Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to analyze diesel fuel consumption in Poland and identification of the causes of changes in the needs of individual sectors of the economy for this type of fuel. Time range of the researches covered from 2004 to 2014. Data from the Central Statistical Office (CSO) were the source material. In the years 2004-2014 diesel consumption in Poland was 111 553 thousand tons. In 2014 domestic consumption of diesel fuel was 11 203 thousand tons and it was more than 2 times higher than the level of consumption of this fuel in 2004. The highest consumption of diesel in Poland in the period took place in 2012. The increase in the consumption of diesel fuel in Poland had benefited from increased demand for diesel in transport, which became a result of an increased amount of transport services. The share of transport in the consumption of diesel fuel in Poland for the period 2004- 2014 was about 75%. Another area, which consumes the largest quantity of DF in Poland is agriculture. Consumption of this fuel in agriculture in the years 2004- 2014 increased by 7%. DF consumption in industry and the manufacturing sector it was variable. DF biggest consumption in these sectors of the economy in the period was recorded in 2004. The analyzes did not allow to identify the specific causes of changes in the use of DF in the industry and manufacturing. In transport it showed a relationship between the consumption of diesel fuel and the amount of transport work and the transported cargo.
Go to article

Authors and Affiliations

Jacek Skudlarski
Michał Smykla
Katarzyna Botwińska
Roman Krygul
Download PDF Download RIS Download Bibtex

Abstract

The most common chemical’s spills in typical transportation accidents are those with petroleum products such as diesel fuel, the consequence of which is an extensive pollution of the soil. In order to plan properly fuel recovery from the soil, it is important to gain information about the soil depth which may be affected by pollutant and to predict the pollutant concentration in different soil layers. This study deals with the impact of basic atmospheric conditions, i.e. air temperature and humidity on the diesel fuel migration through the soil. The diesel fuel was spilled into columns (L = 30 cm; D = 4.6 cm) filled with sandy and clay soil samples, and its concentrations at various depths were measured after 11 days under various air temperature (20 and 40°C) and relative humidity (30–100%) conditions. The effects observed were explained by understanding physical processes, such as fuel evaporation, diffusion and adsorption on soil grains. The increase in temperature results in higher fuel evaporation loss and its faster vertical migration. The relative humidity effect is less pronounced but more complex, and it depends much on the soil type.

Go to article

Authors and Affiliations

Mladen Vuruna
Zlate Veličković
Sreten Perić
Jovica Bogdanov
Negovan Ivanković
Mihael Bučko
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research work on the process of emulsion separation by filtration-coalescence method in the presence of solid particles. A polyester PBT coalescence medium was used in experiments of water removal from diesel fuel. Apart from parameters representing the geometry and inherent properties of coalescence filters, the additional emulsion constituents such as surfactants and solid particles also affect the process. These constituent can cover fibres and they can also influence emulsion properties. It has been experimentally confirmed that contrary to surface active compounds, which stabilise the emulsion, the presence of specific solid particles decreased the system stability. If surface active compounds are present in the system, the influence of solid particles is different at the same concentration level depending on their type. The destabilization of emulsion due to the presence of Arizona dust was more pronounced. Although the presence of particles mitigated the effect of surfactants, their deposition in the filter media oppositely affected the coalescence process depending on solid type. Oleophilic iron oxide particles improved the separation efficiency of water from diesel fuel, while Arizona test dust had a negative impact on the separation process performance.
Go to article

Authors and Affiliations

Andrzej Krasiński
1
Łukasz Sołtan
1
Jakub Kozyrski
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Diesel generator engines operate in wide load modes; therefore, it is necessary to change the percentage of the mixture of diesel and biodiesel fuel depending on the operating mode of the engine; this ensures its technical performance at the required level in all operating modes, including starting and stopping the engine. This article describes an algorithm for the operation of a diesel generator and an algorithm for determining the composition of the fuel mixture. During the study, the ratio between the components of the mixture changed, taking into account the load modes of operation of the diesel generator, indicators of fuel supply and the formulation of the fuel mixture to ensure optimal values of technical and economic indicators. To assess the efficiency of the flow of working processes in a diesel cylinder, their duration was selected, which is estimated by the duration of the processes of fuel injection, evaporation and combustion. Using the dynamic regulation of the composition of the diesel and biodiesel fuel, the total fuel consumption increased by 5.9%, but the cost of purchasing the fuel is reduced by 10% (at prices as of November 2021) and by 14.6% (based on prices as of the beginning of 2022) compared to engine operation with diesel fuel. This confirms the expediency of using the dynamic adjustment of the composition of the fuel mixture. In addition, even higher economic indicators can be achieved by using an autonomous power plant with a diesel power capacity higher than the generator capacity.
Go to article

Authors and Affiliations

Ihor Kupchuk
1
ORCID: ORCID
Serhii Burlaka
1
ORCID: ORCID
Alexander Galushchak
2
ORCID: ORCID
Tetiana Yemchyk
3
ORCID: ORCID
Dmytro Galushchak
1
Yrii Prysiazhniuk
1
ORCID: ORCID

  1. Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
  2. Vinnytsia National Technical University, Ukraine
  3. Faculty of Economics and Entrepreneurship, Vinnytsia National Agrarian University, Ukraine

This page uses 'cookies'. Learn more