Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The solid dielectrics used in the capacitors exhibit rather high-frequency relaxations. This means that in the radio-frequency range, the capacitors exhibit a constant capacity. When a liquid crystal is put into the capacitors, it is observed that in the radio-frequency range the capacity changes (decreases with frequency). This is due to the fact that liquid crystals exhibit relaxation in the radio-frequency range. In this paper, the formulas for the electric response of a low-frequency RC filter with liquid crystal characterized by complex electric permittivity are derived. One Debye-type relaxation is assumed in the calculations. The influence of strengths and relaxation time (frequency) of relaxation mode in liquid crystal on the electric response of low-frequency filters is discussed.
Go to article

Bibliography

  1. Relaxation Phenomena. (eds. Wróbel, S & Haase, W) (Springer-Verlag Berlin, 2003). https://doi.org/10.1007/978-3-662-09747-2
  2. Dunmur, D. & Toriyama, K. Dielectric propreties in Physical properties of liquid crystals (eds. Demus, D., Goodby, J., Gray, G. , Spiess, H. W. & Vill, V.) 129–150 (Wiley-VCH Weinheim, 1999)
  3. Lagerwall, S. Ferroelectric and Antiferroelectric Luquid Crystals. (Wiley-VCH Weinheim 1999)
  4. Buivydas, M. et al. Collective and non-collective excitations in antiferroelectric and ferrielectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Cryst. 23, 723–739 (1997). https://doi.org/10.1080/026782997208000
  5. Holtzer, A. The Collected Papers of Peter J. W. Debye. (Interscience, New York – London, 1954). https://doi.org/10.1002/pol.1954.120137203
  6. Cole, K. & Cole, R. H. Dispersion and absorption in dielectrics. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
  7. Davidson, D. & Cole, R. H. Dielectric relaxation in glycerol, propylene glycol and n-propanol. J. Chem. Phys. 19, 1484–1491 (1951). https://doi.org/10.1063/1.1748105
  8. Havriliak, S. & Negami, S. A complex plane representation of diele-ctric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967). https://doi.org/10.1016/0032-3861(67)90021-3
  9. Perkowski, P. Dielectric spectroscopy of liquid crystals. Theoretical model of ITO electrodes influence on dielectric measurements. Opto-Electron. Rev. 17, 180–186 (2009). https://doi.org/10.2478/s11772-008-0062-8
  10. Perkowski, P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements, Opto-Electron. Rev. 20, 79–86 (2012). https://doi.org/10.2478/s11772-012-0004-3
  11. Perkowski, P. The parasitic effects in high-frequency dielectric spectroscopy of liquid crystals – the review. Crys. 48, 767–793 (2021). https://doi.org/10.1080/02678292.2020.1852619
  12. Fréedericksz, V. & Repiewa, A. Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten. Zeitschrift für Physik 42, 532–546 (1927). https://doi.org/10.1007/BF01397711 [in German]
  13. Mrukiewicz, M., Perkowski, P., Strzeżysz, O., Węgłowska, D. & Piecek. Pretransitional effects in a mesogenic mixture under an electric field, Phys. Rev. E. 97, 052704 (2018). https://doi.org/10.1103/PhysRevE.97.052704
  14. Li, J. et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Adv. 7, abf5047 (2021). https://doi.org/10.1126/sciadv.abf5047
  15. Chen, X., Korblova, E., Dong, D. & Clark, N. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Natl. Acad. Sci. USA (PNAS) 117, 14021–14031 (2020). https://doi.org/10.1073/pnas.2002290117
  16. Mandle, R. , Cowling, S. J. & Goodby, J. W. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem. Eur. J. 23, 14554–14562 (2017). https://doi.org/10.1002/chem.201702742
  17. Mandle, R. , Cowling, S. J. & Goodby, J. W. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys. Chem. Chem. Phys. 19, 11429–11435 (2017). https://doi.org/10.1039/C7CP00456G
  18. Sebastián, N. et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Rev. Lett. 124, 037801 (2020). https://doi.org/10.1103/PhysRevLett.124.037801
Go to article

Authors and Affiliations

Paweł J. Perkowski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The five-layer Aurivillius type structures with the general chemical formula Bi5Fe2-xMnxTi3O18, where x = 0, 0.6, 1.2 have been synthesized and tested. The SEM studies showed a significant increase in grain size in the manganese-modified Aurivillius type ceramic material (for x = 1.2). The increase in the amount of manganese ions (Mn3+) affects the decrease in the temperature at which the relaxation processes take place. Namely from 525 K (1 kHz) and 725 K (1 MHz) for BFT sample (x = 0) to 355 K (1 kHz) and 565 K (1 MHz) for BFM12T sample (x = 1.2). Using the Arrhenius’s law and the Vogel-Fulcher’s relationship the activation energy (Ea) and the relaxation time have been calculated. The value of Ea increases with the increase of the Mn amount from 0.737 eV (for x = 0) to 0.915 eV (for x = 1.2).

Go to article

Authors and Affiliations

J.A. Bartkowska
D. Bochenek
Download PDF Download RIS Download Bibtex

Abstract

Dielectric properties of a nematic liquid crystal (NLC) mixture ZhK-1282 were investigated in the frequency range of 102–106 Hz and a temperature range of −20 to 80°С. On the basis of the Debye’s relaxation polarization model dielectric spectra of temperature dependence of the orientational relaxation time τ and the dielectric strength δe were numerically approximated at the parallel orientation of a molecular director relative to alternating electric field. Influence of ester components in the mixture plays crucial role in relaxation processes at low temperature and external field frequency. The activation energy of the relaxation process of a rotation of molecules around their short axis was measured in a temperature interval of −20 to  +15°С in which the dispersion of a longitudinal component of the dielectric constant takes place. The energy of potential barrier for polar molecules rotation in the mesophase was calculated. The value of the transition entropy from the nematic to isotropic phase was obtained from this calculation. The values of the coefficient of molecular friction and rotational diffusion were obtained by different methods. The experimental data obtained are in a satisfactory agreement with the existing theoretical models.

Go to article

Authors and Affiliations

D.N. Chausov
А.D. Kurilov
V.V. Belyaev
S. Kumar

This page uses 'cookies'. Learn more