Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article shows the methodology and calculation procedures based on Lagrange polynomial interpolation which were used to determine standard performance characteristics of the Polish production engine, type ANDORIA 4CTi90-1BE6. They allow to simplify the experimental research by maintaining a minimum number of measurement points and estimating the remaining data in an analytical way. The methods presented are convenient when it comes to the practical side because they eliminate the need for exploration of mathematical equations describing the various curves, which can be cumbersome and time consuming in the case of nonautomated accounts. The results of analysis were applied to actual experimental results, indicating sufficient accuracy of the resulting approximations. As a result, procedures may be used in bench testing of a similar profile, especially with repeated cycles of the experiment, such as optimization of operating parameters of combustion engines.

Go to article

Authors and Affiliations

Tomasz Stoeck
Karol Franciszek Abramek
Download PDF Download RIS Download Bibtex

Abstract

Developed a method of a complex estimation of efficiency of the diesel particulate filter according to three criteria: the counting, the surface and the mass concentration of particulate matter considering their dispersion composition. The results of efficiency evaluation of a diesel particulate filter of freight car are presented using the proposed technique.
Go to article

Authors and Affiliations

A. Polivyanchuk
Download PDF Download RIS Download Bibtex

Abstract

In order to recover the low grade waste heat and increase system fuel economy for main engine 10S90ME-C9.2-TII(part load, exhaust gas bypass) installed on a 10000 TEU container ship, a non-cogeneration and single-pressure type of waste heat recovery system based on organic Rankine cycle is proposed. Organic compound candidates appropriate to the system are analyzed and selected. Thermodynamic model of the whole system and thermoeconomic optimization are performed. The saturated organic compound vapor mass flow rate, net electric power output, pinch point, thermal efficiency and exergy efficiency varied with different evaporating temperature are thermodynamically analyzed. The results of thermodynamic and thermoeconomic optimization indicate that the most appropriate organic compound candidate is R141b due to its highest exergy efficiency, biggest unit cost benefit and shortest payback time.

Go to article

Authors and Affiliations

Zheshu Ma
Yong Zhang
Junhua Wu
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an experimental method was utilized to investigate acoustic emission (AE) characteristics and to identify emission sources of the nonlinear AE signal on the cylinder body of a large low-speed two-stroke marine diesel engine in real-working conditions on the sea in misfiring and normal firing modes. Measurements focused on the AE signal acquired in a transverse direction in low-frequency (20–80 kHz), medium-frequency (100–400 kHz) and high-frequency (400–900 kHz) ranges. The collected signals were analyzed on the crank angle and crank angle-frequency domains. The results showed that all potential sources of the nonlinear AE signal could be mapped in the low-frequency range. However, only the AE signal caused by the combustion process at around the top dead center could be well-observed in the medium-to-high-frequency range. The findings also revealed that in normal firing conditions, the AE energy radiated by friction in the down-stroke period was smaller than in the up-stroke process due to gas-sealing forces. Moreover, the AE energy in the misfiring condition was higher than in the normal firing state. These outcomes considerably contributed understandings to characteristics of friction and wear around the mid-stroke area of the cylinder on a two-stroke marine diesel engine.
Go to article

Authors and Affiliations

Xuan Thin Dong
1
Manh Hung Nguyen
1

  1. Vietnam Maritime University Hai Phong, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The paper suggests an improved method of active power distribution among the gas-diesel generators operating in parallel; the method involves the control of torque and the angular positions of their rotors. The use of the suggested approach to the solution of the active power distribution task in the presence of instability of drive motor speed provides the increase of autonomous power system operation efficacy and rising the power unit’s performance. The authors analyzed the causes of generation of low-frequency fluctuations of generator drive engine speed; in autonomous electric power systems, gas diesel generators are increasingly used as such generator drive engines. It is suggested to use the developed method and structure of the optical device for control of rotation period and the measurement of the generator rotor angle position characterized with high accuracy, as the sensor. The authors developed a schematic diagram of active power distribution among the generators operating in parallel, which uses the cross feedback for gas-powered diesel engine shafts momentum and the generator rotor angle position. They obtained experimental results confirming the efficiency of the suggested active power distribution method and its practical implementation.
Go to article

Bibliography

[1] Kamala, Srinivasarao, Chauhan, Priyesh, Panda, Sanjib, Wilson, Gary, Liu, Xiong, & Gupta, Amit. (2015). Optimal scheduling of diesel generators in offshore support vessels to minimize fuel consumption. In Proc. of the IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan, 4726–4231. https://doi.org/10.1109/IECON.2015.7392838
[2] J.M. Prousalidis, G.J. Tsekouras, F. Kanellos. (2011). New challenges emerged from the development of more efficient electric energy generation units. In Proc. IEEE Electric Ship Technologies Symposium (ESTS). Alexandria, Virginia, 374–381. https://doi.org/10.1109/ESTS.2011.5770901
[3] A. Boretti, (2019). Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines. Frontiers in Mechanical Engineering, 5 (64), 1–15. https://doi.org/10.3389/fmech.2019.00064
[4] V.M. Ryabenkij, A.O. Ushkarenko, V.I. Voskoboenko, (2008). Issledovanie avtokolebatelnykh proczessov chastoty napryazheniya gazodizel-generatorov. Sbornik nauchnykh trudov NUK, 4, 113–118.
[5] G. Evangelos, Giakoumis. (2016). Review of Some Methods for Improving Transient Response in Automotive Diesel Engines through Various Turbocharging Configurations. Frontiers in Mechanical Engineering, 2, 1–18. https://doi.org/10.3389/fmech.2016.00004
[6] V.M. Ryabenkij, A.O. Ushkarenko, V.I. Voskoboenko, (2009). Oczenka neravnomernosti raspredeleniya aktivnoj moshhnosti mezhdu generatorami pri parallelnoj rabote. Tekhnichna elektrodinamika, Tem. Vipusk, 3, 76–79.
[7] Adem, Celika, Mehmet, Yilmazb, & Omer Faruk, Yildizc. (2020). Improvement of diesel engine startability under low temperatures by vortex tubes. Energy Reports, 6, 17–27. https://doi.org/10.1016/j.egyr.2019.11.027
[8] Ra, Youngchul, Reitz, Rolf, Mcfarlane, Joanna, & Daw, Stuart. (2008). Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and BioDiesel Fuels. SAE International Journal of Fuels and Lubricants, 1, 703–718. https://doi.org/10.4271/2008-01-1379
[9] Yasin, Karagoz, Tarkan, Sandalci, Umit O, Koylu, Ahmet Selim, Dalkilic, & Somchai, Wongwises. (2016). Effect of the use of natural gas-diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine. Advances in Mechanical Engineering, 8 (4), 1–13. https://doi.org/10.1177/1687814016643228
[10] Yoshihiko, Oishi, Riky Stepanus, Situmorang, Rio Arinedo, Sembiring, Hideki, Kawai, & Himsar, Ambarita. (2019). Performance, rate of heat release, and combustion stability of dual fuel mode in a small diesel engine. Energy Science and Engineering, 7, 1333–1351. https://doi.org/10.1002/ese3.352
[11] Irfan, Muhammad, Ermanu, A.H., Suhardi, Diding, Kasan, N., Effendy, Machmud, Pakaya, Ilham, & Faruq, Amrul. (2018). A design of electrical permanent magnet generator for rural area wind power plant. International Journal of Power Electronics and Drive Systems, 9, 269–275. https://doi.org/10.11591/ijpeds.v9n1.pp269-275
[12] Boonyang, Plangklang, Sittichai, Kantawong, & Akeratana, Noppakant. (2013). Study of Generator Mode on Permanent Magnet Synchronous Motor (PMSM) for Application on Elevator Energy Regenerative Unit (EERU). Energy Procedia, 34, 382–389. https://doi.org/10.1016/j.egypro.2013.06.766
[13] A. Ablesimov, V. Yatskovsky, (2013). Stability of automatic control systems. Electronics and Control Systems, 4 (38), 54–59. https://doi.org/10.18372/1990-5548.38.7278
[14] Cheikh, Mansoura, Abdelhamid, Bounifa, Abdelkader, Arisa, & Françoise, Gaillardb. (2001). Gas-Diesel (dual-fuel) modeling in diesel engine environment. International Journal of Thermal Sciences, 40 (4), 409–424. https://doi.org/10.1016/S1290-0729(01)01223-6
[15] V. Ryabenkiy, O. Ushkarenko, (2012). Optimization of the Controller`S Parameters of the Gas-diesel Generator Unit. In Proc. International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012). Lviv, Ukraine, 460–461.
[16] Haes Alhelou, Hassan, Hamedani, Golshan, Mohamad, Esmail, Njenda, Takawira, & Siano, Pierluigi. (2019). A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 12, 1–28. https://doi.org/10.3390/en12040682.
[17] V. Ryabenkiy, A. Ushkarenko, Al-Suod, Mahmoud Mohammad. (2012). Reduction of Frequency Oscillation of the Gas-diesel Generator Units. In Proc. International Conference Modern Problems of Radio Engineering, Telecommunications, and Computer Science (TCSET’2012). Lviv, Ukraine, 447–448.
[18] Mahmoud Mohammad Salem, Al-suod, A.O. Ushkarenko, O.I. Dorogan, (2015). Optimization of the structure of diesel-generator units of ship power system. International Journal of Advanced Computer Research, 5 (18), 68–74.


Go to article

Authors and Affiliations

Abdullah M. Eial Awwad
1
Mahmoud M. S. Al-Suod
1
Alaa M. Al-Quteimat
1
O.O. Ushkarenko
2
Atia AlHawamleh
1

  1. Department of Electrical Power Engineering and Mechatronics, Tafila Technical University, Tafila, Jordan
  2. Department of Electrical and Electronics Engineering, Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Diesel engine components in the combustion chamber have been exposed to cyclic loadings under environmental effects, including high temperatures and corrosive fluids. Therefore, knowing the corrosion-fatigue behavior of materials is essential for designer engineers. In this article, pure fatigue and corrosion-fatigue behaviors of the piston aluminum alloy have been experimentally investigated. For such an objective, as-cast and pre-corrosive standard samples were tested by the rotary bending fatigue machine, under 4 stress levels. Some specimens were exposed to the corrosive fluid with 0.00235 % of the sulfuric acid for 100 and 200 hours. The results showed higher weight losses for 200 hours immersion times. As another result, it could be concluded that the lifetime decreased in pre-corrosive samples for both 100 and 200 hours of the immersion time, compared to that of as-cast specimens. However, such a lifetime reduction was more significant for 200 hours of the immersion time, especially within the high-cycle fatigue regime (or lower stress levels). Under high stress levels, both pre-corrosive sample types had almost similar behaviors. The field-emission scanning electron microscopy images of specimen fracture surfaces indicated that the brittle region of the fractured surface was larger for specimens after the 200 hours of corrosion-fatigue testing than the other specimen.
Go to article

Bibliography

[1] Li, Z., Li, Ch., Liu, Y., Yu, L., Guo, Q. & Li, H. (2016). Effect of heat treatment on microstructure and mechanical property of Ale10%Mg2Si alloy. Journal of Alloys and Compounds. 663, 16-19. DOI: http://dx.doi.org/10.1016/ j.jallcom.2015.12.128.
[2] Wang, M., Pang, J.C., Li, S.X. & Zhang, Z.F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A. 704, 480-492. DOI: http://dx.doi.org/ 10.1016/j.msea.2017.08.014.
[3] Azadi, M. (2017). Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. International Journal of Fatigue. 99, 303-314. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2016.12.001.
[4] Guerin, M., Alexis, J., Andrieu, E., Blanc, C. & Odemer, G. (2015). Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution. Materials and Design 87, 681-69. DOI: http://dx.doi.org/10.1016/j.matdes. 2015.08.003.
[5] Chen, Y., Zhou, J., Liu, Ch. & Wang, F. (2017). Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. International Journal of Fatigue. 108, 35-46. DOI: https://doi.org/10.1016/ j.ijfatigue.2017.11.008.
[6] Chen, Y., Liu, Ch., Zhou, J. & Wang, X. (2017). Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. International Journal of Fatigue. 98, 269-278. DOI: http://dx.doi.org/10.1016/j.ijfatigue. 2017.02.004.
[7] Chen, Y., Liu, Ch., Zhou, J. & Wang, F. (2019). Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy. Journal of Alloys and Compounds. 772, 1-14. DOI: https://doi.org/10.1016/ j.jallcom.2018.08.282.
[8] Rodriguez, R.I., Jordon, J.B., Allison, P.G., Rushing, T. & Garcia, L. (2019). Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Material Science and Engineering. 742, 255-268. DOI: https://doi.org/10.1016/j.msea.2018.11.020.
[9] Mishra, R.K. (2020). Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings. 25(4), 602-609. DOI: https://doi.org/10.1016/j.matpr.2019.07.375.
[10] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering A. 788, 139497. DOI: https://doi.org/10.1016/j.msea.2020.139497.
[11] Metallic materials-rotating bar bending fatigue testing. (2010). Standard No. ISO-1143, ISO International Standard.
[12] Aroo, H., Parast, M.S.A., Azadi, M. & Azadi, M. (2020). Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis. 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (in Persian).
[13] Azadi, M., Zolfaghari, M., Rezanezhad, S. & Azadi, M. (2018). Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 124(5), 377. DOI: https://doi.org/10.1007/s12540-019-00498-7
[14] Azadi, M. & Aroo, H. (2020). Temperature effect on creep and fracture behaviors of nano-SiO2-composite and alsi12cu3ni2mgfe aluminum alloy. International Journal of Engineering. 33(8), 1579-1589. DOI: 10.5829/ije. 2020.33.08b.16.
[15] Azadi, M. & Aroo, H. (2019). Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Material Research Express. 6, 115020. DOI: https://doi.org/10.1088/2053-1591/ab455f.
[16] Zainon, F., Rafezi Ahmad, K. & Daud, R. (2015). Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332. Applied Mechanics and Materials. 786, 18-22. DOI: 10.4028/www.scientific.net/AMM.786.18.
[17] Han, L., Sui, Y., Wang, Q., Wang, K. & Jiang, Y. (2017). Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds. 695, 1566-1572. DOI: https://doi.org/10.1016/ S1003-6326(20)65333-X.
[18] Humbertjean, A. & Beck, T. (2013). Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. International Journal of Fatigue. 53, 67-74. DOI: 10.1016/j.ijfatigue. 2011.09.017.
[19] Mollaei, M. Azadi, M. Tavakoli, H. (2018). A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Applied Physics A, 124, 504. https://doi.org/10.1007/s00339-018-1929-2
[20] Arab, M., Azadi, M. & Mirzaee, O. (2020). Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites, Materials Chemistry and Physics, 253, 123259. DOI: https://doi.org/10.1016/j.matchemphys.2020.123259.
Go to article

Authors and Affiliations

M. Azadi
1
ORCID: ORCID
H. Aroo
1
M.. Azadi
1
M.S.A. Parast
1

  1. Semnan University, Iran

This page uses 'cookies'. Learn more