Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Keywords evolution diet
Download PDF Download RIS Download Bibtex

Abstract

Marek Konarzewski, Professor of Biology at the University of Białystok and President of the Polish Academy of Sciences, talks about how our ancient evolutionary past still affects our eating habits today.
Go to article

Authors and Affiliations

Marek Konarzewski
1

  1. President of the Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

Our daily diet contains carbohydrates, lipids, proteins, minerals, and vitamins – nutrients that provide us with energy and serve as the building blocks of our bodies. However, we are increasingly learning that what we eat also interacts with the genes in our cells in important ways.
Go to article

Authors and Affiliations

Carsten Carlberg
1

  1. PAS Institute of Animal Reproduction and Food Research in Olsztyn
Download PDF Download RIS Download Bibtex

Abstract

In the present study, we used next-generation sequencing to investigate the impacts of two commercially available prescription diet regimens on the fecal microbiomes of eleven client-owned healthy pet dogs. We tested an anallergenic diet on 6 dogs and a low-fat diet on 5 dogs. Before starting the study, each dog was fed a different commercial diet over 5 weeks. After collecting pre-diet fecal samples, the anallergenic or low-fat diet was administered for 5 weeks. We then collected fecal samples and compared the pre- and post-diet fecal microbiomes. In the dogs on the anallergenic diet, we found significantly decreased proportions of Bacteroides, Ruminococcaceae, and Fusobacteriaceae, belonging to the phyla Bacteroidetes, Firmicutes, and Fusobacteria, respectively. The proportion of the genus Streptococcus belonging to the phylum Firmicutes was significantly increased upon administering the anallergenic diet. In the dogs on the low-fat diet, although the phyla Actinobacteria and Bacteroidetes tended to increase (p=0.116) and decrease (p=0.147) relative to the pre-diet levels, respectively, there were no significant differences in the proportions of any phylum between the pre- and post-diet fecal microbiomes. The anallergenic diet induced a significantly lower diversity index value than that found in the pre-diet period. Principal coordinate analysis based on unweighted UniFrac distance matrices revealed separation between the pre- and post-diet microbiomes in the dogs on the anallergenic diet. These results suggest that, even in pet dogs kept indoors in different living environments, unification of the diet induces apparent changes in the fecal microbiome.
Go to article

Bibliography

Allen-Vercoe E, Strauss J, Chadee K (2011) Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes. 2: 294-298.
AlShawaqfeh MK, Wajid B, Minamoto Y, Markel M, Lidbury JA, Steiner JM, Serpedin E, Suchodolski JS (2017) A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol Ecol 93: 10.
Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda, S Saito, T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236.
Beloshapka AN, Dowd SE, Suchodolski JS, Steiner JM, Duclos L, Swanson KS (2013) Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol Ecol 84: 532-541.
Cassmann E, White R, Atherly T, Wang C, Sun Y, Khoda S, Mosher C, Ackermann M, Jergens A (2016) Alterations of the ileal and colonic mucosal microbiota in canine chronic enteropathies. PLoS One 11: e0147321.
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen- -Vercoe E, Moore RA, Holt RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22: 299-306.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563.
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107: 14691-14696.
Forster GM, Stockman J, Noyes N, Heuberger AL, Broeckling CD, Bantle CM, Ryan EP (2018) A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top Companion Anim Med 33: 126-135.
Hang I, Rinttila T, Zentek J, Kettunen A, Alaja S, Apajalahti J, Harmoinen J, de Vos WM, Spillmann T (2012) Effect of high contents of dietary animal-derived protein or carbohydrates on canine fecal microbiota. BMC Vet Res 8: 90.
Herstad KM, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, Rud I, Sekelja M, Skancke E (2017) A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res 13: 147.
Ide K, Shinohara M, Yamagishi S, Endo A, Nishifuji K, Tochio T (2020) Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci 82: 1-8.
Igarashi H, Ohno K, Horigome A, Fujiwara-Igarashi A, Kanemoto H, Fukushima K, Odamaki T, Tsujimoto H (2016) Fecal dysbiosis in miniature dachshunds with inflammatory colorectal polyps. Res Vet Sci 105: 41-46.
Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773-1781.
Kerr KR, Forster G, Dowd SE, Ryan EP, Swanson KS (2013) Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs. PLoS One 8: e74998.
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22: 292-298.
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102: 11070-11075.
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022-1023.
Manchester AC, Webb CB, Blake AB, Sarwar F, Lidbury JA, Steiner JM, Suchodolski JS (2019) Long-term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. J Vet Intern Med 33: 2605-2617.
Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T (2019) Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J Vet Med Sci 81: 1783-1790.
Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I (2002) Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 17: 849-853.
O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla K, Naidoo V, Mtshali L, Tims S, Puylaert PG, DeLany J, Krasinskas A, Benefiel AC, Kaseb HO, Newton K, Nicholson JK, de Vos WM, Gaskins HR, Zoetendal EG (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6: 6342.
Prince BT, Mandel MJ, Nadeau K, Singh AM (2015) Gut microbiome and the development of food allergy and allergic disease. Pediatr Clin North Am 62: 1479-1492.
Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI (2002) Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microb Ecol 44: 186-197.
Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE (2012a) 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS One 7: e39333.
Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, Kachroo P, Ivanov I, Minamoto Y, Dillman EM, Steiner JM, Cook AK, Toresson L (2012b) The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7: e51907.
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MR, Issa JP (2014) Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74: 1311-1318.
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457: 480-484.
White RF, Steele L, O’Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Melling J, Philbert MA, Grashow R (2016) Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 74: 449-475.
Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R (2016) Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol 1: 16177.
Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S (2012). Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 3: 455-459

Go to article

Authors and Affiliations

E. Onozawa
1
A. Goto
1
H. Oda
1
S. Seki
1
T. Sako
1
A. Mori
1

  1. School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
Download PDF Download RIS Download Bibtex

Abstract

This study describes the seasonal and annual changes in the diet of non-breeding male Antarctic fur seals (Arctocephalus gazella) through the analysis of faeces collected on shore during four summer seasons (1993/94-1996/97) in the area of Admiralty Bay (King George Island, South Shetlands). Krill was the most frequent prey, found in 88.3% of the 473 samples. Fish was present in 84.7% of the samples, cephalopods and penguins in 12.5% each. Of the 3832 isolated otoliths, 3737 were identified as belonging to 17 fish species. The most numerous species were: Gymnoscopelus nicholsi, Electrona antarctica , Chionodraco rastrospinosus, Pleuragramma antarcticum, and Notolepis coatsi. In January, almost exclusively, were taken pelagic Myctophidae constituting up to 90% of the total consumed fish biomass. However, in February and March, the number of bentho-pelagic Channichthyidae and Nototheniidae as well as pelagic Paralepididae increased significantly, up to 45% of the biomass. In April the biomass of Myctophidae increased again. The frequency of squid and penguin occurrence was similar and low, but considering the greater individual body mass of penguins, their role as a food item may be much greater. In March and April, penguins could be as important prey item as fish. The amount of krill in the diet of Antarctic fur seals declined with a concomitant decrease in the mature krill availability. This appears to have been compensated by an increased frequency of the fur seal to eat fish and penguins.

Go to article

Authors and Affiliations

Piotr Ciaputa
Jacek Siciński
Download PDF Download RIS Download Bibtex

Abstract

The diet of the unsexed breeding Adélie penguin (Pygoscelis adeliae Hombron et Jacquinot, 1841) was investigated during three consecutive chick rearing periods, from 1996–97 to 1998–99, on Laurie Island, South Orkney Islands (60°46’S, 44°42’W), Antarctica. This analysis showed that during the whole sampling period, Antarctic krill (Euphausia superba Dana, 1852) represented the predominant prey in terms of frequency of occurrence, mass, and number. The hyperiid amphipod Themisto gaudichaudii (Guerin-Méneville, 1825) was present in small amounts. Electrona antarctica (Gunter, 1878), Trematomus newnesi (Boulenger, 1902) and larval stages of Nototheniidae constituted the bulk of the fish portion, particularly during the 1997/98 and 1998/99 breeding periods. This study is the first examination of the Adélie penguin diet at Laurie Island. It is important to recognize, however, the importance of knowing the sex of the penguins being sampled and that prey composition may vary during the breeding season and from one year to the next.

Go to article

Authors and Affiliations

Marcela M. Libertelli
Nestor Coria
Germán Marateo
Download PDF Download RIS Download Bibtex

Abstract

Entomopathogenic nematodes (EPNs) are promising as biocontrol agents for the most economically important insect pest attacking a wide range of host plants. Therefore, the aim of this work was to study the impact of four artificial diets and one natural food on numbers, weights, and total lipid content of the greater wax moth larvae, Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) as well as the impact of these diets on the ability of nematode species Heterorhabditis bacteriophora and Steinernema carpocapsae to infect insects and multiply inside an insect host which had been reared on one of five different diets (D1, D2, D3, D4 and D5). The correlation between larvae weight and total lipid content, pathogenicity or multiplication of nematodes was also studied. The obtained results indicated that D2, D5 and D3 gave the highest growth or weights of larvae. The larvae produced weighed 3.71, 3.67 and 3.25 g from 50 g media, respectively. Statistically, larvae weights had a positive and significant correlation with the lipid content in larvae where r = 0.732. On the other hand, infective juveniles (IJs) of nematodes produced from insect hosts reared on D2 and D5 revealed more pathogenicity on larvae, since they caused the highest percent of mortality, 53.33 and 50.0% for H. bacteriophora, and 56.67 and 53.33% for S. carpocapsae, respectively. The total lipid content had a positive and highly significant correlation with the pathogenicity of the two nematode species where r = 0.97 and 0.971, respectively. Ultimately, the supplied foods of the artificial diets D2, D3 and natural beeswax (D5) gave the most suitable chance for developing insect growth and increasing the EPN quality and enhancing the potential of EPNs as biological control agents against different insect pests.
Go to article

Authors and Affiliations

Mona Ahmed Hussein
1
ORCID: ORCID
Hamdy Abdelnaby Salem
1
Sayed Hala
1
Salah Mahmoud
1

  1. Pests and Plant Protection Department, Agricultural and Biological Research Institute, National Research Center, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Deformed wing virus (DWV) is one of the most widespread viral infections of European honey bee Apis mellifera L. worldwide. So far, this is the first study which tested the effect of different ratios of synthetic protein to fat (P : F) diets on the health of broodless nurseaged honey bees in the laboratory. The aim of the current study was to determine the load of DWV in the whole body of A. mellifera that were fed different ratios of P : F diets (25 : 1, 10 : 1, 5 : 1, 1 : 1, 1 : 5, 1 : 10, 1 : 12.5 and 1 : 0 as a control). The methods involved feeding bees the tested diets for 10 days and then measuring the virus titre using qPCR technique. The results showed that DWV concentration decreased as the fat content of diets consumed increased. The copy number of viral genomes declined from 7.5 × 105 in the zero-fat diet (1 : 0) to 1.6 × 102 virus genomes in 1 : 12.5 (P : F). We can conclude that there is a positive relationship between fat diets and bee immunity and overall results suggest a connection between fat diet and bee health, indicating that colony losses can be reduced by providing a certain protein and fat supplemental feeding.
Go to article

Bibliography

1. Alaux C., Dantec C., Parrinello H., Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC genomics 12 (1): 496. DOI: https://doi.org/10.1186/1471-2164-12-496.
2. Alaux C., Ducloz F., Crauser D., Le Conte Y. 2010. Diet effects on honeybee immunocompetence. Biology Letters: rsbl20090986. DOI: https://doi: 10.1186/1471-2164-12-496.
3. Basualdo M., Barragan S., Vanagas L., Garcia C., Solana H., Rodriguez E., Bedascarrasbure E. 2013. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 106 (4): 1553–1558. DOI: https://doi.org/10.1603/ec12466.
4. Benaets K., Van Geystelen A., Cardoen D., De Smet L., de Graaf D. C., Schoofs L., Larmuseau M.H., Brettell L.E., Martin S.J., Wenseleers T. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284 (1848), 25 pp. DOI: http://dx.doi.org/10.1098/rspb.2016.2149
5. Branchiccela B., Castelli L., Corona M., Díaz-Cetti S., Invernizzi C., de la Escalera G.M., Mendoza Y., Santos E., Silva C., Zunino P. 2019. Impact of nutritional stress on the honeybee colony health. Scientific Reports 9 (1): 1–11. DOI: https://doi.org/10.1038/s41598-019-46453-9
6. Brodschneider R., Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278–294. DOI: https://doi.org/10.1051/apido/2010012
7. Crailsheim K. 1991. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. Journal of Comparative Physiology B 161 (1): 55–60. DOI: https://doi.org/10.1007/BF00258746
8. Dainat B., Evans J.D., Chen Y.P., Gauthier L., Neumann P. 2012. Predictive markers of honey bee colony collapse. PLoS one 7 (2): e32151. DOI: https:// doi.org/10.1371/journal.pone.0032151.
9. DeGrandi-Hoffman G., Chen Y., Huang E., Huang M.H. 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). Journal of Insect Physiology 56: 1184–1191. DOI: https://doi.org/10.1016/j.jinsphys.2010.03.017
10. deGroot A. 1953. Protein and amino acid requirements of the honey bee (Apis mellifera L.). Phys Comp Oec 3: 197–285. DOI: https://doi.org/10.1007/BF02173740
11. Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One 8 (8): e72016. DOI: https://doi.org/10.1371/journal.pone.0072016
12. Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprio E., Nazzi F., Pennacchio F. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113 (12): 3203–3208. DOI: https://doi.org/10.1073/pnas.1523515113
13. Forzan M., Felicioli A., Sagona S., Bandecchi P., Mazzei M. 2017. Complete genome sequence of deformed wing virus isolated from Vespa crabro in Italy. Genome Announc 5 (40): e00961–00917. DOI: https://doi.org/10.1128/genomeA.00961-17
14. Goodman W.G., Cusson M. 2012. The juvenile hormones p. 310–365. In: "Insect Endocrinology" (L.I. Gilbert, ed.). San Diego, Academic Press. CA, USA.
15. Goulson D., Nicholls E., Botías C., Rotheray E. L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229): 1–16. DOI: 10.1126/science.1255957
16. Highfield A.C., El Nagar A., Mackinder L.C., Noel L.M., Hall M.J., Martin S.J., Schroeder D.C. 2009. Deformed wing virus implicated in overwintering honeybee colony losses. Applied Environmental Microbiology 75 (22): 7212–7220. DOI: https://doi.org/10.1128/AEM.02227-09
17. Im S.-S., Yousef L., Blaschitz C., Liu J.Z., Edwards R.A., Young S.G., Raffatellu M., Osborne T.F. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism 13 (5): 540–549. DOI: https://doi.10.1016/j.cmet.2011.04.001
18. Jackman J.A., Cho N.-J. 2020. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36 (6): 1387–1400. DOI: 10.1021/acs.langmuir.9b03706
19. Martin S.J., Brettell L.E. 2019. Deformed wing virus in honeybees and other insects. Annual Review of Virology 6: 49–69. DOI: https://doi.org/10.1146/annurev-virology-092818-015700
20. Moore J., Jironkin A., Chandler D., Burroughs N., Evans D.J., Ryabov E.V. 2011. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology 92 (1): 156–161. DOI: 10.1099/vir.0.025965-0
21. Ponton F., Wilson K., Cotter S.C., Raubenheimer D., Simpson S.J. 2011. Nutritional immunology: a multi-dimensional approach. PLoS Pathogens 7 (12): e1002223. DOI: https://doi.org/10.1371/journal.ppat.1002223
22. Ponton F., Wilson K., Holmes A.J., Cotter S.C., Raubenheimer D., Simpson S.J. 2013. Integrating nutrition and immunology: a new frontier. Journal of Insect Physiology 59 (2): 130–137. DOI: https://doi.org/10.1016/j.jinsphys.2012.10.011
23. Roulston T.A.H., Cane J.H., Buchmann S.L. 2000. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Monographs 70 (4): 617–643. DOI: https://doi.org/10.1890/0012-9615(2000)070[0617:WGPCOP]2.0.CO;2
24. Smilanich A.M., Mason P.A., Singer M.S. 2014. Ecological immunology mediated by diet in herbivorous insects. Integrative and Comparative Biology 54 (5): 913–921. DOI: https:// doi.org/10.1093/icb/icu089.
25. Staroscik A. 2004. Calculator for determining the number of copies of a template. URI Genomics and Sequencing Center.
26. Tantillo G., Bottaro M., Di Pinto A., Martella V., Di Pinto P., Terio V. 2015. Virus Infections of honeybees Apis mellifera. Italian Journal of Food Safety 4 (3): 5364–5364. DOI: https://doi.org/10.4081/ijfs.2015.5364.
27. Vaudo A.D., Stabler D., Patch H.M., Tooker J.F., Grozinger C.M., Wright G.A. 2016. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. Journal of Experimental Biology 219 (24): 3962–3970. DOI: https://doi.org/10.1242/jeb.140772.
28. Winston M.L. 1991. The Biology of the Honey Bee. Harvard University Press, Cambridge, USA. 281 pp.

Go to article

Authors and Affiliations

Baida Mohsen Alshukri
1
Mushtaq Talib Al-Esawy
1 2

  1. Plant Protection Department, University of Kufa, Najaf Governorate, Iraq
  2. Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Cutaneous adverse food reaction (CAFR) is a common disease, affecting about 1-2% of dogs and cats. Diagnosis of the CAFR is made through elimination diet coupled with diet challenge, as methods like skin tests, patch tests, basophil degranulation tests and assessment of IgG and IgE serum levels are not sensitive enough. A partially hydrolysed salmon and pea hypoallergenic diet was evaluated in the diagnosis and treatment of CAFR in dogs and cats.
The diet was used in the treatment of 13 dogs and 12 cats for 10 weeks. The Pruritus Visual Analog Scale (PVAS; dogs and cats), Canine Atopic Dermatitis Extent and Severity Index (CADESI-04; dogs) and the Scoring Feline Allergic Dermatitis (SCORFAD; cats) were used for effectiveness evaluation.
In dogs, a significant decrease was reported in both CADESI-04 (from 17.3±7.5 to 10.15±7.4; p=0.028) and PVAS (from 7±1.3 to 4.76±1.8; p=0.003) after four weeks of treatment. Also in cats, both the PVAS (from 6.75±1.8 to 4±2.3; p=0.006) and SCORFAD (from 4.16±1.9 to 2.58±1.2; p=0.029) decreased significantly after four weeks. After eight weeks, a significant improvement was observed in almost all the animals. Evaluated diet was useful in the treatment of the CAFR in dogs and cats.
Go to article

Bibliography

Alexander DD, Schmitt DF, Tran NL, Barraj LM, Cushing CA (2010) Partially hydrolyzed 100% whey protein infant formula and atopic dermatitis risk reduction: a systematic review of the literature Nutr Rev, 68: 232-245.
Anderson JA (1986) The establishment of common language concerning adverse reactions to foods and food additives J Allergy Clin Immunol, 78: 140-144.
Belova S, Wilhelm S, Linek M, Beco L, Fontaine J, Bergvall K, Favrot C (2012) Factors affecting allergen-specific IgE serum levels in cats Can J Vet Res, 76: 45-51.
Bethlehem S, Bexley J, Mueller RS (2012) Patch testing and allergen-specific serum IgE and IgG antibodies in the diagnosis of canine adverse food reactions Vet Immunol Immunopathol, 145: 582-589.
Biourge VC, Fontaine J, Vroom MW (2004) Diagnosis of Adverse Reactions to Food in Dogs: Efficacy of a Soy-Isolate Hydrolyzate-Based Diet J Nutr, 134 (Suppl): 2062S-2064S.
Chesney CJ (2002) Food sensitivity in the dog: a quantitative study J Small Anim Pract, 43: 203-207.
DeBoer DJ, Hillier A (2001) The ACVD task force on canine atopic dermatitis (XV): Fundamental concepts in clinical diagnosis. Vet Immunol Immunopathol, 81: 271-276.
Denis S, Paradis M (1994) L’allergie alimentaire chez le chien et le chat. Le Médecin Vétérinaire Du Québec, 24: 15-20
Favrot C, Linek M, Fontaine J, Beco L, Rostaher A, Fischer N, Couturier N, Jacquenet S, Bihain BE (2017) Western blot analysis of sera from dogs with suspected food allergy Vet Dermatol, 28: 189-e42.
Favrot C, Steffan J, Seewald W, Hobi S, Linek M, Marignac G, Olivry T, Beco L, Nett C, Fontaine J, Roosje P, Bergvall K, Belova S, Koebrich S, Pin D, Kovalik M, Meury S, Wilhelm S (2012) Establishment of diagnostic criteria for feline nonflea-induced hypersensitivity dermatitis. Vet Dermatol 23(1): 45-50. Favrot C, Steffan J, Seewald W, Picco F (2010) A prospective study on the clinical features of chronic canine atopic dermatitis and its diagnosis. Vet Dermatol, 21: 23-31.
Foster AP, Knowles TG, Moore AH, Cousins PDG, Day MJ, Hall EJ (2003) Serum IgE and IgG responses to food antigens in normal and atopic dogs, and dogs with gastrointestinal disease. Veter Immunol Immunopathol, 92: 113-124.
Guilford WG (1996) Gastorintestinal immune system. In: Guilford WG, Center SA, Strombeck DR (eds) Strombeck’s small animal gastroenterology. Philadelphia, W.B. Saunders Co. pp 20-37.
Guilford WG, Jones BR, Markwell PJ, Arthur DG, Collett MG, Harte JG (2001) Food Sensitivity in Cats with Chronic Idiopathic Gastrointestinal Problems. J Vet Intern Med 15(1): 7.
Hill PB, Lau P, Rybnicek J (2007) Development of an owner- -assessed scale to measure the severity of pruritus in dogs. Vet Dermatol 18: 301-308.
Jackson HA, Jackson MW, Coblentz L, Hammerberg B (2003) Evaluation of the clinical and allergen specific serum immunoglobulin E responses to oral challenge with cornstarch, corn, soy and a soy hydrolysate diet in dogs with spontaneous food allergy. Vet Dermatol 14: 181-187.
Jeffers JG, Shanley KJ, Meyer EK (1991) Diagnostic testing of dogs for food hypersensitivity. J Am Vet Med Assoc 198: 245-250.
Martin A, Sierra MP, Gonzalez JL, Arevalo MA (2004) Identification of allergens responsible for canine cutaneous adverse food reactions to lamb, beef and cow’s milk. Vet Dermatol 15: 349-356.
Mueller RS, Olivry T, Prélaud P (2016) Critically appraised topic on adverse food reactions of companion animals (2): common food allergen sources in dogs and cats. BMC Vet Res 12: 9.
Mueller RS, Tsohalis (1998) Evaluation of serum allergen- -specific IgE for the diagnosis of food adverse reactions in the dog. Vet Dermatol 9: 167-171.
Olivry T, Mueller RS (2016) Critically appraised topic on adverse food reactions of companion animals (3): prevalence of cutaneous adverse food reactions in dogs and cats. BMC Vet Res 13: 51.
Olivry T, Mueller RS (2020) Critically appraised topic on adverse food reactions of companion animals (9): time to flare of cutaneous signs after a dietary challenge in dogs and cats with food allergies. BMC Vet Res 16: 158.
Olivry T, Saridomichelakis M, Nuttall T, Bensignor E, Griffin CE, Hill PB (2014) Validation of the Canine Atopic Dermatitis Extent and Severity Index (CADESI)-4, a simplified severity scale for assessing skin lesions of atopic dermatitis in dogs. Vet Dermatol 25: 77-e25.
Ricci R, Hammerberg B, Paps J, Contiero B, Jackson H (2010) A comparison of the clinical manifestations of feeding whole and hydrolysed chicken to dogs with hypersensitivity to the native protein. Vet Dermatol 21: 358-366.
Rosser EJ (2013) Diagnostic Workup of Food Hypersensitivity. In: Noli C, Foster A, Rosenkrantz W (ed), Veterinary Allergy. Wiley Blackwell, Oxford pp. 119-123.
Rosser EJ (1993) Diagnosis of food allergy in dogs. J Am Vet Med Assoc, 203: 259-262.
Roudebush P, Guilford WG, Shanley KJ (2000) Adverse reactions to food. In: Hand MS, Novotny BJ (eds) Small animal clinical nutrition. Mark Morris Institute pp 431-453.
Rybníček J, Lau-Gillard PJ, Harvey R, Hill PB (2009) Further validation of a pruritus severity scale for use in dogs. Vet Dermatol 20: 115-122.
Scott DW, Miller WH, Griffin CE (2001) Muller & Kirk’s Small Animal Dermatology. In: Scott DW, Miller WH, Griffin CE (eds) Muller & Kirk’s Small animal dermatology. Saunders pp 543-666.
Steffan J, Olivry T, Forster SL, Seewald W (2012) Responsiveness and validity of the SCORFAD, an extent and severity scale for feline hypersensitivity dermatitis. Vet Dermatol 23: 410-e77.
Walton GS (1967) Skin responses in the dog and cat to ingested allergens. Observations on one hundred confirmed cases. Vet Rec 81: 709-713. White SD (1986) Food hypersensitivity in 30 dogs. J Am Vet Med Assoc 188: 695-698.
White SD, Sequoia D (1989) Food hypersensitivity in cats: 14 cases (1982-1987). J Am Vet Med Assoc, 194: 692-695. Wills J, Harvey R (1994) Diagnosis and management of food allergy and intolerance in dogs and cats. Austr Vet J 71: 322-326.
Zimmer A, Bexley J, Halliwell RE, Mueller RS (2011) Food allergen-specific serum IgG and IgE before and after elimination diets in allergic dogs. Vet ImmunolImmunopathol 144: 442-447.
Go to article

Authors and Affiliations

M.P. Szczepanik
1
M. Gołyński
2
P. Wilkołek
1
G. Kalisz
3

  1. Department of Clinical Diagnostics and Veterinary Dermatology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Gleboka 30, 20-612 Lublin, Poland
  2. Department of Diagnostics and Clinical Sciences, Veterinary Medicine Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Torun, Poland
  3. Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedicine, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present study aimed to investigate the contamination of poultry feed with aflatoxin B1 and zearalenone at laying hen farms in Tehran suburbs. The poultry feed was selected from five laying hen farms. A total of 60 poultry feed samples were collected from each farm during four consecutive seasons, from spring to winter of 2021. High-performance liquid chromatography was used to determine the amount of aflatoxin B1 and zearalenone. The mean aflatoxin B1 and zearalenone concentrations in various seasons showed significant differences (p<0.01). The highest reported aflatoxin concentration was in winter, with a mean concentration of 1366.53±77.85 ng/kg. The lowest concentrations were reported in autumn and summer, indicating a significant difference (p<0.01). The highest concentration of zearalenone was reported in summer, with a mean concentration of 150.72±10.35 μg/kg. The lowest concentration was reported in winter, with a mean concentration of 22.87±10.35 μg/kg, indicating a statistically significant difference (p<0.01). Overall, the concentrations of aflatoxin B1 and zearalenone toxins significantly differed in various poultry farms. The poultry farm D had the highest aflatoxin contamination with a mean concentration of 648.08±59.89 ng/kg. Poultry farms A, B, and C had the highest zearalenone concentrations with mean concentrations of 125.17±20.61, 96.04±20.61, and 99.49±20.61 μg/kg, respectively. Autumn was the only season showing significant differences regarding zearalenone toxin concentration in poultry farms.
Go to article

Bibliography

1. Assumaidaee AA, Ali NM, Ahmed SW (2020) Zearalenone Mycotoxicosis: Pathophysiology and Immunotoxicity. Iraq J Vet Med 44: 29-38.
2. Ayofemi Olalekan Adeyeye S (2020) Aflatoxigenic fungi and mycotoxins in food: a review. Crit Rev Food Sci Nutr 60: 709-21.
3. Battilani P, Toscano P, Van der Fels-Klerx HJ, Moretti A, Camardo Leggieri M, Brera C (2016) Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep 6: 24328.
4. Chang H, Kim W, Park J-H, Kim D, Kim CR, Chung S, Lee C (2017) The occurrence of zearalenone in South Korean feedstuffs be-tween 2009 and 2016. Toxins 9: 223.
5. Choudhary AK, Kumari P (2010) Management of mycotoxin contamination in preharvest and postharvest crops: present status and future prospects. J Phytol 2: 37-52.
6. Cinar A, Onbaşı E (2019) Mycotoxins: The hidden danger in foods. Mycotoxins food Saf 1-21.
7. Ersali A, Grigoran K, Baho-Aldini F, Ghasemi R, Ersali M (2008) Transition of Aflatoxin from Feedstuff to Animal Milk and Pasteur-ized Milk in Shiraz City and Suburbs (South Iran). Iran J Toxicol 2: 3-3.
8. FAO (2004) Food and Agriculture Organization of the United nations (FAO). Vitamin and mineral requirements in human nutrition, 246-278. https://www.fao.org/3/y2809e/y2809e.pdf.
9. Filazi A, Yurdakok-Dikmen B, Kuzukiran O, Sireli UT (2017) Mycotoxins in poultry. Poult Sci J 2017: 73-92.
10. Furian AF, Fighera MR, Royes LFF, Oliveira MS (2022) Recent advances in assessing the effects of mycotoxins using animal models. Curr Opin Food Sci 47: 100874.
11. Gruber-Dorninger C, Jenkins T, Schatzmayr G (2019) Global mycotoxin occurrence in feed: A ten-year survey. Toxins 11: 375.
12. Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C (2020) Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb Pathog 142: 104095.
13. Hassan YI, Zhou T, Bullerman LB (2016) Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. J Food Sci Technol Int 22: 79-90.
14. Hussain Z, Khan MZ, Saleemi MK, Khan A, Rafique S (2016) Clinicopathological effects of prolonged intoxication of aflatoxin B1 in broiler chicken. J Pak Vet J 36: 477- 81.
15. Iran Standard and Industrial Research Institute (2019) National Standard Committee for Feed and Agricultural Products, Animal Feed – Sampling No 7570.
16. Kajuna F, Temba B, Mosha R (2013) Surveillance of aflatoxin B1 contamination in chicken commercial feeds in Morogoro, Tanzania. Livest Res Rur Dev 25: 51.
17. Lalah JO, Omwoma S, Orony D (2019) Aflatoxin B1: Chemistry, environmental and diet sources and potential exposure in human in Kenya. In: Long X (ed) Aflatoxin B1 Occurrence, Detection and Toxicological Effects. IntechOpen, London, pp 1-33.
18. Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119: 131-139.
19. Mayahi M, Razi JM, Salamat N (2007) Isolation of Aspergillus spp and determination of aflatoxin level in fish meal, maize and soya meal. Chamran Univ J 17: 95-105.
20. Mohammadi S, Ghahremani E, Dehestaniathar S, Zandi S, Zakariai A, Mohammadi M, Karimi Z (2021) Determination of aflatoxin B1 concentration in poultry feed in the poultry farms of Sanandaj using ELISA method. Sci J Kurd Univ Med Sci 25: 49-56.
21. Mohsen AH, Mohsen IH, Risan MH (2022) Aflatoxins and its effect on human and animals: Article Review. World Bull Pub Health 10: 6-24.
22. Monge MP, Magnoli CE, Chiacchiera SM (2012) Survey of Aspergillus and Fusarium species and their mycotoxins in raw materials and poultry feeds from Córdoba, Argentina. Mycotoxin Res 28: 111-122.
23. National Standard of Iran (2009) determination of zearalenone by high performance liquid chromatography method and purification by immunoaffinity column – test method No 12257. http://www.isiri.org.
24. National Standard of Iran (2003) Measurement of Group B and G Aflatoxins by High Performance Liquid Chromatography and Purifi-cation with Immunoaffinity Column – Test Method No 6872. http://www.isiri.org.
25. Negash D (2018) A review of aflatoxin: occurrence, prevention, and gaps in both food and feed safety. Appl Microb Res 1: 35-43.
26. Nemati Z, Janmohammadi H, Taghizadeh A, Nejad HM, Mogaddam G, Arzanlou M (2014) Occurrence of aflatoxins in poultry feed and feed ingredients from northwestern Iran. Eur J Zool Res 3: 56-60.
27. Omotayo OP, Omotayo AO, Mwanza M, Babalola OO (2019) Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol Res 35: 1-7.
28. Rahimi E, Kargar A, Zamani F (2008) Assessment of aflatoxin B1 levels in animal feed of dairy farms in Chaharmahal & Bakhtiari. Vet Res Biol 79: 66-71.
29. Ropejko K, Twarużek M (2021) Zearalenone and its metabolites – general overview, occurrence, and toxicity. Tox 13: 35.
30. Shi J, He J, Lin J, Sun X, Sun F, Ou C, Jiang C (2016) Distinct response of the hepatic transcriptome to Aflatoxin B1 induced hepato-cellular carcinogenesis and resistance in rats. J Sci Rep 6: 34628.
31. Tahir NI, Hussain S, Javed M, Rehman H, Shahzady TG, Parveen B, Ali KG (2018) Nature of aflatoxins: Their extraction, analysis, and control. J Food Saf 38: e12561.
32. Waśkiewicz A, Goliński, P (2015) Mycotoxins in cereals and cereal products. In: Rios C (ed) Occurrence, toxicity and prevention. oc-currence, toxicology, and management strategies. Nova Science Publisher, New York, pp 55-97.
33. Xu R, Kiarie EG, Yiannikouris A, Sun L, Karrow NA (2022) Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J Anim Sci Biotechnol 13: 69.
34. Yiannikouris A, Jouany J (2002) Mycotoxins in feeds and their fate in animals: a review. Anim Res 51: 81-99.
35. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15: 129-144.
36. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and in-take of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45: 1-18.

Go to article

Authors and Affiliations

A. Sohrabi
1
M.H. Movassaghghazani
2
J. Shayegh
3
A.R. Karamibonari
3
F. Tajedini
4

  1. Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  2. Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  3. Department of Pathobiology, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  4. Department of Basic Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
Download PDF Download RIS Download Bibtex

Abstract

Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, despite the increasing incidence, still do not have a specific etiology. Diet seems to be an important factor, modifying the occurrence of the disease and its course. Diet can affect the symptoms of IBD both directly, e.g., by alleviating diarrhea, bloating and constipation, and indirectly by shaping the microbiota. Bacterial meta-bolites produced under the influence of supplied nutrients may contribute to the modulation of pro- and anti-inflammatory pathways, depending on the diet used. So far, IBD has been associated with weight loss and malnutrition. In recent years, a trend of sarcopenic obesity with concomitant malnutrition has been observed. The new phenomenon is called malnubesity. This work aims to review the most commonly used diets in IBD in order to evaluate them in terms of alleviating ailments, but also maintaining proper nutritional status and lack of obesity. Low-fiber, low FODMAPs, Mediterranean diet and Crohn’s Disease Exclusion Diet diet were considered. We assume that diet is modifiable factor that is related to nutritional status and healthy body weight. In addition, the current knowledge on the relationship between nutrition strategies, obesity and IBD will be demonstrated.
Go to article

Authors and Affiliations

Agnieszka Dąbek
1
Olga Kaczmarczyk
2
Tomasz Dziubyna
2
Agnieszka Piątek-Guziewicz
2
Małgorzata Zwolińska-Wcisło
1 2

  1. Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Gastroenterology and Hepatology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Round goby (Neogobius melanostomus (Pallas, 1814)) is an invasive species in the Oder River. In this study, age of 147 fish was determined using scales and otoliths, and the Fraser-Lee back-calculation method was used for population structure and theoretical length growth rates with 3 mathematical models of growth: von Bertalanffy, Ford–Walford and 2nd degree polynomial. Fish condition was determined using Fulton, Le Cren and Clark equations. Average total length and weight of fish was 162.00 mm and 83.00 g, respectively. Males were more abundant than females, representing 70% of the fish caught, and achieved greater total lengths and weights. Age 2+ dominated females and 3+ males age groups. Of the three mathematical models used to estimate fish growth, the 2nd degree polynomial model had the best fit to back-calculated lengths. Males had slightly higher growth rates than females in the first two years of life but comparable in subsequent years. The diet consisted of various benthic organisms that varied with fish age. The most frequently occurring food com-ponent was Dreissena polymorpha, which accounted for approximately 70% in the diet of fish with a body length greater than 191 mm.

Go to article

Authors and Affiliations

Agnieszka Rybczyk
ORCID: ORCID
Przemysław Czerniejewski
ORCID: ORCID
Sławomir Keszka
Mariola Janowicz
Adam Brysiewicz
ORCID: ORCID
Wawrzyniec Wawrzyniak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

With the improvement of people’s living standards and rapid economic development, the incidence of diabetes mellitus (DM) is increasing in most parts of the world. DM presents an important potential threat to human health. In the present study, a model of diabetes in female mice was established, and fasting blood glucose was detected at week 4, after which the biochemical profiles were evaluated by histopathological analysis. The success rate of modeling in the normal control (NC) group and the low/ middle/high-dose streptozotocin (STZ) group were 0, 0, 25% and 60%, respectively. In the middle-dose and high-dose STZ groups, the liver index was increased significantly compared with the NC group (p<0.05). The blood biochemical indicators of total cholesterol and low density lipoprotein cholesterol in three STZ injection groups were as follows: alanine aminotransferase and aspartate transaminase in middle- and high-dose STZ groups, high-density lipoprotein cholesterol and serum creatinine in the high-dose STZ group, and blood urea nitrogen in the middle-dose STZ group were significantly increased (p<0.05). The level of total triglycerides was lower, obviously, in the high-dose STZ group than in the NC group (p<0.05). The mice showed marked steatosis, green-dyed fiber tissue coloring in varying degrees, and the contour of the hepatic lobules basically disappeared in STZ injection groups. The results suggest that to establish a diabetes model for female ICR mice, the optimum dose of STZ is 100 mg/kg.
Go to article

Authors and Affiliations

R. Guo
1 2
J. Dong
3
D.Q. Wang
3
Y.F. Gu
1 2

  1. State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  2. Jinan Microecological Biomedicine Shandong Laboratory, No. 3716 Qingdao Road, Huaiyin District, Jinan City, Shandong Province, Solutia City Light West Building, 21F, Shandong Laboratory of Microecological Biomedicine, Jinan 250117, China
  3. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Download PDF Download RIS Download Bibtex

Abstract

Raw meat-based diets for pet nutrition are becoming increasingly popular. The percentage of meat content, composition of nutrients, and amount of additives started to play an important role in the recipe of a given food. However, the use of healthier and unprocessed food must also be balanced with the animal’s specific needs based on its anatomy, physiology, and behavior. There are many potential advantages and disadvantages of a biologically appropriate raw food (BARF) diet, and all of them should be considered before switching to this approach. Raw meat is considered a diet closest to nature and least processed. However, raw diets threaten pet health because of the potential for nutrient imbalances. The choice of raw meat in pets’ everyday diet should be supported by the veterinarian’s medical decision and preferably also with nutritionist help. Growing animals require a specific Ca:P ratio in their diet, which may be improper in raw meat. For cats, taurine levels must be carefully checked. In addition, an imbalanced raw-meat diet can be the cause of poor semen quality in males. Females are prone to inhibition of the estrus cycle, especially due to hyperthyroidism. Exogenous thyroid hormone intake is a real concern when feeding a neck/head meat with thyroid glands. There is also a possibility of bacterial or parasitic presence in raw meat. The present paper aims to summarize the current state of knowledge about the benefits and threats of eating a raw meat diet for the health concerns of companion animals.
Go to article

Bibliography

1. Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction – a review. Anim Re-prod Sci 146: 55-62.
2. Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, Duranti S, Turroni F, Ossiprandi MC, van Sinderen D, Ventura M (2019) Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. En-viron Microbiol 21: 1331-1343.
3. Anderson RC, Armstrong KM, Young W, Maclean P, Thomas DG, Bermingham EN (2018) Effect of kibble and raw meat diets on pe-ripheral blood mononuclear cell gene expression profile in dogs. Vet J 234: 7-10.
4. Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495: 360-364.
5. Bilezikian JP, Bandeira L, Khan A, Cusano NE (2018) Hyperparathyroidism. Lancet 391: 168-178.
6. Brozić D, Mikulec Ž, Samardžija M, Đuričić D, Valpotić H (2020) Raw meat-based diet (BARF) in dogs and cats nutrition. Vet J Rep Srp 19: 314-321.
7. Buff PR, Carter RA, Bauer JE, Kersey JH (2014) Natural pet food: a review of natural diets and their impact on canine and feline physi-ology. J Anim Sci 92: 3781-3791.
8. Cornelissen S, De Roover K, Paepe D, Hesta M, Van Der Meulen E, Daminet S (2014) Dietary hyperthyroidism in a rottweiler. Vlaams Diergeneeskundig Tijdschrift 83: 306-311.
9. Crissey SD, Swanson JA, Lintzenich BA, Brewer BA, Slifka KA (1997) Use of a raw meat-based diet or a dry kibble diet for sand cats (Felis margarita). J Anim Sci 75: 2154-2160.
10. Damodaran S (1996) Amino acids, peptides and proteins. In: Fennema RO (ed) Food Chemistry, 3rd ed., CRC Press, New York, pp 321-416 .
11. Davies RH, Lawes JR, Wales AD (2019) Raw diets for dogs and cats: a review, with particular reference to microbiological hazards. J Small Anim Pract 60: 329-339.
12. Dillitzer N, Becker N, Kienzle E (2011) Intake of minerals, trace elements and vitamins in bone and raw food rations in adult dogs. Br J Nutr 106 (Suppl 1): S53-56.
13. Di Cerbo A, Morales-Medina JC, Palmieri B, Pezzuto F, Cocco R, Flores G, Iannitti T (2017) Functional foods in pet nutrition: focus on dogs and cats. Res Vet Sci 112: 161-166.
14. Domosławska A, Zdunczyk S, Franczyk M, Kankofer M, Janowski T (2018) Selenium and vitamin E supplementation enhances the an-tioxidant status of spermatozoa and improves semen quality in male dogs with lowered fertility. Andrologia 50: e13023.
15. Domosławska A, Zduńczyk S, Nizański W, Jurczak A, Janowski T (2015) Effect of selenium and vitamin E supplementation on semen quality in dogs with lowered fertility. Bull Vet Inst Pulawy 59: 85-90.
16. Dyachenko V, Pantchev N, Gawlowska S, Vrhovec MG, Bauer C (2008) Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Vet Parasitol 157: 244-253.
17. Empert-Gallegos A, Hill S, Yam PS (2020) Insights into dog owner perspectives on risks, benefits, and nutritional value of raw diets compared to commercial cooked diets. PeerJ 8: e10383.
18. Fleischer S, Sharkey M, Mealey K, Ostrander EA, Martinez M (2008) Pharmacogenetic and metabolic differences between dog breeds: their impact on canine medicine and the use of the dog as a preclinical animal model. AAPS J 10: 110-119.
19. Frantz LA, Bradley DG, Larson G, Orlando L (2020) Animal domestication in the era of ancient genomics. Nat Rev Gene 21: 449-460.
20. Freeman LM, Chandler ML, Hamper BA, Weeth LP (2013) Current knowledge about the risks and benefits of raw meat-based diets for dogs and cats. J Am Vet Med Assoc 243: 1549-1558.
21. Hamper BA (2014) Raw meat-based diets: current evidence regarding benefits and risks. In: Purina Companion Animal Nutrition Sum-mit: Nutrition for Life, Austin, pp 99-107.
22. Hielm-Björkman A, Virtanen J (2013) Exploratory study: 632 shared experiences from dog owners changing their dogs’ food to a raw food (barf) diet. Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Finland 206: 2-3.
23. Howard J, Allen ME (2008) Nutritional factors affecting semen quality in felids. In: Fowler ME, Miller RE (eds) Zoo and Wild Animal Medicine: Current Therapy VI. Saunders, Elsevier Science, pp 272-283.
24. Huang HF, Dyrenfurth I, Hembree WC (1983) Endocrine changes associated with germ cell loss during vitamin A-induced recovery of spermatogenesis. Endocrinology 112: 1163-1171.
25. Johnston SD (1991) Clinical approach to infertility in bitches with primary anestrus. Vet Clin North Am Small Anim Pract 21: 421-425.
26. Kawaguchi K, Braga I, Takahashi A, Ochiai K, Itakura C (1993) Nutritional secondary hyperparathyroidism occurring in a strain of German shepherd puppies. Jpn J Vet Res 41: 89-96.
27. Kawakami E, Kobayashi M, Hori T, Kaneda T (2016) Therapeutic effects of vitamin E supplementation in 4 dogs with poor semen qual-ity and low superoxide dismutase activity in seminal plasma. J Vet Med Sci 77: 1711-1714.
28. Kerr KR, Beloshapka AN, Morris CL, Parsons CM, Burke SL, Utterback PL, Swanson KS (2013) Evaluation of four raw meat diets using domestic cats, captive exotic felids, and cecectomized roosters. J Anim Sci 91: 225-237.
29. Kienzle E (1993) Carbohydrate metabolism of the cat 1. Activity of amylase in the gastrointestinal tract of the cat. J Anim Physiol Animal Nutr 69: 91-101
30. Knize MG, Salmon CP, Felton JS (2003) Mutagenic activity and heterocyclic amine carcinogens in commercial pet foods. Mutat Res 539: 195-201.
31. Köhler B, Stengel C, Neiger-Casas R (2012). Dietary hyperthyroidism in dogs. J Small Anim Pract 53: 182-184.
32. Lawler DF, Bebiak DM (1986) Nutrition and management of reproduction in the cat. Vet Clin North Am Small Anim Pract 16: 495-519.
33. Lejeune JT, Hancock DD (2001) Public health concerns associated with feeding raw meat diets to dogs. J Am Vet Assoc 219: 1222-1225.
34. Loughrill E, Wray D, Christides T, Zand N (2017) Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: possible implications for bone health. Matern Child Nutr 13: e12368.
35. Morelli G, Bastianello S, Catellani P, Ricci R (2019) Raw meat-based diets for dogs: survey of owners’ motivations, attitudes and prac-tices. BMC Vet Res 15: 74.
36. Morris JG (2002) Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr Res Rev 15: 153-168.
37. Oba PM, Utterback PL, Parsons CM, Templeman JR, Swanson KS (2023) Standardized amino acid digestibility and nitrogen-corrected true metabolizable energy of frozen and freeze-dried raw dog foods using precision-fed cecectomized and conventional rooster assays. J Anim Sci 101: skad311.
38. Oswald H, Sharkey M, Pade D, Martinez MN (2015) Canine gastrointestinal physiology: breeds variations that can influence drug ab-sorption. Eur J Pharm Biopharm 97: 192-203.
39. Overgaauw PA (2020) Parasite risks from raw meat-based diets for companion animals. Comp Anim 25: 261-267.
40. Owens TJ, Fascetti AJ, Calvert CC, Larsen JA (2021) Rabbit carcasses for use in feline diets: amino acid concentrations in fresh and frozen carcasses with and without gastrointestinal tracts. Front Vet Sci 7: 592753.
41. Rampelli S, Turroni S, Debandi F, Alberdi A, Schnorr SL, Hofman CA, Taddia A, Helg R, Biagi E, Brigidi P, D’Amico F, Cattani M, Candela M (2021) The gut microbiome buffers dietary adaptation in bronze age domesticated dogs. iScience 24: 102816.
42. Schuller-Levis G, Mehta PD, Rudelli R Sturman J (1990) immunologic consequences of taurine deficiency in cats. J Leukoc Biol 47: 321-331.
43. Sontas HB, Schwendenwein I, Schäfer-Somi S (2014) Primary anestrus due to dietary hyperthyroidism in a miniature pinscher bitch. Can Vet J 55: 6-7.
44. Spitze AR, Wong DL, Rogers QR, Fascetti AJ (2003) Taurine concentrations in animal feed ingredients; cooking influences taurine con-tent. J Anim Physiol Anim Nutr 87: 7-8.
45. Strohmeyer RA, Morley PS, Hyatt DR, Dargatz DA, Scorza AV, Lappin MR (2006). Evaluation of bacterial and protozoal contamina-tion of commercially available raw meat diets for dogs. J Am Vet Med Assoc 228: 537-542.
46. Sturman JA, Moretz RC, French JH, Wisniewski HM (1985) Taurine deficiency in the developing cat: persistence of the cerebellar ex-ternal granule cell layer. J Neurosci Res 13: 405-416.
47. Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: mutagens/carcinogens produced during cooking of meet and fish. Cancer Sci 95: 290-299.
48. van Bree FP, Bokken GC, Mineur R, Franssen F, Opsteegh M, van der Giessen JW, Lipman LJ, Overgaauw PA (2018) Zoonotic bacte-ria and parasites found in raw meat-based diets for cats and dogs. Vet Rec 182: 50.
49. Verbrugghe A, Bakovic M (2013) Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipid-osis. Nutrients 5: 2811-2835.
50. Verbrugghe A, Hesta M (2017) Cats and carbohydrates: the carnivore fantasy? Vet Sci 4: 4: 55.
51. Westermarck E (1987) Treatment of pancreatic degenerative atrophy with raw pancreas homogenate and various enzyme preparations. Zentralb Veterinarmed A 34: 728-73
Go to article

Authors and Affiliations

D. Główny
1
N. Sowińska
2 4
A. Cieślak
3
M. Gogulski
4 5
K. Konieczny
1
M. Szumacher-Strabel
3

  1. Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Science, Department of Internal Diseases and Diagnostics, Poznan, Poland
  2. Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Science, Department of Genetics and Animal Breeding, Wołynska 33, 60-637 Poznan, Poland
  3. Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Science, Department of Animal Nutrition, Wołynska 33, 60-637 Poznan, Poland
  4. Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Science, University Centre of Veterinary Medicine, Poznan, Poland
  5. Poznan University of Life Sciences, Faculty of Veterinary Medicine and Animal Science, Department of Preclinical Sciences and Infectious Diseases, Poznan, Poland

This page uses 'cookies'. Learn more