of Excavation Damage Zones Resulting from Blasting with Nonel Detonators and Blasting with Electronic Detonators”, Rock Mech Rock Eng 47: pp. 809–816, 2014. https://doi.org/10.1007/s00603-013-0419-2
[39] M. Cardu, A. Giraudi, P. Oreste, “A review of the benefits of electronic detonators”, REM: Revista Escola de Minas 66(3): pp. 375–382, 2013. https://doi.org/10.1590/S0370-44672013000300016
[40] Y. Kim, “Tunnel Contour Quality Index in a drill and blast tunnel” (Ph.D.). Norwegian University of Science and Technology, 2009.
[41] Manual 021. Road tunnels, Norwegian Public Roads Administration, NPRA Printing Center, Norway 2004. ISBN 82-7207-540-7
[42] V. Isheyskiy, J. A. Sanchidrián, “Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises”, Minerals 10: p. 925, 2020. https://doi.org/10.3390/min10100925
[43] J. Navarro, J.A. Sanchidrián, P. Segarra, R. Castedo, E. Costamagna, L.M. López, “Detection of potential overbreak zones in tunnel blasting from MWD data”, Tunnelling and Underground Space Technology 82: pp. 504–516, 2018. https://doi.org/10.1016/j.tust.2018.08.060
[44] Statens vegvesen. Håndbok R761 Prosesskode 1: standard beskrivelsestekster for vegkontrakter: hovedprosess 1-7 (1st ed.), Oslo, 2015.
[45] Digitalisation in Norwegian tunneling. Publication no 28, Nowregian Tunnelling Society, Oslo, Norway, 2019. ISBN 978-82-92641-45-3
[46] Q. Jiang, S. Zhong, P-Z. Pan, Y. Shi, H. Guo, Y. Kou, “Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No. 2 Mine”, Tunnelling and Underground Space Technology 97: pp. 103–237, 2020. https://doi.org/10.1016/j.tust.2019.103237
[47] H. Sun, Z. Xu, L. Yao, R. Zhong, L. Du, H. Wu, “Tunnel monitoring and measuring system using mobile laser scanning: design and deployment”, Remote Sensing 12(4): p. 730, 2020. https://doi.org/10.3390/rs12040730
[48] N. H. Maerz, J. A. Ibarra, J. A. Franklin, “Overbreak and underbreak in underground openings part 1: measurement using the light sectioning method and digital image processing”, Geotechnical & Geological Engineering 14: pp. 307–323, 1996. https://doi.org/10.1007/BF00421946
[49] S. Amvrazis, K. Bergmeister, R. W. Glatzl, “Optimizing the excavation geometry using digital mapping”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation – Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
[50] K. Voit, S. Amvrazis, T. Cordes, K. Bergmeister, “Drill and blast excavation forecasting using 3D laser scanning”, Geomechanic und Tunnelbau 10(3): pp. 298–316, 2017. https://doi.org/10.1002/geot.201600057
Go to article

Authors and Affiliations

Anna Monika Skłodowska
1 2
ORCID: ORCID
Monika Mitew-Czajewska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Now at: Instituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Borgo Grotta Gigante 42/C - 34010 - Sgonico, Italy & University of Trieste, Piazzale Europa 1, Trieste, Italy

This page uses 'cookies'. Learn more