Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Erosion and sedimentation have a very big influence on flooding. Floods are strongly influenced by land use and population activities that change the river’s physical condition, including erosion and sedimentation. The river upstream was very steep, and the downstream was narrowing and meandering with high rainfall recorded. This study analyses erosion, sedimentation, and its handling using the eco-hydraulic base. The method involves input rainfall data, river hydraulics, land use, watershed area, and land cover. The analysis of hydrology, hydraulics, land use, flood discharge, and eco-hydraulic, inundation height, vegetation diameter, velocity reduced, and riverbank width measured in five bridges cross-sections along the river. The eco-hydraulic compares the width of existing riverbanks and design, high inundation, and the vegetation diameter to minimise flood discharge. Erosion in the right cliff is 22.73% and the left cliff is 37.04%, land erosion was 225.83 Mg∙ha –1∙year –1. The river’s bottom is formed by rocks of 0.18–1.30 mm. The plantation land used around the Lae Kombih River grows mainly an oil palm with a diameter of 0.5–0.7 m. The riverbank design on 100 m for vegetation diameter of 0.1–1.0 m can retain flood discharge for five years return period up to 72.3%, resulting in discharge of 112.04209.43 m 3∙s –1. The largest erosion and sedimentation on the river border is Dusun Silak, so it is recommended to plant Vetiveria zizanioides, Ipomoea carnea and Bambusoideae. An inundation height of 0.9 m can be recommended to design an embankment to be used as flood mitigation.
Go to article

Authors and Affiliations

Ziana Ziana
1 2
ORCID: ORCID
Azmeri Azmeri
1 2
ORCID: ORCID
Alfiansyah Yulianur
1 2
ORCID: ORCID
Ella Meilianda
1 2
ORCID: ORCID

  1. Universitas Syiah Kuala, Doctoral Program, School of Engineering, Banda Aceh, 23111, Indonesia
  2. Universitas Syiah Kuala, Department of Civil Engineering, Banda Aceh, 23111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm). The calculated diameter depends on and is positively related to the roughness assumed in the model.
Go to article

Authors and Affiliations

Artur Rusowicz
Rafał Laskowski
Andrzej Grzebielec
Download PDF Download RIS Download Bibtex

Abstract

Carbon dioxide sequestration and its long-term immobilisation in biomass is recently an extremely significant problem. Its greatest reserves occur in forests growing all over the globe. A human being, through their conscious action, ought to affect, among other things, the amount of carbon dioxide discharged into the atmosphere and its rational management. Here, quite a good solution seems to be the immobilisation of CO2 in biomass of plants, and in particular, in trees, characterised by their longevity, which are used most frequently for that purpose.

Such carbon dioxide management allows for its several-decade immobilisation within living plants, while a further processing of wood mass allows for halting it for consecutive years in products manufactured. Additionally, in the case when within a selected land planted with trees the effluent irrigation is being carried out, simultaneous sewage treatment is also an advantage. By using plants characterised by intense increment in biomass within facilities, also biogens occurring in effluents may be effectively removed.

In the analysed case, sewage treatment consisted in entry of household sewage into a prepared surface which was previously subject to mechanical purification. All the sections were sown with grass mixture and plantings of poplar were used. Observations were made during the period of 17 years. The effluents entered onto the surface of the sections and the effluents outflowing from the facility were subject to a physicochemical analysis in order to determine the operational efficiency of a plant - soil treatment system. Also, a threefold inventory of a forest stand was made in order to determine the increment in trees.

The last inventory was made in 2014. Based on dendrological characteristics, the average volume of wood mass obtained from the land irrigated with effluents was assessed.

A rational management of effluents on the grounds without any central drainage allows for a parallel solution to some problems. First of all, purification of effluents in a natural environment by closing the matter cycle, and additionally contributing to the limitation of carbon dioxide emission by its halting in plant biomass.

Go to article

Authors and Affiliations

Katarzyna Pawęska
Krzysztof Kuczewski
Download PDF Download RIS Download Bibtex

Abstract

The elemental composition and morphology of aerobic granules in sequencing batch reactors (GSBRs) treating high-nitrogen digester supernatant was investigated. The investigation particularly focused on the effect of the number of anoxic phases (one vs. two) in the cycle and the dose of external organics loading (450 mg COD/(L·cycle) vs. 540 mg COD/(L·cycle)) on granule characteristics. Granules in all reactors were formed of many single cells of rod and spherical bacteria. Addition of the second anoxic phase in the GSBR cycle resulted in enhanced settling properties of the granules of about 10.6% and at the same time decreased granule diameter of about 19.4%. The study showed that external organics loading was the deciding factor in the elemental composition of biomass. At 540 mg COD/(L·cycle) the granules contained more weight% of C, S and N, suggesting more volatile material in the granule structure. At lower organics loadings granules had the higher diameter of granules which limited the diffusion of oxygen and favored precipitation of mineral compounds in the granule interior. In this biomass higher content of Mg, P and Ca, was observed.

Go to article

Authors and Affiliations

Agnieszka Cydzik-Kwiatkowska
Paulina Rusanowska
Katarzyna Głowacka
Download PDF Download RIS Download Bibtex

Abstract

Based on hydrodynamic data, Kato-Wen and Kunii-Levenspiel bubbling-bed model parameters, supplemented with assumptions characteristic for tested confined fluidised bed, were analysed. The calculated bubble diameters and the bed composition proved essential influence of inter-particle space of packed compacted component onto fluidisation character. The usability of the conducted model analysis was also confirmed. Finally, it can be concluded that Kunii-Levenspiel and Kato- Wen models with characteristic assumptions (for the tested bed) can be applied for calculation of the confined fluidised bed layer porosity. Discrepancies of ε f value, determined on the basis of the above mentioned bubbling-bed models do not exceed 8% of the error. The model parameters obtained from the matching the model relations to experimental data εf = f(u0) allow an analysis of the fluidisation character as well as gas velocity regime and the fluidised bed structural composition identification. A description of the regime of the process in which confined fluidised bed is characterised with an increase of mass and heat transfer rate is also possible using relation (17) derived in the present study.

Go to article

Authors and Affiliations

Piotr Zabierowski
Download PDF Download RIS Download Bibtex

Abstract

Electroflotation is used in the water treatment industry for the recovery of suspended particles. In this study the bubble formation and release of hydrogen bubbles generated electrolytically from a platinum cathode was investigated. Previously, it was found that both the growth rate and detachment diameter increased with increasing wire diameter. Conversely, current density had little effect on the released bubble size. It was also found that the detached bubbles rapidly increased in volume as they rose through the liquid as a result of decreasing hydrostatic pressure and high levels of dissolved hydrogen gas in the surrounding liquid. The experimental system was computationally modelled using a Lagrangian-Eulerian Discrete Particle approach. It was revealed that desorption of gaseous solutes from the electrolyte solution, other than hydrogen, may have a significant impact on the diameter variation of the formed bubbles. The simulation confirmed that liquid circulation, either forced or induced by the rising bubble plume, influences both the hydrogen supersaturation (concentration) in the neighbourhood of the electrode and the size of the resulting bubbles.

Go to article

Authors and Affiliations

Shahjahan K. A. Sarkar
Piotr M. Machniewski
Geoffrey M. Evans
Download PDF Download RIS Download Bibtex

Abstract

One of the important parameters describing pneumatic liquid atomisation is the air to liquid mass ratio (ALR). Along with the atomiser design and properties of the liquid it has extremely important influence on parameters of atomised liquid such as: mean droplet diameter, jet range and angle. Knowledge about real characteristics of an atomiser in this respect is necessary to correctly choose its operating parameters in industrial applications.

The paper presents results of experimental research of two-fluid atomisers with internal mixing built according to custom design. Investigated atomizers were designed for spraying a urea aqueous solution inside the power boiler combustion chamber. They are an important element of SNCR (selective non-catalytic reduction) installation which is used to reduce nitrogen oxides in a flue gas boiler. Obtained results were used by authors in further research, among others to determine the boundary conditions in the SNCR installation modeling.

The research included determining mean droplet diameter as a function of ALR. It has been based on the immersion liquid method and on the use of specialised instrumentation for determining distribution of droplet diameters in a spray – Spraytec by Malvern. Results obtained with both methods were later compared. The measurements were performed at a laboratory stand located at the Institute of Heat Engineering, Warsaw University of Technology. The stand enables extensive investigation of the water atomisation process.

Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Szczepan Młynarz
Download PDF Download RIS Download Bibtex

Abstract

The determination of the form of a probability density function (PDF3) of diameters for nodular particles by using a probability density function (PDF2), which form is empirically estimated from cross-sections of these nodules in a metallographic specimen, can be regarded as a special case of Wicksell's corpuscle problem (WCP). The estimation of the PDF3 for the nodular particles provides information about the kinetics of these particles nucleation, and so about the kinetics of their growth. This information is essential for building more accurate mathematical models of the alloy crystallization. In the paper there are presented two derivations of the methods used for the estimation of the PDF3 form. The first method bases on diameters received from a planar cross-section. The second one uses also data from the planar cross-section but not the diameters only chords. Both methods provide practical rules for the analysis of the empirical diameters’ and chord’s size distribution and allow to estimate the mean value of the external surface area of the particles.

Go to article

Authors and Affiliations

D. Gurgul
A. Burbelko
T. Wiktor
Download PDF Download RIS Download Bibtex

Abstract

The dynamic characteristics of the hydraulic leg are essential for determining the safe working range of roof supports operating in seams threatened by rock mass tremors. The systematic increase in the support of the hydraulic legs due to deteriorating geological-mining conditions has increased their diameters, which currently exceed 0.32 m for the 1st hydraulic stage. Evaluation of the dynamic properties of the roof support and the hydraulic legs are carried out by the Central Mining Institute through calculation methods as an implementation of the Regulation of the Minister of Energy on occupational safety and health. However, the issue of validating the calculations concerning natural scale studies still needs to be addressed. There are significant limitations in this area due to the technical and metrological capabilities of the testing stations. This paper presents an attempt to evaluate bench testing of a hydraulic leg with 0.32 m of the 1st hydraulic stage diameter for the validation of computational and test methods. Results of previous studies affecting the evaluation of the research methods used are also cited. According to the authors, the optimal and economically justifiable direction is to undertake model tests using numerical analyses and to validate these results, based on the study of models of hydraulic legs that are in use at a reduced scale. The construction of testing stations to ensure adequate dynamic loading for the support of the largest diameter hydraulic legs is currently not economically viable. The problem presented, however, is important given the constantly deteriorating geological-mining conditions and the associated threat of rock mass tremors.
Go to article

Authors and Affiliations

Kazimierz Stoiński
1
ORCID: ORCID
Marek Płonka
1
ORCID: ORCID
Janina Świątek
1
ORCID: ORCID

  1. Central Mining Institute (GIG ), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The blasting technique is currently the basic excavation method in Polish underground copper mines. Applied explosives are usually described by parameters determined on the basis of specific standards, in which the manner and conditions of the tests performance were defined. One of the factors that is commonly used to assess the thermodynamic parameters of the explosives is the velocity of detonation. The measurements of the detonation velocity are carried out according to European Standard EN ­13631-14:2003 based on a point-to-point method, which determines the average velocity of detonation over a specified distance. The disadvantage of this method is the lack of information on the detonation process along the explosive sample. The other method which provides detailed data on the propagation of the detonation wave within an explosive charge is a continuous method. It allows to analyse the VOD traces over the entire length of the charge. The examination certificates of a given explosive usually presents the average detonation velocities, but not the characteristics of their variations depending on the density or blasthole diameter. Therefore, the average VOD value is not sufficient to assess the efficiency of explosives. Analysis of the abovementioned problem shows, that the local conditions in which explosives are used differ significantly from those in which standard tests are performed. Thus, the actual detonation velocity may be different from that specified by the manufacturer. This article presents the results of VOD measurements of a bulk emulsion explosive depending on the diameter of the blastholes carried out in a selected mining panel of the Rudna copper mine, Poland. The aim of the study was to determine the optimal diameter of the blastholes in terms of detonation velocity. The research consisted of diameters which are currently used in the considered mine.

Go to article

Authors and Affiliations

Piotr Mertuszka
Marcin Szumny
Krzysztof Fuławka
Jarosław Maślej
David Saiang
Download PDF Download RIS Download Bibtex

Abstract

Under conditions of gravity flow, the performance of a distribution pipe network for drinking water supply can be measured by investment cost and the difference in real and target pressures at each node to ensure fairness of the service. Therefore, the objective function for the optimization in the design of a complex gravity flow pipe network is a multi-purpose equation system set up to minimize the above-mentioned two parameters. This article presents a new model as an alternative solution to solving the optimization equation system by combining the Newton–Raphson and genetic algorithm (GA) methods into a single unit so that the resulting model can work effectively. The Newton–Raphson method is used to solve the hydraulic equation system in pipelines and the GA is used to find the optimal pipe diameter combination in a net-work. Among application models in a complex pipe network consisting of 12 elements and 10 nodes, this model is able to show satisfactory performance. Considering variations in the value of the weighting factor in the objective function, opti-mal conditions can be achieved at the investment cost factor (ω1) = 0.75 and the relative energy equalization factor at the service node (ω2) = 0.25. With relevant GA input parameters, optimal conditions are achieved at the best fitness value of 1.016 which is equivalent to the investment cost of USD 56.67 thous. with an average relative energy deviation of 1.925 m.
Go to article

Bibliography

ABEBE A.J., SOLOMATINE D.P. 1998. Application of global optimization to the design of pipe networks. Proc. 3rd International Conference on Hydroinformatics. Copenhagen, August 1998. Balkema. Rotterdam p. 1–8.
AFSHAR M.H. 2006. Application of ant algorithm to pipe network optimization. Iranian Journal of Science & Technology. Transaction B, Engineering. Vol. 31. No. B5 p. 487–500.
AKLOG D., HOSOI Y. 2017. All-in-one model for designing optimal water distribution pipe networks. Journal of Engineering Drinking Water Engineering and Science. DOI 10.5194/dwes-10-33-2017.
ALI M.M., STOREY C. 1994. Modified controlled random search algorithms. International Journal of Computer Mathematics. Vol. 53. Iss. 3–4 p. 229–235.
BELLO A.D., WAHEED A., ALAYANDE, JOHNSON A.O., ISMAIL A, LAWAN U.F. 2015. Optimization of the designed water distribution system using MATLAB. International Journal of Hydraulic Engineering. Vol. 4(2) p. 37–44. DOI 10.5923/j.ijhe. 20150402.03.
GOLDBERG D.E. 1989. Genetic algorithms in search, optimization & machine learning. Addison-Wesley Publishing Co., Reading. ISBN 0201157675 pp. 432.
KADU M.S., GUPTA R., BHAVE P.R. 2008. Optimal design of water networks using a Modified Genetic Algorithm with reduction in search space. Journal of Water Resources Planning and Management. Vol. 134(2) p. 147–159.
KUMAR D., SUDHEER C.H., MATHUR S., ADAMOWSKI J. 2015. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing. Journal of Water and Land Development. No. 27 p. 29–40. DOI 10.1515/jwld-2015-0022.
MEMON K.K., NARUKLAR S.N. 2016. Review of pipe sizing optimization by Genetic Algorithm. IJIRST – International Journal for Innovative Research in Science & Technology. Vol. 3. Iss. 06 p. 138–141.
MOOSAVIAN N., JAEFARZADEH R. 2014. Hydraulic analysis of water supply networks using a modified Hardy Cross method. International Journal of Engineering, Transactions B: Applications. Vol. 27. No. 9 p. 1331–1338. DOI 10.5829/idosi. ije.2014.27.09c.02.
MTOLERA I., HAIBIN L., YE L., FENG S.B., XUE D., YI M. 2014. Optimization of tree pipe networks layout and size using Particle Swam Optimization. WSEAS Transactions on Computers. Vol. 13 p. 219–230.
PRICE W.L. 1983. Global optimization by controlled random search. Journal of Optimization Theory & Applications. Vol. 40 p. 333–348. DOI 10.1007/BF00933504.
RAJABPOUR R., TALEBBEYDOKHTI N. 2014. Simultaneous layout and pipe size optimization of pressurized irrigation networks. Basic Research Journal of Agricultural Science and Review. Vol. 3(12) p. 131–145.
SALEH C., SULIANTO 2011. Optimization diameter of pipe at fresh water network system. Journal of Academic Research International. Vol. 01. Iss. 02. No. 2 p. 103–109.
SÂRBU I. 2010. Optimization of water distribution networks. Proceeding of the Romanian Academy. Ser. A. Vol. 11. No. 4 p. 330–339.
SÂRBU I. 2011. Nodal analysis models of looped water distribution networks. ARPN Journal of Engineering and Applied Sciences. Vol. 6. No. 8 p. 115–125.
SHIVATAVA M., PRASAD V., KHARE R. 2015. Multi-objective optimization of water distribution system using particle swarm optimization. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Vol. 12. Iss. 6. Ver. I p. 21–28.
SOETOPO W., SUHARDJONO, ANDAWAYANTI U., SAYEKTI R.W., ISMOYO J. 2018. The comparison study for the models of reservoir release rule for irrigation. Case study: Sutami reservoir. Journal of Water and Land Development. No. 36 p. 153–160. DOI 10.2478/jwld-2018-0015.
SOLOMATINE D.P. 1998. Genetic and other global optimization algorithms – compareson and use in calibration problems. Proc. 3rd Intern. Conference on Hydroinformatics Copenhagen, August 1998. Balkema, Rotterdam p. 1021–1028.
SOMAIDA M., ELZAHAR M., SHARAAN M. 2011. A suggestion of optimization process for water pipe networks design. International Conference on Environment and BioScience IPCBEE. Vol. 21 p. 68–73.
SULIANTO 2015a. Programasi linier untuk pencarian diameter pipa optimal pada sistem jaringan pipa distribusi air bersih [Linear programming for search optimum diameter pipe in network pipe open in water supply system]. Journal of Media Teknik Sipil. Vol. 13. No. 1 p. 91–98.
SULIANTO 2015b. Pencarian diameter optimum pada sistim jaringan pipa terbuka dengan algoritma genetik. Di: Prosiding Seminar Nasional Teknik Sipil [The search optimum diameter on open network pipe system using GA. In: Proceeding National Conference Civil Engineering]. Program Studi Pasca Sarjana Teknik Sipil dan Perencanaan XI 2015 p. 191–204.
SULIANTO, BISRI M., LIMANTARA L.M., SISINGGIH D. 2018. Automatic calibration and sensitivity analysis of DISPRIN model parameters: A case study on Lesti watershed in East Java, Indonesia. Journal of Water and Land Development. No. 37 p. 141–152. DOI 10.2478/jwld-2018-0033.

Go to article

Authors and Affiliations

Sulianto
1
ORCID: ORCID
Ernawan Setiono
1
ORCID: ORCID
I Wayan Yasa
2
ORCID: ORCID

  1. University of Muhammadiyah Malang, Faculty of Engineering, Jl. Raya Tlogomas No. 246, 65114, Malang, Indonesia
  2. Mataram University, Faculty of Engineering, Mataram, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Since the establishment of the People’s Republic of China, the country has made significant progress in tunnel construction, transforming from a “weak tunnel nation” to a “strong tunnel nation.” As of 2022, China has undertaken more than 60 projects involving large-diameter shield tunnels. To promote the sustainable and high-quality development of large-diameter shield tunnels in China, this article systematically reviews the development history of large-diameter shield tunnels, summarizes the current projects in the country, and addresses various aspects such as construction technology management, design technology, ecological conservation, safety, and intelligence. The article also provides suggestions for the development of large-diameter shield tunnels in China, with the aim of playing a proactive role in promoting their advancement.
Go to article

Authors and Affiliations

Wei Qiu
1
ORCID: ORCID
Xin Dong
1
ORCID: ORCID
Linjian Su
1
ORCID: ORCID
Xingwei Xue
2
ORCID: ORCID
Kexin Zhang
2
ORCID: ORCID

  1. Engineering Department, Guangzhou Expressway Co., LTD, China
  2. School of Transportation and Surveying Engineering, Shenyang Jianzhu University, China
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the current scientific and practical problems of planning irrigation with phytomonitoring methods. In particular, it focuses on the methodological approach to tomato irrigation planning. The field experiment was laid by the method of systematic placement of elementary plots in four replicates. The PM-11Z phytomonitor was used to determine changes in stem diameter, juice flow, leaf temperature, and fruit growth.
On the basis of the experimental studies, parameters are defined for the start of watering with the positive, negative and zero water balance of the plant. It has been proved that when vegetative irrigation is planned with a positive plant water balance, the daily amplitude of stem contraction ( DCA) and the trend of the sap flow rate should be analysed. A fall in two consecutive morning stem diameter peaks ( MXSD) indicates a negative plant water balance, which is the starting point for watering. To assign watering with a zero water balance, it is necessary to use information from the fruit growth sensor and the juice flow rate. A decrease in their indications marks the need for the next watering.
Go to article

Authors and Affiliations

Andrii Shatkovskyi
1
ORCID: ORCID
Olexandr Zhuravlov
1
ORCID: ORCID
Volodymyr Vasiuta
1
ORCID: ORCID

  1. Institute of Water Problems and Land Reclamation of NAAS, 37, Vasyl’kivs’ka str., Kyiv, 03022 Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.

Go to article

Authors and Affiliations

Krzysztof Skorupski
Download PDF Download RIS Download Bibtex

Abstract

Providing roughness is an effective method to heat fluids to high temperature. Present paper make use of concave dimple roughness on one and three sides of roughened ducts aimed at determining rise in heat transfer and friction of three sides over one side roughened duct. Three sides roughened duct produces high heat transfer compared to one side roughened. Results are shown as a rise in Nusselt number and friction factor of three sides over one side roughened duct. Experimental investigation was conducted under actual outdoor condition at National Institute of Technology Jamshedpur, India to test various sets of roughened collectors. Roughness parameter varied as relative roughness pitch 8–15, relative roughness height 0.018–0.045, dimple depth to diameter ratio 1–2, Reynolds number 2500–13500 at fixed aspect ratio (width/hight) 8. Highest enhancement in Nusselt number for varying relative roughness pitch, height, and diameter ratio was respectively found as 2.6 to 3.55 times, 1.91 to 3.42 times and 3.09 to 3.94 times compared to one side dimple roughened duct. Highest rise in friction for three sides over one side roughened duct for these varying parameters was respectively found as 1.62 to 2.79 times, 1.52 to 2.34 times and 2.21 to 2.56 times. To visualize the effect of roughness parameter on heat transfer and friction factor, variation in Nusselt number and friction factor for varying roughness parameters with Reynolds number is shown.

Go to article

Authors and Affiliations

Vikash Kumar
Download PDF Download RIS Download Bibtex

Abstract

Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

Go to article

Authors and Affiliations

A. Zakrzewski
A. Pięta
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

The evolution of microstructured optical fibers with hexagonal array (H-MOFs) of air-holes rooted in the background of undoped silica has led to the realization of an ideal host for encouraging and technologically entitled optical properties. We focus to explore the divergence of radiation into free space from the end-facet of solid-core H-MOFs by using the improved theoretical model. Also, we investigated the wavelength dependence of beam divergence angle for principal core mode of H-MOFs under step-index fiber approximation (SIFA). Experimental results have been included for comparison.

Go to article

Authors and Affiliations

D.K. Sharma
S.M. Tripathi
Download PDF Download RIS Download Bibtex

Abstract

The homogeneity of an immiscible liquid–liquid system was investigated in a baffled vessel agitated by a Rushton turbine. The dispersion homogeneity was analyzed by comparing Sauter mean diameters and drop size distribution (DSD) determined in different measured regions for various impeller speeds. The sizes of droplets were obtained by the in-situ measurement technique and by the Image Analysis (IA) method. Dispersion kinetics was successfully fitted with Hong and Lee (1983) model. The effect of intermittency turbulence on drop size reported by Bałdyga and Podgórska (1998) was analyzed and the multifractal exponent ������ was evaluated.
Go to article

Bibliography

Bałdyga J., Bourne J.R., 1993. Drop breakup and intermittent turbulence. J. Chem. Eng. Japan, 26, 738–741. DOI: 10.1252/jcej.26.738.

Bałdyga J., Bourne J.R., 1995. Interpretation of turbulent mixing using fractals and multifractals. Chem. Eng. Sci., 50, 381–400. DOI: 10.1016/0009-2509(94)00217-F.

Bałdyga J., PodgórskaW., 1998. Drop break-up in intermittent turbulence. Maximum stable drop size and transient sizes of drops. Can. J. Chem. Eng., 76, 456–470. DOI: 10.1002/cjce.5450760316.

Bucciarelli E., Formánek R., Kysela B., Fort I., Šulc R., 2019. Dispersion kinetics in mechanically agitated vessel. EPJ Web Conf., 213, 02008. DOI: 10.1051/epjconf/201921302008.

Chen H.T., Middleman S., 1967. Drop size distribution in agitated liquid–liquid systems. AIChE J., 13, 989–995. DOI: 10.1002/aic.690130529.

Formánek R., Kysela B., Šulc R., 2019a. Drop size evolution kinetics in a liquid–liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans., 74, 1039–1044. DOI: 10.3303/CET1974174.

Formánek R., Kysela B., Šulc R., 2019b. Image analysis of particle size: effect of light source type. EPJ Web Conf., 213, 02021. DOI: 10.1051/epjconf/201921302021.

Formánek R., Šulc R., 2019c. Dispersion of immiscible liquid–liquid system in a vessel agitated by a Sawtooth impeller: Drop size time evolution. Proceedings of the International Conference Experimental Fluid Mechanics 2019. Franzensbad, Czech Republic, 19–22 November 2019, 136–139.

Formánek R., Šulc R., 2020. The liquid–liquid dispersion homogeneity in a vessel agitated by a high-shear sawtooth impeller. Processes, 8, 1012. DOI: 10.3390/pr8091012.

Hinze J.O., 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J., 1, 289–295. DOI: 10.1002/aic.690010303.

Hong P.O., Lee J.M., 1983. Unsteady-state liquid–liquid dispersions in agitated vessels. Ind. Eng. Chem. Process Des. Dev., 22, 130–135. DOI: 10.1021/i200020a021.

Jasikova D., Kotek M., Kysela B., Sulc R., Kopecky V., 2018. Compiled visualization with IPI method for analysing of liquid–liquid mixing process. EPJ Web Conf., 180, 02039. DOI: 10.1051/epjconf/201818002039.

Khalil A., Puel F., Chevalier Y., Galvan J.-M., Rivoire A., Klein J.-P., 2010. Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis. Chem. Eng. J., 165, 946–957. DOI: 10.1016/j.cej.2010.10.031.

Kolmogorov A.N., 1949. On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR, 66, 825–828. Kraume M., Gäbler A., Schulze K., 2004. Influence of physical properties on drop size distribution of stirred liquid–liquid dispersions. Chem. Eng. Technol., 27, 330–334. DOI: 10.1002/ceat.200402006.

Maaß S., Kraume M., 2012. Determination of breakage rates using single drop experiments. Chem. Eng. Sci., 70, 146–164. DOI: 10.1016/j.ces.2011.08.027.

Malík M., Primas J., Kotek M., Jašíková D., Kopecký V., 2019. Mixing of two immiscible phases measured by industrial electrical impedance tomography system. Mech. Ind., 20, 707. DOI: 10.1051/meca/2019081.

Maluta F., Montante G., Paglianti A., 2020. Analysis of immiscible liquid–liquid mixing in stirred tanks by Electrical Resistance Tomography. Chem. Eng. Sci., 227, 115898. DOI: 10.1016/j.ces.2020.115898.

Pacek A.W., Chamsart S, Nienow A.W., Bakker A., 1999. The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci., 54, 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.

Rodgers T.L., Cooke M., 2012. Correlation of drop size with sheat tip speed. 14��ℎ European Conference on Mixing. Warszawa, Poland, 10–13 September 2012, 407–412.

Šulc R., Ditl P., Fort I., Jašíkova D., Kotek M., Kopecký V., Kysela B., 2017. Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region. EPJ Web Conf., 143, 02120. DOI: 10.1051/epjconf/201714302120.

Šulc R., Pešava V., Ditl P., 2015. Local turbulent energy dissipation rate in a vessel agitated by a Rushton turbine. Chem. Process Eng., 36, 135–149. DOI: 10.1515/cpe-2015-0011.

Zhou G, Kresta S.M., 1998. Evolution of drop size distribution in liquid–liquid dispersions for various impellers. Chem. Eng. Sci., 53, 2099–2113. DOI: 10.1016/S0009-2509(97)00437-5.
Go to article

Authors and Affiliations

Roman Formánek
1
Radek Šulc
1

  1. Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 160 00 Prague, Czech Republic

This page uses 'cookies'. Learn more