Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 49
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents application of differential electronic nose in the dynamic (on-line) volatile measurement. First we compare the classical nose employing only one sensor array and its extension in the differential form containing two sensor arrays working in differential mode. We show that differential nose performs better at changing environmental conditions, especially the temperature, and well performs in the dynamic mode of operation. We show its application in recognition of different brands of tobacco

Go to article

Authors and Affiliations

S. Osowski
K. Siwek
T. Grzywacz
K. Brudzewski
Download PDF Download RIS Download Bibtex

Abstract

Is the category of “becoming” relative? This question accompanies the considerations undertaken in this article. It is the starting point for the reflection on the understanding of the designations of the expression “to become” in the metaphysical, epistemological and linguistic aspects. The results of this reflection are to serve adequate interpretations of the text. In the applicative part of the article both the fundamentals of text interpretation and the risks resulting from different cognitive perspectives are discussed. The source of these risks is seen primarily in misunderstanding the essence and the category of becoming.
Go to article

Authors and Affiliations

Grzegorz Pawłowski
1
ORCID: ORCID

  1. Uniwersytet Warszawski
Download PDF Download RIS Download Bibtex

Abstract

We investigate a scalar characteristic exponential polynomial with complex coefficients associated with a first order scalar differential-difference equation. Our analysis provides necessary and sufficient conditions for allocation of the roots in the complex open left half-plane what guarantees asymptotic stability of the differential-difference equation. The conditions are expressed explicitly in terms of complex coefficients of the characteristic exponential polynomial, what makes them easy to use in applications. We show examples including those for retarded PDEs in an abstract formulation.
Go to article

Authors and Affiliations

Rafał Kapica
1
ORCID: ORCID
Radosław Zawiski
2
ORCID: ORCID

  1. Faculty of Applied Mathematics, AGH University of Science and Technology, al.Mickiewicza 30, 30-059 Kraków
  2. Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice
Download PDF Download RIS Download Bibtex

Abstract

Currently, the Republic of Kazakhstan is developing a new standard for symmetric data encryption. One of the candidates for the role of the standard is the Qamal encryption algorithm developed by the Institute of Information and Computer Technologies (Almaty, Republic of Kazakhstan). The article describes the algorithm. Differential properties of the main operations that make up the Qamal cypher are considered in the questions of stability. We have shown that for a version with a 128-bit data block and the same secret key size for three rounds of encryption it is difficult to find the right pairs of texts with a probability of 2–120, which makes differential cryptanalysis not applicable to the Qamal cypher.

Go to article

Authors and Affiliations

Kunbolat T. Algazy
Ludmila K. Babenko
Rustem G. Biyashev
Evgeniya A. Ishchukova
Ryszard Romaniuk
Nursulu A. Kapalova
Saule E. Nysynbaeva
Andrzej Smolarz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental verification on using a zero-sum differential game and H control in the problems of tracking and stabilizing motion of a wheeled mobile robot (WMR). It is a new approach to the synthesis of input-output systems based on the theory of dissipative systems in the sense of the possibility of their practical application. This paper expands upon the problem of optimal control of a nonlinear, nonholonomic wheeled mobile robot by including the reduced impact of changing operating condtions and possible disturbances of the robot’s complex motion. The proposed approach is based on the H∞ control theory and the control is generated by the neural approximation solution to the Hamilton-Jacobi-Isaacs equation. Our verification experiments confirm that the H∞ condition is met for reduced impact of disturbances in the task of tracking and stabilizing the robot motion in the form of changing operating conditions and other disturbances, which made it possible to achieve high accuracy of motion.
Go to article

Bibliography

  1.  B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, “A novel potential field method for path planning of mobile robots by adapting animal motion attributes,” Rob. Auton. Syst., vol. 82, pp. 24–34, 2016, doi: 10.1016/j.robot.2016.04.007.
  2.  A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review,” Int. Robotics Autom. J., vol. 2, no. 3, pp. 96–105, 2017, doi: 10.15406/iratj.2017.02.00023.
  3.  R.C. Arkin, Behavior-based robotics. The MIT Press, 1998.
  4.  M. Szuster and Z. Hendzel, Intelligent Optimal Adaptive Control for Mechatronic Systems. Springer, 2018.
  5.  M.J. Giergiel, Z. Hendzel, and W. Żylski, Modeling and control of mobile wheeled robots. PWN, 2013, [in Polish].
  6.  P. Bozek, Y.L. Karavaev, A.A. Ardentov, and K.S. Yefremov, “Neural network control of a wheeled mobile robot based on optimal tra- jectories,” Int. J. Adv. Rob. Syst., vol. 17, no. 2, pp. 1–10, 2020, doi: 10.1177/1729881420916077.
  7.  P. Gierlak and Z. Hendzel, Control of wheeled and manipulation robots. Publishing House Rzeszow Univ. of Technology, 2011, [in Polish].
  8.  B. Kiumarsi, K.G. Vamvoudakis, H. Modares, and F.L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2018.
  9.  F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal control. John Wiley & Sons, 2012.
  10.  K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010.
  11.  F.-Y.Wang, H. Zhang, and D. Liu, “Adaptive Dynamic Programming: An Introduction,” IEEE Comput. Intell. Mag., vol. 4, no.  May, pp. 39–47, 2009.
  12.  A.G. Barto, W. Powell, J. Si, and D.C. Wunsch, Handbook of learning and approximate dynamic programming. Wiley-IEEE Press, 2004.
  13.  D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic Programming with Applications in Optimal Control. Springer, Advances in Industrial Control, 2017.
  14.  A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing, 2017.
  15.  B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control. Springer-Verlag London, 2007.
  16.  A.W. Starr and Y.C. Ho, “Nonzero-sum differential games,” J. Optim. Theory Appl., vol. 3, no. 3, pp. 184–206, 1969.
  17.  M. Abu-Khalaf, J. Huang, and F.L. Lewis, Nonlinear H2 Hinf Constrained Feedbacka Control. Springer-Verlag London, 2006.
  18.  D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm,” Neurocomputing, vol. 110, pp.  92–100, 2013.
  19.  C. Qin, H. Zhang, Y. Wang, and Y. Luo, “Neural network-based online Hinf control for discrete-time affine nonlinear system using adaptive dynamic programming,” Neurocomputing, vol. 198, pp.  91–99, 2016.
  20.  D. Liu, H. Li, and D. Wang, “Hinf control of unknown discretetime nonlinear systems with control constraints using adaptive dynamic programming,” in The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–6.
  21.  Z. Hendzel and P. Penar, “Zero-Sum Differential Game in Wheeled Mobile Robot Control,” Int. Conf. Mechatron., vol. 934, pp. 151–161, 2017.
  22.  Z. Hendzel, “Optimality in Control for Wheeled Robot,” Adv Intell. Syst. Comput.: Autom. 2018, vol. 743, pp. 431–440, 2018.
  23.  Y. Fu and T. Chai, “Online solution of two-player zero-sum games for continuous-time nonlinear systems with completely unknown dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2577–2587, 2015.
  24.  K.G. Vamvoudakis and F.L. Lewis, “Online solution of nonlinear two-player zero-sum games using synchronous policy iteration,” Int. Robust. Nonlinear Control, vol. 22, pp. 1460–1483, 2012.
  25.  S. Yasini, A. Karimpour, M.-B. Naghibi Sistani, and H. Modares, “Online concurrent reinforcement learning algorithm to solve two-player zero-sum games for partially unknown nonlinear continuous-time systems,” Int. J. Adapt Control Signal Process., vol. 29, no. 4, pp. 473– 493, 2015.
  26.  B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning for Hinf control design,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 65–76, 2014.
  27.  H.-N. Wu and B. Luo, “Neural Network Based Online Simultaneous Policy Update Algorithm for Solving the HJI Equation in Nonlinear Hinf Control,” IEEE Trans. Neural Netw. Learn. Syst., vol.  23, no. 12, pp. 1884–1895, 2012.
  28.  Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 714–725, 2016.
  29.  J. Zhao, M. Gan, and C. Zhang, “Event-triggered Hinf optimal control for continuous-time nonlinear systems using neurodynamic pro- gramming,” Neurocomputing, vol. 360, pp. 14–24, 2019.
  30.  B. Dong, T. An, F. Zhou, S. Wang, Y. Jiang, K. Liu, F. Liu, H. Lu, and Y. Li, “Decentralized Robust Optimal Control for Modular Robot Manipulators Based on Zero-Sum Game with ADP,” in International Symposium on Neural Networks. Springer, 2019, pp. 3–14.
  31.  H. Modares, F.L. Lewis, and Z.-P. Jiang, “Hinf Tracking Control of Completely Unknown Continuous-Time Systems via Off-Policy Reinforcement Learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2550–2562, 2015.
  32.  J.C. Willems, “Dissipative Dynamical Systems. Part I: General Theory,” Arch. Ration. Mech. Anal., vol. 45, pp.  321–351, 1972.
  33.  D.J. Hill and P.J. Moylan, “Dissipative Dynamical Systems: Basic Input-Output and State Properties,” J. Franklin Inst., vol. 305, no.  5, pp. 327–357, 1980.
  34.  A.J. van der Schaft, “L2-gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hinf Control,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770–784, 1992.
  35.  S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnam, Linear Matrix Inequalities in System and Control Theory. SIAM studies in applied mathematics: 15, 1994.
  36.  S. Yasini, M.B.N. Sistani, and A. Karimpour, “Approximate dynamic programming for two-player zero-sum game related to Hinf control of unknown nonlinear continuous-time systems,” Int. J. Control Autom. Syst., vol. 13, no. 1, pp. 99–109, 2014.
  37.  W. Zylski, Kinematics and dynamics of mobile wheeled robots. Publishing House Rzeszow Univ. of Technology, 1996, [in Polish].
  38.  J. Giergiel and W. Żylski, “Description of motion of a mobile robot by Maggie’s equations,” J. Theor. Appl. Mech., vol. 43, no. 3, pp. 511–521, 2005.
  39.  J. Garca De Jaln, A. Callejo, and A.F. Hidalgo, “Efficient solution of Maggi’s equations,” J. Comput. Nonlinear Dyn., vol. 7, no. 2, 2012, doi: 10.1115/1.4005238.
  40.  A. Kurdila, J.G. Papastavridis, and M.P. Kamat, “Role of Maggi’s equations in computational methods for constrained multibody systems,” J. Guidance Control Dyn., vol. 13, no. 1, pp. 113–120, 1990, doi: 10.2514/3.20524.
  41.  DS1103, Hardware Installation and Configuration. dSpace, 2009.
  42.  ActiveMedia, Pioneer 2DX Operation Manual Peterborough, 1999.
Go to article

Authors and Affiliations

Zenon Hendzel
1
ORCID: ORCID
Paweł Penar
1

  1. Department of Applied Mechanics and Robotics, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the formulation, the existence, uniqueness and stability of solutions and parameter perturbation analysis to Riemann-Liouville fractional differential equations with integro-differential boundary conditions are discussed by the properties of Green’s function and cone theory. First, some theorems have been established from standard fixed point theorems in a proper Banach space to guarantee the existence and uniqueness of positive solution. Moreover, we discuss the Hyers-Ulam stability and parameter perturbation analysis, which examines the stability of solutions in the presence of small changes in the equation main parameters, that is, the derivative order η, the integral order β of the boundary condition, the boundary parameter ξ , and the boundary value τ. As an application, we present a concrete example to demonstrate the accuracy and usefulness of the proposed work. By using numerical simulation, we obtain the figure of unique solution and change trend figure of the unique solution with small disturbances to occur in different kinds of parameters.
Go to article

Authors and Affiliations

Nan Zhang
1
Lingling Zhang
2
ORCID: ORCID
Mercy Ngungu
3
Adejimi Adeniji
4
Emmanuel Addai
2

  1. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, ChinaCollege of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  2. College of Mathematics, Taiyuan University of Technology, 030024, TaiYuan, Shanxi, China
  3. Human Sciences Research Council (HSRC), South Africa
  4. Tshwane university of Technology, South Africa
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the nonlinear Cucker–Smale optimal control problem under the interplay of memory effect. The aforementioned effect is included by employing the Caputo fractional derivative in the equation representing the velocity of agents. Sufficient conditions for the existence of solutions to the considered problem are proved and the analysis of some particular problems is illustrated by two numerical examples.

Go to article

Authors and Affiliations

Ricardo Almeida
Rafał Kamocki
Agnieszka B. Malinowska
Tatiana Odzijewicz
Download PDF Download RIS Download Bibtex

Abstract

A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion, MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables efficient signal preprocessing for spectrograms.
Go to article

Authors and Affiliations

Meng-Lun Hsueh
1
Jin-Peng Chen
2
Bing-Yuh Lu
2
Huey-Dong Wu
3
Pei-Yi Liu
2

  1. Graduate Institute of Intelligent Robotics, Hwa Hsia University of Technology, New Taipei City, Taiwan
  2. Faculty of Automation, Guangdong University of Petrochemical Technology, Guangdong, China
  3. Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of numerical calculations and experimental data on the directional pattern of two 38-element parametric arrays composed of ultrasound sources. Two types of antenna arrays are considered, namely with parallel and coaxial connections of ultrasonic transducers (elements). The results of selecting and functional testing of unit elements are described in this paper. It is found that in the coaxial element connection of the antenna array, the level of side lobes is higher than that in the parallel element connection.

Go to article

Authors and Affiliations

Denis S. Rakov
Aleksandr S. Rakov
Andrey N. Kudryavtsev
Nikolay P. Krasnenko
Yury A. Chursin
Maksim A. Murin
Download PDF Download RIS Download Bibtex

Abstract

The degradation process of wind turbines is greatly affected by external factors. Wind turbine maintenance costs are high. The regular maintenance of wind turbines can easily lead to over and insufficient maintenance. To solve the above problems, a stochastic degradation model (SDE, stochastic differential equation) is proposed to simulate the change of the state of the wind turbine. First, the average degradation trend is obtained by analyzing the properties of the stochastic degradation model. Then the average degradation model is used to describe the predictive degradation model. Then analyze the change trend between the actual degradation state and the predicted state of the wind turbine. Secondly, according to the update process theory, the effect of maintenance on the state of wind turbines is comprehensively analyzed to obtain the availability. Then based on the average degradation process, the optimal maintenance period of the wind turbine is obtained. The optimal maintenance time of wind turbines is obtained by optimizing the maintenance cycle through availability constraints. Finally, an onshore wind turbine is used as an example to verification. Based on the historical fault data of wind turbines, the optimized maintenance decision is obtained by analyzing the reliability and maintenance cost of wind turbines under periodic and non-equal cycle conditions. The research results show that maintenance based on this model can effectively improve the performance of wind turbines and reduce maintenance costs.
Go to article

Bibliography

[1] Tchakoua P., Wamkeue R., Ouhrouche M. et al., Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges, Energies, vol. 7, no. 4, pp. 2595–2630 (2014).
[2] Su C., Hu Z.Y., Reliability assessment for Chinese domestic wind turbines based on data mining techniques, Wind Energy, vol. 21, no. 3, pp. 198–209 (2018).
[3] Zhao Hongshan, Zhang Jianping, Gao Duo et al., A condition based opportunistic maintenance strategy for wind turbine, Proceedings of the CSEE, vol. 35, no. 15, pp. 3851–3858 (2015).
[4] ChengYujing, Optimization maintenance research of wind turbines pitch system based on opportunistic maintenance strategy, Shanghai, Shang Hai Dianji University (2013).
[5] Li Hui, Yang Chao, Li Xuewei et al., Conditions characteristic parameters mining and outlier identification for electric pitch system of wind turbine, Proceedings of the CSEE, vol. 34, no. 12, pp. 1922–1930 (2014).
[6] Besnard F., Bertling L., An approach for condition-based maintenance optimization applied to wind turbine blades, IEEE Transactions on Sustainable Energy, vol. 1, no. 2, pp. 77–83 (2010).
[7] Liu Lujie, FuYang,Ma Shiwei et al., Maintenance strategy for offshore wind turbine based on condition monitoring and prediction, Power System Technology, vol. 39, no. 11, pp. 3292–3297 (2015).
[8] Suprasad V., Amari Leland Mclaughlin, Hoang Pham, Cost-effective condition-based maintenance using Markov decision processes, Reliability and Maintainability Symposium, pp. 464–469 (2006).
[9] Zhao Hongshan, Zhang Jianping, Gao Duo et al., A condition based opportunistic maintenance strategy for wind turbine under imperfect maintenance, Proceedings of the CSEE, vol. 36, no. 3, pp. 3851–3858 (2016).
[10] Li Dazi, Feng Yuanyuan, Liu Zhan et al., Reliability modeling and maintenance strategy optimization for wind power generation sets, Power System Technology, vol. 35, no. 9, pp. 122–127 (2011).
[11] Fu Yang, Xu Weixin, Liu Lujie et al., Optimization of preventive opportunistic maintenance strategy for offshore wind turbine considering weather conditions, Proceedings of the CSEE, vol. 38, no. 20, pp. 5947–5956 (2018).
[12] Tian Z., Jin T., Wu B. et al., Condition based maintenance optimization for wind power generation systems under continuous monitoring, Renewable Energy, vol. 36, no. 5, pp. 1502–1509 (2011).
[13] Yildirim M., Gebraeel N., Sun X., Integrated Predictive Analytics and Optimization for Opportunistic Maintenance and Operations in Wind Farms, IEEE Transactions on Power Systems, pp. 4319–4328 (2017).
[14] Elwany A.H., Gebraeel N.Z., Sensor-driven prognostic models for equipment replacement and spare parts inventory, IIE Transactions, vol. 40, no. 7, pp. 629–639 (2008).
[15] Liu Haiqing, Lin Weijian, Li Yuancheng, Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm, Archives of Electrical Engineering, vol. 69, no. 2, pp. 271–286 (2020).
[16] Wang Shaohua, Zhang Yaohui et al., Optimal condition-based maintenance decision-making method of multi-component system based on simulation, Acta Armamentarii, vol. 38, no. 3, pp. 568–575 (2017).
[17] Liu Junqiang, Xie Jianwei et al., Residual lifetime prediction for aeroengines based on wiener process with random effect, Acta Aeronautica et Astronautica Sinica, vol. 36, no. 2, pp. 564–574 (2015).
[18] Palmer T.N., A nonlinear dynamical perspective on model error; A proposal for non-local stochasticdynamic parametrization in weather and climate prediction models, Quarterly Journal of the Royal Meteorological Society, vol. 127, no. 572, pp. 279–304 (2010).
[19] Gong Guanglu, Qian Minping, Application of stochastic process tutorial and its stochastic models in algorithms and intelligent computing, Beijing, Tsinghua University Press (2004).
[20] Rausand M., System Reliability Theory: Models, Statistical Methods, and Applications, 2nd Edition, Statistical methods in reliability theory and practice, E. Horwood (2004).
[21] Su Hongsheng, Control strategy on preventive maintenance of repairable device, Journal of Zhejiang University (Engineering Science), vol. 44, no. 7, pp. 1308–1314 (2010).

Go to article

Authors and Affiliations

Hongsheng Su
1
Xuping Duan
1
ORCID: ORCID
Dantong Wang
1

  1. Lanzhou Jiaotong University, China
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibility of automatically linearizing nonlinear models. Constructing a linearised model for a nonlinear system is quite labor-intensive and practically unrealistic when the dimension is greater than 3. Therefore, it is important to automate the process of linearisation of the original nonlinear model. Based on the application of computer algebra, a constructive algorithm for the linearisation of a system of non-linear ordinary differential equations was developed. A software was developed on MatLab. The effectiveness of the proposed algorithm has been demonstrated on applied problems: an unmanned aerial vehicle dynamics model and a twolink robot model. The obtained linearized models were then used to test the stability of the original models. In order to account for possible inaccuracies in the measurements of the technical parameters of the model, an interval linearized model is adopted. For such a model, the procedure for constructing the corresponding interval characteristic polynomial and the corresponding Hurwitz matrix is automated. On the basis of the analysis of the properties of the main minors of the Hurwitz matrix, the stability of the studied system was analyzed.
Go to article

Authors and Affiliations

Aigerim Mazakova
3
Sholpan Jomartova
3
Waldemar Wójcik
2
Talgat Mazakov
1
Gulzat Ziyatbekova
1

  1. Institute of Information and Computational Technologies CS MES RK, Al-Farabi Kazakh National University, Kazakhstan
  2. Lublin Technical University, Poland
  3. Al-Farabi Kazakh NationalUniversity, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Growth differentiation factor-9 (GDF-9), an oocyte-derived member of the TGF-β superfamily, plays an essential role in regulation of follicular development. This study aimed to determine the cyclic changes in serum GDF-9 concentration, compare its levels before and after ovariohysterectomy (OHE), and investigate its potential as a tool in ovarian remnant syndrome (ORS) diagnosis in cats. GDF-9 measurements were performed on 50 cats referred for routine OHE. The stage of the estrous cycle was determined by vaginal cytology and measurement of serum estradiol and progesterone levels was carried out to detect the cyclic changes in circulating GDF-9. One week after OHE, serum samples were collected again from 30 cats to reveal differences in GDF-9 levels. GDF-9 levels in the follicular phase were significantly higher than those in the interestrus (p<0.05). The postoperative analysis could be performed. GDF-9 levels slightly decreased one week after OHE (p=0.053). In conclusion, blood GDF-9 levels change during the estrous cycle, and may decrease with age in cats. However, further studies are needed to reveal the efficiency of GDF-9 in ORS diagnosis.
Go to article

Bibliography

Axner E, Gustavsson T, Holst BS (2008) Estradiol measurement after GnRH-stimulation as a method to diagnose the presence of ovaries in the female domestic cat. Theriogenology 70: 186-191.
Axner E, Holst BS (2015) Concentrations of anti-Müllerian hormone in the domestic cat. Relation with spay or neuter status and serum estradiol. Theriogenology 83: 817-821.
Ball RL, Birchard SJ, May LR, Threlfall WR, Young GS (2010) Ovarian remnant syndrome in dogs and cats: 21 cases (2000-2007). J Am Vet Med Assoc 236: 548-553.
Belhan S, Gulyuz F (2013) Reproductive development in prepubertal Van cats. YYU Vet Fak Derg 24: 61-67.
Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR (1999) Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod 60: 381-386.
Bristol SK, Woodruff TK (2004) Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary. Biol Reprod 70: 846-859.
Bristol-Gould S, Woodruff TK (2006) Folliculogenesis in the domestic cat (Felis catus). Theriogenology 66: 5-13.
Davis KA, Klohonatz KM, Mora DS, Twenter HM, Graham PE, Pinedo P, Eckery DC, Bruemmer JE (2018) Effects of immunization against bone morphogenetic protein-15 and growth differentiation factor-9 on ovarian function in mares. Anim Reprod Sci 192: 69-77.
Dal GE, Alcigir E, Polat IM, Vural SA, Canatan HE, Vural MR, Kuplulu S (2013) Granulosa theca cell tumor in an Arabian mare: are immunohistochemically loss of GDF-9 and BMP-6 proteins associated with high GATA-4, inhibin-α, AMH expressions? Kafkas Univ Vet Fak Derg 19 (Supple-A): A237-A242.
DeNardo GA, Becker K, Brown NO, Dobbins S (2001) Ovarian remnant syndrome: Revascularization of free-floating ovarian tissue in the feline abdominal cavity. J Am Anim Hosp Assoc 37: 290-296.
Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383: 531-535.
Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM (1999) Paracrine actions of growth differentiation factor- 9 in the mammalian ovary. Mol Endo 13: 1035-1048.
Feldman EC, Nelson KW (1996) Canine and feline endocrinology and reproduction, 1st ed., Philadelphia, PA, WB Saunders Co. pp: 741-768.
Fernandez T, Palomino J, Parraguez VH, Peralta OA, De los Reyes M (2016) Differential expression of GDF-9 and BMP-15 during follicular development in canine ovaries evaluated by flow cytometry. Anim Reprod Sci 167: 59-67.
Goodrowe KL, Howard JG, Schmidt PM, Wildt DE (1989) Reproductive biology of the domestic cat with special reference to endocrinology, sperm function and in-vitro fertilization. J Reprod Fert Suppl 39: 73-90.
Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM (2004) Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 70: 900-909.
Howe LM (2006) Surgical methods of contraception and sterilization. Theriogenology 66: 500–509.
Hu DL, Lii QF, Xu YF, Li EL, Han YD, Tu F, Xie Z (2010) The tissue expression profile, mRNA expression level and SNPs analysis on GDF9 gene in Hu sheep. J Agric Biotechnol 18: 533–538.
Juengel JL, McNatty KP (2005) The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 11: 143-160.
Knight PG, Glister C (2003) Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci 78: 165-183.
Kochan J, Nowak A, Mlodawska W, Prochowska S, Partyka A, Skotnicki J, Nizanski W (2021) Comparison of the morphology and developmental potential of oocytes obtained from prepubertal and adult domestic and wild cats. Animals 11: 20.
Little SE (2012) Female Reproduction. In: Little, SE (Ed.), The Cat. 1st ed., St. Louis, Missouri, W.B. Saunders. pp: 1195-1227.
Malandain E, Rault D, Froment E, Baudon S, Desquilbet L, Begon D, Chastant-Maillard S (2011) Follicular growth monitoring in the female cat during estrus. Theriogenology 76: 1337-1346.
McGrath SA, Esquela AF, Lee SJ (1995) Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9: 131–136.
McPherron AC, Lee SJ (1993) GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem 268: 3444-3449.
Miller DM (1995) Ovarian remnant syndrome in dogs and cats: 46 cases (1988-1992). J Vet Diagn Invest 7: 572-574.
Olivera KS, Silva MA, Brun MV, Perez-Gutierrez JF, Toniollo GH (2012) Ovarian remnant syndrome in small animals. Semina: Cienc. Agrar 33: 363-380.
Palomino J, De los Reyes M (2016) Temporal expression of GDF-9 and BMP-15 mRNA in canine ovarian follicles. Theriogenology 86: 1541-1549.
Pir Yagci I, Polat IM, Pekcan M (2016) Evaluation of age related anti-Müllerian hormone variations in domestic cat. Kafkas Univ Vet Fak Derg 22: 729-732.
Polat IM, Alcigir E, Pekcan M, Vural SA, Ozenc E, Canatan HE, Kuplulu S, Dal GE, Yazlik MO, Baklaci C, Vural MR (2015) Characterization of transforming growth factor beta superfamily, growth factors, transcriptional factors, and lipopolysaccharide in bovine cystic ovarian follicles. Theriogenology 84: 1043-1052.
Riepsamen AH, Chan K, Lien S, Sweeten P, Donoghoe MW, Walker G, Fraison EH, Stocker WA, Walton KL, Harrison CA, Ledger WL, Robertson DM, Gilchrist RB (2019) Serum concentrations of oocyte-secreted factors BMP15 and GDF9 during IVF and in women with reproductive pathologies. Endocrinology 160: 2298-2313.
Sontas BH, Gurbulak K, Ekici H (2007) Ovarian remnant syndrome in the bitch: a literature review. Arch Med Vet 39: 99-104.
Stefaniuk-Szmukier M, Ropka-Molik K, Zagrajczuk A, Piórkowska K, Szmatoła T, Łuszczyński J, Bugno- -Poniewierska M (2018) Genetic variability in equine GDF9 and BMP15 genes in Arabian and Thoroughbred mares. Ann Anim Sci 18: 39-52.
Tang J, Hu W, Di R, Liu Q, Wang X, Zhang X, Zhang J, Chu M (2018) Expression analysis of the prolific candidate genes, BMPR1B, BMP15, and GDF9 in small tail Han ewes with three fecundity (FecB gene) genotypes. Animals 8: 166.
Wallace MS (1991) The ovarian remnant syndrome in the bitch and queen. Vet Clin North Am Small Anim Pract 21: 501507.
Wang Y, Nicholls PK, Stanton PG, Harrison CA, Sarraj M, Gilchrist RB, Findlay JK Farnworth PG (2009) Extra-ovarian expression and activity of growth differentiation factor 9. J Endocrinol 202: 419-430.
Wildt DE, Chan SY, Seager SW, Chakraborty PK (1981) Ovarian activity, circulating hormones, and sexual behavior in the cat. I. Relationships during the coitus-induced luteal phase and the estrous period without mating. Biol Reprod 25: 15–28.
Yılmaz OT, Toydemir TS, Kirsan I, Ucmak ZG, Karacam EC (2015) Anti-Müllerian hormone as a diagnostic tool for ovarian remnant syndrome in bitches. Vet Res Commun 39: 159-162.
Zhao L, He J, Guo Q, Wen X, Zhang X, Dong C (2011) Expression of growth differentiation factor 9 (GDF9) and its receptor in adult cat testis. Acta Histochem 113: 771-776.
Go to article

Authors and Affiliations

G. Evkuran Dal
1
A. Baykal
1
T.S.F. Toydemir Karabulut
1
N. Dokuzeylul Gungor
2
O. Turna
1

  1. Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, 34320, Istanbul, Avcilar, Turkey
  2. Department of Reproductive Endocrinology and IVF, Medical Park Goztepe Hospital, Bahcesehir University, 34732, Istanbul, Kadikoy, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The major challenge faced by electronic device designers is to defend the system from attackers and malicious modules called Hardware Trojans and to deliver a secured design. Although there are many cryptographic preventive measures in place adversaries find different ways to attack the device. Differential Power Analysis (DPA) attack is a type of Side Channel Attacks, used by an attacker to analyze the power leakage in the circuit, through which the functionality of the circuit is extracted. To overcome this, a lightweight approach is proposed in this paper using, Wave Dynamic Differential Logic (WDDL) technique, without incurring any additional resource cost and power. The primary objective of WDDL is to make the power consumption constant of an entire circuit by restricting the leakage power. The alternate strategy used by an adversary is to leak the information through reverse engineering. The proposed work avoids this by using a bit sequencer and a modified butterfly PUF based randomizing architecture. A modified version of butterfly PUF is also proposed in this paper, and from various qualitative tests performed it is evident that this PUF can prevent information leakage. This work is validated on ISCAS 85, ISCAS 89 benchmark circuits and the results obtained indicate that the difference in leakage power is found to be very marginal.
Go to article

Authors and Affiliations

Mohankumar N.
1
Jayakumar M.
1
Nirmala Devi M.
1

  1. Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa, Vidyapeetham, India
Download PDF Download RIS Download Bibtex

Abstract

Newcastle disease (ND) is a highly contagious and economically important disease in the poultry industry caused by avian avulavirus-1, historically known as Newcastle disease virus (NDV). Control of ND primarily relies on prophylactic vaccination of flocks, and many vaccines are available on the market, both conventional and more recently introduced new generation recombinant types. To assess the protection level achieved by vaccination ELISA tests are typically used, they also are to track an infection with field strains in non-vaccinated flocks. Special modifications of ELISA can be used as a screening tool to detect infection in flocks vaccinated with new generation vaccines. In this study, we have developed an ELISA test for the detection of antibodies against the nucleoprotein (NP) of NDV and for differentiation of chickens vaccinated with commercial and prototype in-house recombinant vector vaccines from those infected with field NDV strains. The NP gene of LaSota NDV strain expressed in a baculovirus vector was used as a coating antigen in the ELISA. The developed test was optimized, validated and compared to other serological tests. The sensitivity, specificity and accuracy of recombinant NP protein-based ELISA were respectively 96.1%, 96.3%, and 96.2%. Inter-rater (kappa) agreement between the NP-ELISA and the gold standard HI test was calculated to be 0.995. In our comparisons, commercially available ELISA tests revealed different specificities ranging from 95.5–100% and sensitivities at variance, ranging from 90.1 to 99.0%. A high level of maternally derived antibodies was measured in the serum of 1-day-old broilers in the NP-ELISA assay. These antibodies had disappeared and were undetected at 3, 5 and 6 weeks post-vaccination but birds became positive again at 2 weeks after control infection with a velogenic NDV strain. In SPF chickens, antibodies against NP protein were detected only after a challenge. The recombinant NP protein-based ELISA test is sensitive, specific and accurate when compared to the gold standard HI test and commercially available kits. Moreover, the method could be also used for the differentiation between vaccinated and infected birds.

Go to article

Authors and Affiliations

K. Domańska-Blicharz
J. Tyborowska
J. Sajewicz-Krukowska
M. Olszewska-Tomczyk
Ł. Rąbalski
K. Kucharczyk
B. Szewczyk
K. Śmietanka
Download PDF Download RIS Download Bibtex

Abstract

Numerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending its cost function by a relationship directly inspired by the physical formula. This publication explains the concept of Physics-guided neural networks (PGNN), makes an overview of already proposed solutions in the field and describes possibilities of implementing physics-based loss functions for spatial analysis. Our approach shows that the model predictions are not only optimal but also scientifically consistent with domain specific equations. Furthermore, we present two applications of PGNNs and illustrate their advantages in theory by solving Poisson’s and Burger’s partial differential equations. The proposed formulas describe various real-world processes and have numerous applications in the area of applied mathematics. Eventually, the usage of scientific knowledge contained in the tailored cost functions shows that our methods guarantee physics-consistent results as well as better generalizability of the model compared to classical, artificial neural networks.
Go to article

Bibliography

  1.  R. Vinuesa et al., “The role of artificial intelligence in achieving the Sustainable Development Goals,” Nat. Commun., vol. 11, no. 1, pp. 1‒10, 2020.
  2.  M. Grochowski, A. Kwasigroch, and A. Mikołajczyk, “Selected technical issues of deep neural networks for image classification purposes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 363–376, 2019.
  3.  T. Poggio and Q. Liao, “Theory II: Deep learning and optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 775–787, 2018.
  4.  A. Lüdeling, M. Walter, E. Kroymann, and P. Adolphs, “Multilevel error annotation in learner corpora,” Proc. Corpus Linguistics Conf., vol. 1, pp. 14–17, 2005.
  5.  A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning in image classification problem,” Proc. Int. Interdiscipl. PhD Workshop (IIPhDW), 2018, pp. 117–122.
  6.  A.W. Moore and M.S. Lee, “Efficient algorithms for minimizing cross validation error,” Proc. 11th Int’l Conf. Machine Learning, 1994, pp. 190–198.
  7.  J.M. Benitez, J.L. Castro, and I. Requena, “Are artificial neural networks black boxes?,” IEEE Trans. Neural Networks, vol. 8, pp. 1156– 1164, 1997.
  8.  T. Hagendorff, “The ethics of AI ethics: An evaluation of guidelines,” Minds Mach., vol. 30, pp. 99–120, 2020.
  9.  T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: Beware of inmates running the asylum,” Proc. IJCAI Workshop Explainable AI (XAI), 2017, pp. 36–42.
  10.  A. Rai, “Explainable AI: from black box to glass box,” Journal of the Academy of Marketing Science, vol. 48, pp. 137–141, 2020.
  11.  G. Shortley and G. Weller, “Numerical solution of Laplace’s equation,” J. Appl. Phys., vol. 9, no. 1, pp. 334–336, 1938.
  12.  R.C. Mittal and P. Singhal, “Numerical solution of Burger’s equation,” Commun. Numer. Methods Eng., vol. 9, no. 5, pp. 397–406, 1993.
  13.  R. French, “Subcognition and the limits of the Turing test,” Mind, vol. 99, no. 393, pp. 53–65, 1990.
  14.  J. McCarthy, “What is artificial intelligence?,” 1998.
  15.  I. Rojek, M. Macko, D. Mikołajewski, M. Saga, and T. Burczyński, “Modern methods in the field of machine modelling and simulation as a research and practical issue related to industry 4.0,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136717, 2021.
  16.  A. Karpatne, W. Watkins, J. Read, and V. Kumar, “Physicsguided neural networks (PGNN): An application in lake temperature modeling,” 2017, [Online], Available: http://arxiv.orgabs/1710.11431.
  17.  J. Willard et al., “Integrating Physics-Based Modeling with Machine Learning: A Survey,” 2020, [Online], Available: http://arxiv.org/abs/2003.04919.
  18.  X. Jia et al., “Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles,” Proc. SIAM Int. Conf. Data Mining, pp.  558–566, 2019.
  19.  A. Daw et al., “Physics-Guided Architecture (PGA) of neural networks for quantifying uncertainty in lake temperature modeling,” Proc. SIAM Int. Conf. Data Mining, pp.  532–540, 2020.
  20.  Y. Yang and P. Perdikaris, “Physics-informed deep generative models,” 2018, [Online], Available: http://arxiv.org/abs/1812. 03511.
  21.  R. Singh, V. Shah, B. Pokuri, and S. Sarkar, “Physics-aware deep generative models for creating synthetic microstructures,” 2018, [Online], Available: http://arxiv.org/abs/1811.09669.
  22.  L. Wang, Q. Zhou, and S. Jin, “Physics-guided deep learning for power system state estimation,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 4, pp. 607–615, 2020.
  23.  N. Muralidhar et al., “Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids,” 2019, [Online], Available: http://arxiv.org/abs/1911.04240.
  24.  J. Park and J. Park, “Physics-induced graph neural network: An application to wind-farm power estimation,” Energy, vol. 187, p. 115883, 2019.
  25.  R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “Towards physics-informed deep learning for turbulent flow prediction,” Proc. 26th SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2020, pp. 1457–1466.
  26.  T. Yang et al., “Evaluation and machine learning improvement of global hydrological model-based flood simulations,” Environ. Res. Lett., vol. 14, no. 11, p. 114027, 2019.
  27.  Y. Zhang et al., “Pgnn: Physics-guided neural network for fourier ptychographic microscopy,” 2019, [Online], Available: http://arxiv.org/ abs/1909.08869.
  28.  M.G. Poirot et al., “Physics-informed deep learning for dualenergy computed tomography image processing,” Sci. Rep., vol. 9, no. 1, 2019.
  29.  F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, “Physics-informed neural networks for cardiac activation mapping,” Front. Phys., vol. 8, p. 42, 2020.
  30.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part I): Data-driven solutions of nOnlinear partial dif- ferential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10561.
  31.  M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics informed deep learning (part II): Data-driven solutions of nOnlinear partial differential equations,” 2017, [Online], Available: http://arxiv.org/abs/1711.10566.
  32.  Z. Fang and J. Zhan, “A physics-informed neural network framework for PDEs on 3D surfaces: Time independent problems,” IEEE Access, vol. 8, pp. 26328–26335, 2019.
  33.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 225–233, 2020.
  34.  M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportunities and challenges,” Front. Neurosci., vol.  12, pp. 774, 2018.
  35.  Z. Bing et al., “A survey of robotics control based on learninginspired spiking neural networks,” Front. Neurorob., vol. 12, pp. 35, 2018.
  36.  B. Borzyszkowski, “Neuromorphic Computing in High Energy Physics,” 2020, doi: 10.5281/zenodo.3755310.
  37.  J. George, C. Soci, M. Miscuglio, and V. Sorger, “Symmetry perception with spiking neural networks,” Sci. Rep., vol. 11, no.  1. pp. 1–14, 2021.
  38.  K. Janocha and W.M. Czarnecki, “On loss functions for deep neural networks in classification,” 2017, [Online], Available: http://arxiv. org/abs/1702.05659.
  39.  L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade, Berlin, Heidelberg: Springer 2012, pp. 421–436.
  40.  T. Dockhorn, “A discussion on solving partial differential equations using neural networks,” 2019, [Online], Available: https://arxiv.org/abs/1904.07200.
  41.  A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Occam’s razor,” Inf. Process. Lett., vol. 24, no. 6, pp.  377–380, 1987.
  42.  A. Marreiros, J. Daunizeau, S. Kiebel, and K. Friston, “Population dynamics: variance and the sigmoid activation function,” Neuroimage, vol. 42, no. 1, pp. 147–157, 2008.
  43.  S.K. Kumar, “On weight initialization in deep neural networks.” 2017, [Online]. Available: http://arxiv.org/abs/1704.08863.
  44.  N. Nawi, M. Ransing, and R. Ransing, “An improved learning algorithm based on the Broyden-fletcher-goldfarb-shanno (BFGS) method for back propagation neural networks,” Proc. 6th Int. Conf. Intell. Syst. Design Appl., 2006, vol. 1, pp. 152–157.
  45.  P. Constantin and C. Foias, “Navier-stokes equations,” Chicago: University of Chicago Press, 1988.
  46.  G.A. Anastassiou, “Multivariate hyperbolic tangent neural network approximation,” Comput. Math. Appl., vol. 61, no. 4, pp. 809–821, 2011.
  47.  B. Hanin and D. Rolnick, “How to start training: The effect of initialization and architecture,” Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 571–581.
  48.  R. Ghanem and P. Spanos, “Stochastic finite elements: a spectral approach,” New York: Springer, 1991.
Go to article

Authors and Affiliations

Bartłomiej Borzyszkowski
1
ORCID: ORCID
Karol Damaszke
1
Jakub Romankiewicz
1
Marcin Świniarski
1
Marek Moszyński
1

  1. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Atopic dermatitis (AD) is a chronic, recurrent inflammatory dermatosis. The most characteristic symptoms of the disease include itch, eczematous eruptions and excessive dryness of the skin. Elderly patients with AD represent a poorly characterized population because the physiological ageing, possible comorbidity and polypharmacy modify the clinical presentation typically observed in the younger age groups. The aim of the study is to comprehensively assess the clinical characteristics of elderly patients (>60 years old) with AD. Data were collected from 26 AD patients treated in the Department of Derma-tology of the University Hospital in Krakow. Late-onset AD with generalized/prurigo lesions was the most predominant phenotype. Skin biopsy was required in 15 (58%) patients in the differential diagnosis process. Allergic rhinitis, a positive family history of atopy and xerosis were associated with a higher number of hospitalizations during the year prior to the last admission (p = 0.034, p = 0.046 and p = 0.036, respectively). Xerosis was more prevalent among subjects with polypharmacy (p = 0.046) and higher serum total IgE concentration (p = 0.048). AD in elderly patients is a new phenotype of the disease that requires careful differential diagnosis. Aged patients with an individual or family history of atopy, due to the increased incidence of severe exacerbations of AD, may benefit from the introduction of proactive therapy.
Go to article

Authors and Affiliations

Andrzej Kazimierz Jaworek
1
Przemysław Hałubiec
2
ORCID: ORCID
Natalia Kachnic
3
Alicja Podolska
3
Julia Radzikowska
3
Arletta Kozłowska
2
Anna Wojas-Pelc
1

  1. Department of Dermatology, Jagiellonian University Medical College, Kraków, Poland
  2. University Hospital, Kraków, Poland
  3. Student Scientific Group of Dermatology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Some consider the multiculturality of Wrocław to be its obvious and socially legitimised “property”, whereas others view it as controversial and refutable construct. In the paper, we would like to investigate the multiculturality of the Lower Silesia’s capital taking into account its internal differentiation, which is mostly due to the adjudicating authorities – city authorities, its citizens and researchers — as well as observable dynamics. Hence, we propose to inspect the following: firstly, the real differentiation of the social structure of Wrocław’s inhabitants and its transformations related mostly to the influx of Ukrainians, who change the ethnic cityscape; secondly, the politics of municipal authorities regarding the promotion and strengthening of the city’s image as the multicultural, open and tolerant “meeting place”, as well as initiatives inscribed therein and other observable, contradictory events; thirdly, the evaluation of Wrocław’s multiculturality and its selected aspects performed by the city’s inhabitants and revealed in the research on this phenomenon in 2011 and in two editions of Social Diagnosis of Wrocław (2014 and 2017).

Go to article

Authors and Affiliations

Kamilla Dolińska
Julita Makaro
Download PDF Download RIS Download Bibtex

Abstract

Although the explicit commutativitiy conditions for second-order linear time-varying systems have been appeared in some literature, these are all for initially relaxed systems. This paper presents explicit necessary and sufficient commutativity conditions for commutativity of second-order linear time-varying systems with non-zero initial conditions. It has appeared interesting that the second requirement for the commutativity of non-relaxed systems plays an important role on the commutativity conditions when non-zero initial conditions exist. Another highlight is that the commutativity of switched systems is considered and spoiling of commutativity at the switching instants is illustrated for the first time. The simulation results support the theory developed in the paper.

Go to article

Authors and Affiliations

Mehmet Emir Koksal
Download PDF Download RIS Download Bibtex

Abstract

In this report, ankle rehabilitation routines currently approved by physicians are implemented via novel control algorithms on a recently appeared robotic device known as the motoBOTTE. The physician specifications for gait cycles are translated into robotic trajectories whose tracking is performed twofold depending on the availability of a model: (1) if obtained via the Euler-Lagrange approach along with identification of unknown plant parameters, a new computed-torque control law is proposed; it takes into account the parallel-robot characteristics; (2) if not available, a variation of the active disturbance rejection control technique whose parameters need to be tuned, is employed. A detailed discussion on the advantages and disadvantages of the model-based and model-free results, from the continuous-time simulation to the discrete-time implementation, is included.
Go to article

Bibliography


[1] N. Alibeji, N. Kirsch, S. Farrokhi, and N. Sharma: Further results on predictor-based control of neuromuscular electrical stimulation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), (2015), 1095–1105.
[2] J. Alvarez, J.C. Arceo, C. Armenta, J. Lauber, and M. Bernal: An extension of computed-torque control for parallel robots in ankle reeducation, IFAC-PapersOnLine, 52(11), (2019), 1–6.
[3] J.C. Arceo, J. Lauber, L. Robinault, S. Paganelli, M. Jochumsen, I.K. Niazi, E. Simoneau, and S. Cremoux: Modeling and control of rehabilitation robotic device: motobotte, In International Conference on NeuroRehabilitation, pages 546–550. Springer, 2018.
[4] J.C. Arceo, M. Sanchez, V. Estrada-Manzo, and M. Bernal: Convex stability analysis of nonlinear singular systems via linear matrix inequalities, IEEE Transactions on Automatic Control, 2018.
[5] V. Arnez-Paniagua, H. Rifai, Y. Amirat, M. Ghedira, J. M. Gracies, and S. Mohammed: Adaptive control of an actuated ankle foot orthosis for paretic patients, Control Engineering Practice, 90 (2019), 207–220.
[6] E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, S.E. Chiuve, M. Cushman, F.N. Delling, R. Deo, et al.: Heart disease and stroke statistics-2018 update: a report from the American Heart Association, Circulation, 137(12), (2018), e67.
[7] A˙ . Bjorck and V. Pereyra: Solution of vandermonde systems of equations, Mathematics of Computation, 24(112), (1970), 893–903.
[8] D. Brown, B. Boden-Albala, K. Langa, L. Lisabeth, M. Fair, M. Smith, R.L. Sacco, and L. Morgenstern: Projected costs of ischemic stroke in the united states, Neurology, 67(8), (2006) 1390–1395.
[9] G.C. Burdea, D. Cioi, A. Kale,W.E. Janes, S.A.Ross, and J.R. Engsberg: Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy—a case study series, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), (2012), 165–173.
[10] H. Cheng, Y.K. Yiu, and Z. Li: Dynamics and control of redundantly actuated parallel manipulators, IEEE/ASME Transactions on mechatronics, 8(4), (2003), 483–491.
[11] D.M.Dawson, C.T. Abdallah, and F.L. Lewis: Robot manipulator control: theory and practice, CRC Press, 2003.
[12] I. Diaz, J. J. Gil, and E. Sanchez: Lower-limb robotic rehabilitation: literature review and challenges, Journal of Robotics, 2011, Article ID 759764.
[13] A. Dontchev and W. Hager: The euler approximation in state constrained optimal control, Mathematics of Computation, 70(233), (2001), 173–203.
[14] V.L. Feigin, M.H. Forouzanfar, R. Krishnamurthi, G.A. Mensah, M. Connor, D.A. Bennett, A.E. Moran, R.L. Sacco, L. Anderson, T. Truelsen, et al.: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010, The Lancet, 383(9913), (2014), 245–255.
[15] M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern: Model-based control of fes-induced single joint movements, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(3), (2001), 245–257.
[16] P. Ghosh: Numerical, Symbolic and Statistical Computing for Chemical Engineers using MATLAB, PHI Learning Pvt. Ltd., 2018.
[17] J. Han: From pid to active disturbance rejection control, IEEE transactions on Industrial Electronics, 56(3), (2009), 900–906.
[18] H. Herr: Exoskeletons and orthoses: classification, design challenges and future directions, Journal of Neuroengineering and Rehabilitation, 6(1), (2009), 21.
[19] N. Instruments: NI myRIO-1900 User Guide and Specifications, National Instruments, 11500 North Mopac Expressway, Austin, Texas, 78759–3504, 376047c-01 edition, May 2016.
[20] S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari: Robotic orthosis lokomat: A rehabilitation and research tool, Neuromodulation: Technology at the neural interface, 6(2), (2003), 108–115.
[21] M. Jochumsen, S. Cremoux, L. Robinault, J. Lauber, J.C. Arceo, M. Navid, R. Nedergaard, U. Rashid, H. Haavik, and I. Niazi: Investigation of optimal afferent feedback modality for inducing neural plasticity with a self-paced brain-computer interface, Sensors, 18(11), (2018), 3761.
[22] M.A. Khosravi and H.D.Taghirad:Robust pid control of fully-constrained cable driven parallel robots, Mechatronics, 24(2), (2014), 87–97.
[23] V. Klee and G. J. Minty: How good is the simplex algorithm, Technical report, Washington Univ Seattle Dept. of Mathematics, 1970.
[24] P. Langhorne, J. Bernhardt, and G. Kwakkel: Stroke rehabilitation, The Lancet, 377(9778), (2011), 1693–1702.
[25] F.L. Lewis:Asurvey of linear singular systems, Circuits, Systems and Signal Processing, 5(1), (1986), 3–36.
[26] O. Linda and M. Manic: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot, IEEE Transactions on Industrial Informatics, 7(4), (2011), 661–670.
[27] H. Markus: Stroke: causes and clinical features, Medicine, 36(11), (2008), 586–591.
[28] J. Merlet: Parallel robots, volume 128, Springer Science & Business Media, 2006.
[29] M. Motor: ESCON 50/5 DC Servo Controller Hardware Reference, Maxon Motor, Bränigstrasse 220 P.O.Box 263 CH-6072 Sachseln, rel7125 edition, November 2018.
[30] N.S. Nedialkov, J.D. Pryce, and G. Tan: Algorithm 948: Daesa—a matlab tool for structural analysis of differential-algebraic equations: Software, ACM Transactions on Mathematical Software (TOMS), 41(2), (2015), 12.
[31] M. Noel, B. Cantin, S. Lambert, C.M. Gosselin, and L.J. Bouyer: An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), (2008), 390–399.
[32] C.C. Pantelides: The consistent initialization of differential-algebraic systems, SIAM Journal on Scientific and Statistical Computing, 9(2), (1998), 213–231.
[33] L. Peng, Z.-G. Hou, and W. Wang: Dynamic modeling and control of a parallel upper-limb rehabilitation robot, In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 532–537, 2015.
[34] J.C. Perez-Ibarra and A.A. Siqueira: Comparison of kinematic and emg parameters between unassisted, fixed-and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects, In 2017 International Conference on Rehabilitation Robotics (ICORR), pages 461–466. IEEE, 2017.
[35] N. Petroff, K.D. Reisinger, and P.A. Mason: Fuzzy-control of a hand orthosis for restoring tip pinch, lateral pinch, and cylindrical prehensions to patients with elbow flexion intact, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(2), (2001), 225–231.
[36] Z. Qi, J.E. McInroy, and F. Jafari: Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller, Journal of Intelligent and Robotic Systems, 48(3), (2007) 333–356.
[37] P.J. Rabier and W.C. Rheinboldt: Theoretical and numerical analysis of differential-algebraic equations, Elsevier, 2002.
[38] E.J. Rouse, L.J. Hargrove, E.J. Perreault, and T.A. Kuiken: Estimation of human ankle impedance during the stance phase of walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), (2014), 870–878.
[39] B.S. Rupal, S. Rafique, A. Singla, E. Singla, M. Isaksson, and G.S. Virk: Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications, International Journal of Advanced Robotic Systems, 14(6), (2017), 1729881417743554.
[40] A. Sala and C. Arino: Polynomial fuzzy models for nonlinear control: A Taylor series approach, IEEE Transactions on Fuzzy Systems, 17(6), (2009), 1284–1295.
[41] L. F. Shampine, S. Thompson, J. Kierzenka, and G. Byrne: Non-negative solutions of odes, Applied Mathematics and Computation, 170(1), (2005), 556–569.
[42] W.W. Shang, S. Cong, and Y. Ge: Adaptive computed torque control for a parallel manipulator with redundant actuation, Robotica, 30(3), (2012) 457–466.
[43] K.A. Shorter, G.F. Kogler, E. Loth, W.K. Durfee, and E.T. Hsiao- Wecksler: A portable powered ankle-foot orthosis for rehabilitation, Journal of Rehabilitation Research & Development, 48(4), (2011).
[44] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant: Sliding mode control and observation, Springer, 2014.
[45] R.M. Singh, S. Chatterji, and A. Kumar: Trends and challenges in emg based control scheme of exoskeleton robots-a review, Int. J. Sci. Eng. Res., 3(9), (2012), 933–940.
[46] SKF: CAHB-21: Linear Actuator. Installation, operation and maintenance manual, SKF Taiwan Co., Ltd, No. 3, Lane 11, Tzu-Chiang St., Tu-Cheng Industrial District, Taipei, Taiwan, August 2010. [47] Y. Su, B. Duan, and C. Zheng: Nonlinear pid control of a six-dof parallel manipulator, IEEE Proceedings-Control Theory and Applications, 151(1), (2004), 95–102.
[48] B.M. Vinagre, Y.Q. Chen, and I. Petras: Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the Franklin Institute, 340(5), (2003), 349–362.
[49] O. Vinogradov: Fundamentals of kinematics and dynamics of machines and mechanisms, CRC Press, 2000. [50] L. Wang, Z. Lu, X. Liu, K. Liu, and D. Zhang: Adaptive control of a parallel robot via backstepping technique, International Journal of Systems, Control and Communications, 1(3), (2009), 312–324.
[51] D.A. Winter: Biomechanics and motor control of human movement, John Wiley & Sons, 2009.
[52] R. Xu, N. Jiang, N. Mrachacz-Kersting, C. Lin, G.A. Prieto, J.C. Mo- reno, J.L. Pons, K. Dremstrup, and D. Farina: A closed-loop brain– computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity, IEEE Transactions on Biomedical Engineering, 61(7), (2014), 2092–2101.
[53] J. Yoon, J. Ryu, and K.-B. Lim: Reconfigurable ankle rehabilitation robot for various exercises, Journal of Robotic Systems, 22(S1), (2006), S15–S33.
[54] H. Zhu, J. Doan, C. Stence, G. Lv, T. Elery, and R. Gregg: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis, In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 504–510, IEEE, 2017.
Go to article

Authors and Affiliations

Juan Carlos Arceo
1
Jorge Álvarez
2
Carlos Armenta
1
Jimmy Lauber
1
Sylvain Cremoux
3
Emilie Simoneau-Buessinger
1
Miguel Bernal
2

  1. Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
  2. Sonora Institute of Technology, 5 de Febrero 818 Sur, Ciudad Obregon, Sonora, Mexico
  3. Centre de Recherche Cerveau et Cognition, CNRS UMR 5549, Université de Toulouse, Toulouse 31052, France
Download PDF Download RIS Download Bibtex

Abstract

Differential geometry is a strong and highly effective mathematical subject for robot gripper design when grasping within the predetermined trajectories of path planning. This study in grasping focuses on differential geometry analysis utilizing the Lie algebra, geodesic, and Riemann Curvature Tensors (RCT). The novelty of this article for 2RR robot mechanisms lies in the approach of the body coordinate with the geodesic and RCT. The importance of this research is significant especially in grasping and regrasping objects with varied shapes. In this article, the types of workspaces are clarified and classified for grasping and regrasping kinematics.
The regrasp has not been sufficiently investigated of body coordinate systems in Lie algebra. The reason for this is the difficulty in understanding relative coordinates in Lie algebra via the body coordinate system. The complexity of the equations has not allowed many researchers to overcome this challenge. The symbolic mathematics toolbox in the Maxima, on the other hand, aided in the systematic formulation of the workspaces in Lie algebra with geodesic and RCT.
The Lie algebra se(3) equations presented here have already been developed for robot kinematics from many references. These equations will be used to derive the followingworkspace types for grasping and regrasping. Body coordinate workspace, spatial coordinate workspace with constraints, body coordinate workspace with constraints, spatial coordinate workspace with constraints are the workspace types. The RCT and geodesic solutions exploit these four fundamental workspace equations derived using Lie algebra.
Go to article

Authors and Affiliations

Haydar Sahin
1

  1. Istanbul Gedik University, Engineering Faculty, Mechatronics Engineering Department, Istanbul, Türkiye
Download PDF Download RIS Download Bibtex

Abstract

The Laplace operator is a differential operator which is used to detect edges of objects in digital images. This paper presents the properties of the most commonly used third-order 3x3 pixels Laplace contour filters including the difference schemes used to derive them. The authors focused on the mathematical properties of the Laplace filters. The basic reasons of the differences of the properties were studied and indicated using their transfer functions and modified differential equations. The relations between the transfer function for the differential Laplace operator and its difference operators were described and presented graphically. The impact of the corner elements of the masks on the results was discussed. This is a theoretical work. The basic research conducted here refers to a few practical examples which are illustrations of the derived conclusions.We are aware that unambiguous and even categorical final statements as well as indication of areas of the results application always require numerous experiments and frequent dissemination of the results. Therefore, we present only a concise procedure of determination of the mathematical properties of the Laplace contour filters matrices. In the next paper we shall present the spectral characteristic of the fifth order filters of the Laplace type.
Go to article

Authors and Affiliations

Ireneusz Winnicki
1
ORCID: ORCID
Janusz Jasinski
1
ORCID: ORCID
Slawomir Pietrek
1
ORCID: ORCID
Krzysztof Kroszczynski
1
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the formulation and numerical simulation for linear quadratic optimal control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a result, we use coordinate transformation to convert FODSS to its corresponding fractional order discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions by employing a Hamiltonian approach. The relevant conditions are solved using the general solution approach. For the analysis of formulation and solution algorithm, a numerical example is illustrated. Results are obtained for various �� values. According to state of the art, this is the first time that a formulation and numerical simulation of free terminal state and fixed terminal time optimal control problem (OCP) of FODSS is presented.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Ramesh Devarapalli
2
ORCID: ORCID
Naladi Ram Babu
3
Kiran Babu Vakkapatla
4
R. Gowri Sankara Rao
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
  3. Department of EEE, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  4. Lingayas Institute of Management and Technology Madalavarigudem, A.P., India
  5. Department of EEE, MVGR College of Engineering Vizianagaram, A.P., India
  6. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

Microphone array with minimum variance (MVDR) beamformer is a commonly used method for ambient noise suppression. Unfortunately, the performance of the MVDR beamformer is poor in a real reverberant room due to multipath wave propagation. To overcome this problem, we propose three improvements. Firstly, we propose end-fire microphone array that has been shown to have a better directivity index than the corresponding broadside microphone array. Secondly, we propose the use of unidirectional microphones instead of omnidirectional ones. Thirdly, we propose an adaptation of its adaptive algorithm during the pause of speech, which improves its robustness against the room reverberation and deviation from the optimal receiving direction. The performance of the proposed microphone array was theoretically analyzed using a diffuse noise model. Simulation analysis was performed for combined diffuse and coherent noise using the image model of the reverberant room. Real room tests were conducted using a four-microphone array placed in a small office room. The theoretical analysis and the real room tests showed that the proposed solution considerably improves speech quality.
Go to article

Authors and Affiliations

Zoran Šarić
1
ORCID: ORCID
Miško Subotić
1
Ružica Bilibajkić
1
Marko Barjaktarović
2
Nebojša Zdravković
3

  1. Laboratory of Acoustics, Life Activities Advancement Center, Serbia
  2. Faculty of Electrical Engineering, University of Belgrade, Serbia
  3. Faculty of Medical Sciences, University of Kragujevac, Serbia
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to present a theoretical analysis of top orthogonal to bottom arrays of conducting electrodes of infinitesimal thickness (conducting strips) residing on the opposite surfaces of piezoelectric slab. The components of electric field are expanded into double periodic Bloch series with corresponding amplitudes represented by Legendre polynomials, in the proposed semi-analytical model of the considered two-dimensional (2D) array of strips. The boundary and edge conditions are satisfied directly by field representation, as a result. The method results in a small system of linear equations for unknown expansion coefficients to be solved numerically. A simple numerical example is given to illustrate the method. Also a test transducer was designed and a pilot experiment was carried out to illustrate the acoustic-wave generating capabilities of the proposed arrangement of top orthogonal to bottom arrays of conducting strips.

Go to article

Authors and Affiliations

Jurij Tasinkevych
Ihor Trots
Ryszard Tymkiewicz

This page uses 'cookies'. Learn more