Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lipolytic activity was assayed in samples of Antarctic krill frozen in different conditions and in its liquid digesta with synthetic (tributylglycerol, esters of 2-naphtol and fatty acids C3, C9 , C14 and C18 ) and natural (olive oil) substrates. It was testified that the lipolytic activity is several-fold higher in the crustaceans with high food intake than in those with an empty digestive tract. Krill lipases show higher activity against esters of unsaturated fatty acids that against analogous derivatives of saturated ones and 10-fold higher affinity tributylglycerol (Km = 1.12 mM). Their maximal activity is at pH 6.4 and 37°C. E. superba lipases preserve total activity up to 35°C for 45 minutes, and are completely inactivated at 55°C for 5 minutes. Prevailing part of lipolytic activity is present in krill cephalothorax, however, extracts from krill abdomen also display a marked activity. Krill lipases are probably resistant to an attack of crustacean's proteinases.

Go to article

Authors and Affiliations

Marianna Turkiewicz
Halina Kalinowska
Alina Krystynowicz
Maria Kałużewska
Download PDF Download RIS Download Bibtex

Abstract

Twelve mineral elements and total ash were examined in regard to the possible use as the estimators of digestibility of natural food in Antarctic seals. Four of them: phosphorus, calcium, copper and zinc have proved to give most reliable results. The estimated total dry mass and organic matter digestibilities of fish food in Weddell seals (Leptonychotes weddelli (Lesson)) averaged 82 and 91%, while the corresponding values for krill eaten by crabeaters (Lobodon carcinophagus (Hombron and Jaequinot)) and leopard seals (Hydrourga leptonyx (Blainville)) reached approximately 87 and 91%, respectively.

Go to article

Authors and Affiliations

January Weiner
Michał Woyciechowski
Jan Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to show the basic principles of the anaerobic digestion process. All the stages of degradation, such as hydrolysis, acidogenesis, acetogenesis and methanogenesis are characterized. Biodegradable organic matter consists of three main types of substances: carbohydrates, proteins and lipids; the metabolic pathways of their decomposition are described. The last part of the paper presents the co-digestion process, its benefits and technological parameters required to make that process attractive from an economical and environmental point of view.
Go to article

Authors and Affiliations

Agnieszka Montusiewicz
Magdalena Lebiocka
Małgorzata Pawłowska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents calculations of the economic indicators of the researched elements of the cultivation technology of corn for grain and vegetable crops in Ukraine, which indicate that the cultivation of these crops is cost-effective in all variants of the experiment. The research has established that the increase in the economic efficiency of the production of these crops when applying different rates of fertilizers is achieved due to a more significant positive effect of the increase in productivity compared to additional costs associated with the use of these farming practices, while additional costs caused by the use of fertilizers are paid off many times over. It has been proven that the use of mineral fertilizers and their combination with high rates of bio-organic fertilizer (digestate) when growing agricultural crops helps to increase productivity. There have been further developed theoretical and practical provisions regarding the ecological problem of livestock waste disposal, in particular those of pig farms, and agricultural farms, i.e. the provision of organic fertilizers to ensure the yield increase as well as improvement in the quality of agricultural and vegetable crops, so as to make it possible to obtain high-quality products of plant and vegetable production during livestock waste disposal. The proposed approach to the economic assessment of technologies for growing corn for grain and red beet depending on the fertilization system makes it possible to increase the level of productivity of agricultural and vegetable crops with the effective use of bio-organic fertilizers in the modern conditions of sharp increases in the costs of mineral fertilizers.
Go to article

Authors and Affiliations

Roman Lohosha
1
ORCID: ORCID
Vitalii Palamarchuk
1
ORCID: ORCID
Vadim Krychkovskyi
2
ORCID: ORCID

  1. Ministry of Education and Science of Ukraine, Vinnytsia National Agrarian University, Ukraine
  2. Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Anaerobic digested sludge supernatant is rich in phosphates and ammonia nitrogen. Phosphates can be almost completely removed in the process of struvite precipitation. Simultaneously, if only magnesium is supplied, usually only a minor part of ammonia equivalent to phosphates will be removed. Increase in pH to about 8.5 or above leads to the presence of free ammonia which affects the struvite crystals form. The possibility of additional ammonia removal with an external or internal source of phosphates was also accounted for. The final product (precipitate) could be considered as a "biofertilizer" or "biosoil" in connection to the technology applied.
Go to article

Authors and Affiliations

Jan Suschka
Sebastian Popławski
Download PDF Download RIS Download Bibtex

Abstract

Current efforts are taken to increase resource efficiency, close material loops, and improve sustainable waste and by-products management. Thus, networking agro-food by-products andc onverting them into valuable products completely exhausting the potential of the raw material becomes significant. Model lignocellulosic and starch based biomass were subjected to pre-treatment with the application of acidic compounds, i.e. sulphuric (SA) and acetic (AA) acids. The response, i.e. total sugar content and derivatives content is investigated depending on variables changed during hydrolysis: concentration of acid, process duration, temperature and the size of the biomass particles. After saccharification, the hydrolysates were analysed via HPLC. Total reducing sugars concentration was in the range of 0.1 – 15.53 g/LAmong the substances present in the hydrolysates, protein, peptides, hydroxybenzyl acid (HA), 5-HMF, furfural (FF), vanillin (V), vanillic acid (VA), formic acid (FA) and levulinic acid (LA) were found in the range of 0.44 – 9.05 g/L and determined as total derivatives concentration. The aim of the study was to evaluate the measurable effects of the research and deliver information about the statistically important parameters for the process course and relations between the variables.
Go to article

Authors and Affiliations

Karolina Kucharska
1
ORCID: ORCID
Patrycja Makoś-Chełstowska
1
ORCID: ORCID
Edyta Słupek
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The geochemistry of sedimentary rocks is increasingly being used in palaeoenvironmental studies, in the identification of marine versus continental stratigraphy and in chemostratigraphic correlation. The selection of an appropriate research methodology, particularly in terms of sample digestion, can have a significant impact on the accuracy of the results obtained. Depending on the type of rock being studied and the aim of the analysis, a suitable mixture of acids should be used. The most commonly used sample digestion methods are based on a mixture of four acids (multi-acid), aqua regia and inverse aqua regia. As opposed to multi-acid whole-rock digestion, the use of aqua regia and inverse aqua regia result in only the partial digestion of sedimentary rocks. Geochemical analyses using these two different methods were carried out on Carboniferous sedimentary rocks from the Lublin Coal Basin from Poland.The elemental concentrations obtained showed essentially different results for some of the elements. A comparison of the elemental concentrations allowed the distinction of three groups of elements:

 - those that showed small differences between the results from the preparation methods (Co, Mn, Bi, Cu, Zn and Fe),

- those where the elemental concentrations were 20–50% lower using aqua regia digestion (i.e. Ni, P, Pb, Mg, Cd, Th, Mo, Sr),

 - elemental concentrations that were significantly lower (by up to 80%) following aqua regia digestion (U, Cr, Ba, Na, V, Al, Rb, K, Zr).

Go to article

Authors and Affiliations

Ewa Krzeszowska
ORCID: ORCID
Magdalena Kokowska-Pawłowska
ORCID: ORCID
Światosław Krzeszowski
Download PDF Download RIS Download Bibtex

Abstract

Anaerobic digestion (AD) converts organic matter and biomass waste into biogas, making it an environmentally friendly technology to improve energy resources for a wide range of applications. Jerusalem artichoke straw (JAS) has an enriched content of cellulose and exhibits a high potential for methane production. AD-based production of methane can eff ectively utilize waste JAS. This study investigated the AD performance of JAS to explore the enhancement of methane yields by employing a Box-Behnken experimental design (BBD) of response surface methodology (RSM). The overall goal was to identify the optimal levels of pretreatment factors, including HCl concentration, pretreatment time, and pretreatment temperature, for producing optimal biomethane yields from JAS. The highest value of methane production achieved was 256.33 mL g-1VS by using an optimal concentration of HCl as 0.25 M, a pretreatment time of 10 h, and a pretreatment temperature of 25°C. These results inform the future application of JAS in enhanced methane production.
Go to article

Bibliography

  1. Adeleke, A.O., Latiff, A.A.A., Al-Gheethi, A.A. & Daud, Z. (2017). Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology,Chemosphere, 174, pp. 232-242. DOI:10.1016/j.chemosphere.2017.01.110.
  2. APHA. (2005). Standard methods for the examination of water & wastewater, American Public Health (Association. ed.), Washington DC: American Public Health Association.
  3. Cai, Y., Zhao, X., Zhao, Y., Wang, H., Yuan, X., Zhu, W., Cui, Z. & Wang, X. (2018). Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability, Bioresource Technology, 250, pp. 163-170. DOI:10.1016/j.biortech.2017.07.151.
  4. Cai, Y., Gallegos, D., Zheng, Z., Stinner, W., Wang, X., Pröter, J. & Schäfer, F. (2021). Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models, Bioresource Technology, 337, 125328. DOI:10.1016/j.biortech.2021.125328.
  5. Ciccoli, R., Sperandei, M., Petrazzuolo, F., Broglia, M., Chiarini, L., Correnti, A., Farneti, A., Pignatelli, V. & Tabacchioni, S. (2018). Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community,Biomass and Bioenergy, 108, pp. 190-197. DOI:10.1016/j.biombioe.2017.11.003.
  6. Gabriel, S.A, Funmilayo, D.F. & Evariste, G.K. (2020). Process Optimisation of Enzymatic Saccharification of Soaking Assisted and Thermal Pretreated Cassava Peels Waste for Bioethanol Production, Waste and Biomass Valorization, 11, 4, pp. 2409-2420. DOI:10.1007/s12649-018-00562-0.
  7. Gnansounou, E. & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review, Bioresource Technology, 101, 13, pp. 4980-4991. DOI:10.1016/j.biortech.2010.02.009.
  8. Gunnarsson, I. B., Svensson, S. E., Johansson, E., Karakashev, D. & Angelidaki, I. (2014). Potential of Jerusalem artichoke (Helianthustuberosus L.) as a biorefinery crop, Industrial Crops & Products, 56, pp. 231-240. DOI:10.1016/j.indcrop.2014.03.010.
  9. Günerhan, Ü., Us, E., Dumlu, L., Yılmaz, V., Carrère, H. & Perendeci, A.N. (2020). Impacts of Chemical-Assisted Thermal Pretreatments on Methane Production from Fruit and Vegetable Harvesting Wastes: Process Optimization, Molecules, 23, 25, 500. DOI:10.3390/molecules25030500.
  10. Hassan, T.M., Hossain, M.S., Kassim, M.H., Ibrahim, M., Mohammad, N.F. & Hussin, M. H. (2020). Optimizing the Acid Hydrolysis Process for the Isolation of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches Using Response Surface Methods, Waste and Biomass Valorization, 11, 6, pp. 2755-2770. DOI:10.1007/s12649-019-00627-8.
  11. Hossain, M. Z., Suely, A., Yun, J., Zhang, G., Faisal, N. A., Qi, X. & J.N. S. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production, Renewable and Sustainable Energy Reviews, 105, pp. 105-128. DOI:10.1016/j.rser.2019.01.048.
  12. Kafle, Gopi Krishna, Kim & Sang Hun. (2013). Anaerobic treatment of apple waste with swine manure for biogas production: batch and continuous operation, Applied Energy, 103, pp. 61-72. DOI:10.1016/j.apenergy.2012.10.018.
  13. Khalid, H., Cai, F., Zhang, J., Zhang, R., Wang, W., Liu, G. & Chen, C. (2019). Optimizing key factors for biomethane production from KOH-pretreated switchgrass by response surface methodology, Environmental science and pollution research international, 26, 24, pp. 25084-25091. DOI:10.1007/s11356-019-05615-y.
  14. Kim, M., Kim, B., Nam, K. & Choi, Y. (2018). Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw, Biochemical Engineering Journal, 140, pp. 108-114. DOI:10.1016/j.bej.2018.09.012.
  15. Kim, S., Park, J.M. & Kim, C.H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromycesmarxianus CBS1555, Applied biochemistry and biotechnology, 169, 5, pp. 1531-1545. DOI:10.1007/s12010-013-0094-5.
  16. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Isaias Emilio Paulino do Carmo. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 98-108. DOI:10.24425/aep.2019.128646.
  17. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.E., Bjornsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production, Bioresource Technology, 102, pp. 3457-3465. DOI:10.1016/j.biortech.2010.10.126.
  18. Li, C., Liu, G., Nges, I. A. & Liu, J. (2016). Enhanced biomethane production from Miscanthuslutarioriparius using steam explosion pretreatment, Fuel, 179, pp. 267-273. DOI:10.1016/j.fuel.2016.03.087.
  19. Liu, J., Yang, M., Zhang, J., Zheng, J., Xu, H., Wang, Y. & Wei, Y. (2018). A comprehensive insight into the effects of microwave-H2O2 pretreatment on concentrated sewage sludge anaerobic digestion based on semi-continuous operation, Bioresource Technology, 256, pp. 118-127. DOI:10.1016/j.biortech.2018.01.126.
  20. Li, W., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., Gu, G. & Guo, Z. (2015). Extraction, degree of polymerization determination and prebiotic effect evaluation of inulin from Jerusalem artichoke, Carbohydrate Polymers, 121, pp. 315-319. DOI:10.1016/j.carbpol.2014.12.055.
  21. Long, X., Shao, H., Liu, L., Liu, L. & Liu, Z. (2016). Jerusalem artichoke: A sustainable biomass feedstock for biorefinery, Renewable and Sustainable Energy Reviews, 54, pp. 1382-1388. DOI:10.1016/j.rser.2015.10.063.
  22. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H. (2012). Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials, Environmental science & technology, 6, 46, pp. 12217-12225. DOI:10.1021/es303132t.
  23. Nges, A. I., Li, C., Wang, B., Xiao, L., Yi, Z., Liu, J. (2016). Physio-chemical pretreatments for improved methane potential of Miscanthuslutarioriparius, Fuel, 166, pp. 29-35. DOI:10.1016/j.fuel.2015.10.108.
  24. Nowicka, A., Zieliński, M., Dębowski, M., Dudek, M. (2021). Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment, Energies, 14, 8018. DOI:10.3390/EN14238018.
  25. Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H. & Youk, J.H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydrate Research, 340, 15, pp. 2376-2391. DOI:10.1016/j.carres.2005.08.007.
  26. Oyekanmi, A.A., Ahmad,A., MohdSetapar, S.H., Alshammari, M.B., Jawaid, M., Hanafiah, M.M., Abdul Khalil, H.P.S. & Vaseashta, A. (2021a). Sustainable Duriozibethinus-Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies, Sustainability, 13, 13264. DOI:10.3390/SU132313264.
  27. Oyekanmi, A.A., Alshammari, M.B., Ibrahim, M.N.M., Hanafiah, M.M., Elnaggar, A.Y., Ahmad, A., Oyediran, A.T., Rosli, M.A., Mohd, Setapar, S.H., Nik, Daud, N.N. & Hussein, E.E. (2021b). Highly Effective Cow Bone Based Biocomposite for the Sequestration of Organic Pollutant Parameter from Palm Oil Mill Effluent in a Fixed Bed Column Adsorption System, Polymers (Basel), 27, 14, 86. DOI:10.3390/polym14010086.
  28. Passos, F., Felix, L., Rocha, H., Pereira, Jde, O., de, Aquino, S. (2016). Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production, Bioresource Technology, 209, pp. 305-312. DOI:10.1016/j.biortech.2016.03.006.
  29. Passos, F., Ortega, V. & Donoso-Bravo, A. (2017). Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation, Bioresource Technology, 227, pp. 239-246. DOI:10.1016/j.biortech.2016.12.034.
  30. Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M. & Lee, J.W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges, Bioresource Technology, 245, pp. 1194-1205. DOI:10.1016/j.biortech.2017.08.182.
  31. Pfariso, M., Eugéne, R., Annie, F. A. C & Johann, F. G. (2021). Maximising the Benefits of Enzyme Synergy in the Simultaneous Saccharification and Fermentation of Jerusalem Artichoke (Helianthus tuberosus) Tuber Residues into Ethanol, Waste and Biomass Valorization.Waste Biomass Valor, 13, pp. 535–546. DOI:10.1007/S12649-021-01488-W.
  32. Pokój, T., Gusiatin, M. Z., Bułkowska, K. & Dubis, B. (2014). Production of biogas using maize silage supplemented with residual glycerine from biodiesel manufacturing, Archives of Environmental Protection, 40, 4, pp. 17-29. DOI:10.2478/aep-2014-0035.
  33. Shen, J., Zhang, J., Wang, W., Liu, G. & Chen, Ch. (2019). Assessment of pretreatment effects on anaerobic digestion of switchgrass: Economics-energy-environment (3E) analysis, Industrial Crops & Products, 145, 111957. DOI:10.1016/j.indcrop.2019.111957.
  34. Song, Z., Yang, G., Liu, X., Yan, Z., Yuan, Y. & Liao, Y. (2014). Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion, PLoS One, 2, 9. DOI:10.1371/journal.pone.0093801.
  35. Tian, W., Li, J., Zhu, L., Li, W., He, L., Gu, L., Deng, R., Shi, D., Chai, H. & Gao M. (2021). Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition, Renewable Energy, 177,pp. 21-32. DOI:10.1016/J.RENENE.2021.06.042.
  36. Van Soest P.J., Robertson J.B. & Lewis B.A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, Journal of Dairy Science, 74, 10, pp. 3583–3597. DOI:10.3168/jds.S0022-0302(91)78551-2.
  37. Wang, D.L., Ai, P., Yu, L., Tan, Z.X. & Zhang, Y.L. (2015). Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation, Biosystems Engineering, 132, pp. 47-55. DOI:10.1016/j.biosystemseng.2015.02.007.
  38. Wu, Z., Nguyen, D., Lam, T.Y.C., Zhuang, H., Shrestha, S., Raskin, L., Khanal, S.K. & Lee, P.H. (2021). Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass, WaterResearch, 15, 190, 116721. DOI:10.1016/j.watres.2020.116721.
  39. Yang, S., Sun, X., Jiang, X., Wang, L., Tian, J., Li, L., Zhao, M. & Zhong, Q. (2019). Characterization of the Tibet plateau Jerusalem artichoke (Helianthus tuberosus L.) transcriptome by de novo assembly to discover genes associated with fructan synthesis and SSR analysis, Hereditas, 6, 156, 9. DOI:10.1186/s41065-019-0086-8.
  40. Zhang, H., Khalid, H., Li, W., He, Y., Liu, G. & Chen, C. (2018a). Employing response surface methodology (RSM) to improve methane production from cotton stalk, Environmental science and pollution research international, 25,8, pp. 7618-7624. DOI:10.1007/s11356-017-0682-y.
  41. Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G. & Chen, C. (2018b). Enhancement of methane production from Cotton Stalk using different pretreatment techniques, Scientific reports, 8, 1, 3463. DOI:10.1038/s41598-018-21413-x.
  42. Zhang, H., Wang, L., Dai, Z., Zhang, R., Chen, C. & Liu, G. (2019). Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks, Bioresource Technology, 298, 122474. DOI:10.1016/j.biortech.2019.122474.
  43. Zhao, C., Cui, X., Liu, Y., Zhang, R., He, Y., Wang, W., Chen, C. & Liu, G. (2017). Maximization of the methane production from durian shell during anaerobic digestion, Bioresource Technology, 238, pp. 433-438. DOI:10.1016/j.biortech.2017.03.184.
Go to article

Authors and Affiliations

Yan Meng
1
Yi Li
1
Laisheng Chen
1
Rui Han
1

  1. Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China
Download PDF Download RIS Download Bibtex

Abstract

Most often sewage treatment and sludge disposal are handled as two separate technological parts of treatment plants. Attempts are made to change the practice. Keeping the standards of treated sewage is the primary objective, and sewage sludge is a by-product which has to he get rid of. The environmental consequences of various procedures of sludge disposal are rarely considered. On the other hand, incorporation of sludge handling procedures in the processes of sewage treatment can result in cost savings and be environmentally friendly. In the presented paper, suggestions arc given on possibilities of closer integration of sewage and sludge treatment, based on experiments. Research aimed at sewage sludge quantity minimization and quality upgrading, recovery of phosphorous and efficient nitrogen removal. Appearing occasionally scum floating over biological sewage treatment units was shown to be considered as an integrated part or sewage treatment and sludge handling at EBNRP's.
Go to article

Authors and Affiliations

Jan Suschka
Eligiusz Kowalski
Download PDF Download RIS Download Bibtex

Abstract

The potential of organic wastes in Ukraine for biogas production and the prospects of using the family-type biogas plants for this purpose are shown. In the biogas laboratory of the Ukrainian National Forestry University the efficiency of the anaerobic mesophilic digestion of chicken manure of Poltava poultry farm, Kamianets-Podilsky poultry farm and sewage sludge from Lviv wastewater treatment plant (WWTP) was investigated. Different integral indicators of the biogas production and significantly different dynamics of its formation over time were obtained for three investigated substrates. The value of average specific biogas production from the sewage sludge of Lviv WWTP is 0.494 dm3∙(day∙kg FM)–1, which is 5.1 times more comparing the chicken manure of Kamianets-Podilsky poultry farm and 8.0 times more than for the chicken manure of Poltava poultry farm. Strong negative effect of antibiotic treatment of chickens on methane contentin the obtained biogas was established experimentally.

Go to article

Authors and Affiliations

Ivan Voytovych
Myroslav Malovanyy
ORCID: ORCID
Volodymyr Zhuk
Orest Mukha
Download PDF Download RIS Download Bibtex

Abstract

Plastic is one of the main pollutant sources that are difficult to decompose and then carried into the ocean and fragmented into smaller parts (microplastics) due to UV radiation and water currents. Their small size means that microplastics are often ingested by aquatic organisms, such as fish. This research aimed to determine the presence, abundance, and types of microplastics in the digestive tract of four dominant fishes landed at Lengkong Fish Auction Point, Cilacap, Central Java, i.e. threadfin ( Eleutheronema tetradactylum), mackerel ( Rastrelliger sp.), threadfin bream ( Nemipterus japonicus), and hairtail ( Trichiurus lepturus). We found microplastics in the digestive tract of four selected fishes with a frequency of occurrence of 100%. The concentration of microplastics in fish digestive tracts is relatively high, with a value range of 12 ±2.86 to 28.33 ±8.11 particles∙ind.<sup>-1</sup>. Microplastics were found in films, fibres, fragments, and granule shape types with various colours: brown, purple, blue, black, green, transparent, and yellow. The polymers found were polystyrene (PS), nylon, acrylonitrile butadiene styrene (ABS), polyurethane (PU), polypropylene (PP), high-density polyethylene (HDPE), and low-density polyethylene (LDPE). The present study provides baseline data for microplastics contamination in commercial fish species landed at Lengkong Fish Auction Point, Cilacap, Central Java, Indonesia. The fact that we discovered PU, the most harmful polymer, piques our attention.

Go to article

Authors and Affiliations

Nuning Vita Hidayati
1 2
ORCID: ORCID
Fenina O.B. Rachman
1
Muslih
1
Rizqi R. Hidayat
1 2
ORCID: ORCID
Maria D.N. Meinita
1 2
ORCID: ORCID
Hendrayana
1 2
ORCID: ORCID
Iqbal A. Husni
1 2
ORCID: ORCID
Sapto Andriyono
3
ORCID: ORCID
Dyahruri Sanjayasari
1 2
ORCID: ORCID

  1. Jenderal Soedirman University, Fisheries and Marine Sciences Faculty, Kampus Karangwangkal, Jl. dr. Suparno, 53123, Purwokerto, Indonesia
  2. Jenderal Soedirman University, Institute for Research and Community Service, Center for Maritime Biosciences Studies, Kampus Karangwangkal, Jl. dr. Suparno, 53123, Purwokerto, Indonesia
  3. Airlangga University, Faculty of Fisheries and Marine, Department of Marine, Mulyorejo, Surabaya, East Java, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Power generation units, suitable for individual users and small scale applications, are mainly based on spark ignition engines. In recently performed research, reductions of emissions coming from such units, especially considering carbon dioxide emissions, are deemed as the issue of particular importance. One of solutions, postponed to reduce impact of spark ignition engine-based units on the natural environment, is transition from fossil fuels into renewable gaseous fuels, as products of organic digestion. Nonetheless, development of new solutions is required to prevent further carbon dioxide emissions. The paper presents a novel dual approach developed to reduce carbon dioxide emissions from stationary power units, basing on spark ignition engine. The discussed approach includes both reduction in carbon content in the fuel, which is realized by its enrichment with hydrogen produced using the solar energy-supported electrolysis process, as well as application of post-combustion carbon dioxide separation. Results of the performed analysis suggest profitability of transition from fossil into the hydrogen-enriched fuel mixture, with significant rise in operational parameters of the system following increase in the hydrogen content. Nevertheless, utilization of the carbon dioxide separation leads to vital soar in internal energy demand, causing vital loss in operational and economical parameters of the analyzed system.
Go to article

Authors and Affiliations

Katarzyna Janusz-Szymańska
1
Krzysztof Grzywnowicz
1
Grzegorz Wiciak
1
Leszek Remiorz
1

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Akademicka 2A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to estimate the content of trace elements: zinc, cadmium, lead, molybdenum and nickel in products and wastes of coal treatment from Upper-Silesian Basin. Two analytical methods were applied: atomic absorption spectrometry (FAAS, ETAAS) and anodic (ASY) and adsorptive stripping voltammetry (AdSY). ASY is used to determine zinc, cadmium and lead; AdSY molybdenum and nickel, and FAAS and ETAAS to determine all elements. In the case of Zn, Ni, Mo, Pb and Cd determined by FAAS (ETAAS) the concentrations were practically the same as those obtained by ASY or AdSY.
Go to article

Authors and Affiliations

Krystyna Srogi
Mariusz Minkina
Download PDF Download RIS Download Bibtex

Abstract

The profile of microbial diversity in a NABR digesting RPMW was investigated using phylogeneticanalysis of partial 16S rRNA sequences by a neighbor-joining-tree, supported by microbial morphology analysis by SEM. The results showed that microorganism inside NABR consisted of dominant Bacillus (25 strains) and Bacterium (1 strain) which were isolated from the settled sludge at the bottom of the reactor, whilst Bacillus (2 strains), Pseudomonas (2 strain) and Chryseobacterium (2 strain) were isolated from the biofilm formed on the packing material. It revealed that the microbial community strains, function, and structure changed simultaneously throughout the reactor system. The microscopic results showed rich biofacies, while the dominant microorganisms have various morphologies in every compartment of the system. It consisted of a long rod-shaped and filamentous bacterium composed majorly of bacilli of different sizes. Although the study successfully analyzed the microbial diversity and morphology in the system, the microbial communities reported in this study were different from other similar studies. This may be caused by the application of a culture-based technique that usually provides limited information due to the number of barely cultivated or uncultured strains
Go to article

Bibliography

  1. Araujo, J.C., Téran, F.C., Oliveira, R.A., Nour, E.A.A., Montenegro, M.A.P., Campos, J.R. & Vazoller, R.F. (2003). Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge, Journal of Electron Microscopy, 52, 4, pp.429-433. DOI:10.1093/jmicro/52.4.429
  2. Atashpaz, S., Khani, S., Barzegari, A., Barar, J., Vahed, S.Z., Azarbaijani, R. & Omidi, Y. (2010). A robust universal method for extraction of genomic DNA from bacterial species, Microbiology, 79, 4, pp.538-542. PMID:21058509
  3. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. & Struhl, K. (2003). Current Protocols in Molecular Biology, John Wiley & Sons.
  4. Bailon-Salas, A.M., Ordaz-Díaz, L.A., Valle-Cervantes, S., López-Miranda, J., Urtiz-Estrada, N., Páez-Lerma, J.B. & Rojas-Contreras, J.A. (2018). Characterization of Culturable Bacteria from Pulp and Paper Industry Wastewater, with the Potential for Degradation of Cellulose, Starch, and Lipids, Bioresourses.com 13(3), pp.5052-5064.
  5. Banach-Wiśniewska, A., Gamoń, F. & Ziembińska-Buczyńska, A. (2021). DNA vs RNA based studies of nitrogen removal bacteria genes via qPCR, Archives of Environmental Protection, 47, 1, pp.19-25. DOI:10.24425/aep.2021.136444
  6. Chandra, R. (2001). Microbial decolourisation of pulp and paper mill effluent in presence of nitrogen and phosphorus by activated sludge process, Journal of Eenvironmental Biology, 22, 1, pp.23-27. PMID:11480347
  7. Duran, M., Tepe, N., Yurtsever, D., Punzi, V., Bruno, C. & Mehta, R. (2006). Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control, Applied Microbiology and Biotechnology, 73, 4, pp.960-966. DOI:10.1007/s00253-006-0548-6
  8. Gao, M., Guo, B., Zhang, L., Zhang, Y. & Liu, Y. (2019). Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater, Water Research, 160, 249-258. DOI:10.1016/j.watres.2019.05.077
  9. Gobi, K. & Vadivelu, V.M. (2015). Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules, Bioresource Technology, 189, 169-176. DOI:10.1016/j.biortech.2015.04.023
  10. Hassan, S.R., Zwain, H.M. & Dahlan, I. (2013). Development of Anaerobic Reactor for Industrial Wastewater Treatment: An Overview, Present Stage and Future Prospects, Journal of Advanced Scientific Research, 4, 1, pp.07-12.
  11. Hooda, R., Bhardwaj, N.K. & Singh, P. (2015). Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent, Water, Air, & Soil Pollution, 226, 9, pp.305. DOI:10.1007/s11270-015-2535-y
  12. Kenzaka, T. & Tani, K. (2012) Scanning Electron Microscopy, IntechOpen.
  13. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., do Carmo, I.E.P. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp.99-108. DOI:10.24425/aep.2019.128646
  14. Liu, J., Li, D. & Yang, J. (2008). Experimental research on the phase separation of Anaerobic Baffled Reactor (ABR), J. Biotechnol, 136, S657.
  15. Mehta, J., Sharma, P. & Yadav, A. (2014). Screening and Identification of Bacterial Strains for Removal of COD from Pulp and Paper Mill Effluent, Advances in Life Sciences and Health, 1, 1, pp.34-42.
  16. Ran, Z., Gefu, Z., Kumar, J.A., Chaoxiang, L., Xu, H. & Lin, L. (2014). Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor, International Journal of Hydrogen Energy, 39, 25, pp.13498-13504. DOI:10.1016/j.ijhydene.2014.02.086
  17. Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A. & Asad, S.A. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis, The Scientific World Journal, 2014, 21. DOI:10.1155/2014/183752
  18. Sonakya, V., Raizada, N. & Kalia, V. (2001). Microbial and enzymatic improvement of anaerobic digestion of waste biomass, Biotechnology Letters, 23, 18, pp.1463-1466. DOI:10.1023/A:1011664912970
  19. Świątczak, P., Cydzik-Kwiatkowska, A. & Rusanowska, P. (2017). Microbiota of anaerobic digesters in a full-scale wastewater treatment plant, Archives of Environmental Protection, 43, 3, pp. DOI:10.1515/aep-2017-0033
  20. Thompson, G., Swain, J., Kay, M. & Forster, C.F. (2001). The treatment of pulp and paper mill effluent: a review, Bioresource Technology, 77, 3, pp.275-286. DOI:10.1016/S0960-8524(00)00060-2
  21. Tiku, D.K., Kumar, A., Chaturvedi, R., Makhijani, S.D., Manoharan, A. & Kumar, R. (2010). Holistic bioremediation of pulp mill effluents using autochthonous bacteria, International Biodeterioration & Biodegradation, 64, 3, pp.173-183. DOI:10.1016/j.ibiod.2010.01.001
  22. Tsavkelova, E., Prokudina, L., Egorova, M., Leontieva, M., Malakhova, D. & Netrusov, A. (2018). The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas, Process Biochemistry, 66, pp. 183-196. DOI:10.1016/j.procbio.2017.12.006
  23. U.S. National Library of Medicine (2021). National Center for Biotechnology Information, (http://blast.ncbi.nlm.nih.gov/Blast.cgi/ (16.6.2021)).
  24. Yu, Y., Lu, X. & Wu, Y. (2014). Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge, Water, 6, 1, pp.122-138. DOI:10.3390/w6010122
  25. Zainith, S., Purchase, D., Saratale, G.D., Ferreira, L.F.R., Bilal, M. & Bharagava, R.N. (2019). Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential, 3 Biotech, 9, 92. DOI:10.1007/s13205-019-1631-x
  26. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2016a). Effect of inoculum source and effluent recycle on the start-up performance of a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 45, pp.21350-21363. DOI:10.1080/19443994.2015.1119758
  27. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2018). Performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent: effects of influent chemical oxygen demand concentration and hydraulic retention time, Environmental Technology, 39, 12, pp.1557-1565. DOI:10.1080/09593330.2017.1332692.
  28. Zwain, H.M., Aziz, H.A., Ng, W.J. & Dahlan, I. (2017). Performance and microbial community analysis in a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Environmental Science and Pollution Research, 24, 14, pp.13012–13024. DOI:10.1007/s11356-017-8804-0
  29. Zwain, H.M., Aziz, H.A., Zaman, N.Q. & Dahlan, I. (2016b). Effect of inoculum to substrate ratio on the performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 22, pp.10169-10180. DOI:10.1080/19443994.2015.1033761
  30. Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A. & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater, Journal of Environmental Chemical Engineering, 1, 1–2, pp.61-64. DOI:10.1016/j.jece.2013.03.007
  31. Zwain, H.M., Naje, A.S., Vakili, M. & Dahlan, I. (2021). Temperature analysis of a novel MAIB reactor during the treatment of wastewater from recycled paper mill, Water Practice and Technology, 16 (2): pp. 592–604. DOI:10.2166/wpt.2021.023
Go to article

Authors and Affiliations

Haider M. Zwain
1
ORCID: ORCID
Farah A. Al-Marzook
2
Basim K. Nile
3
Mohammed Ali Jeddoa Zuhair
2
Aqeel H. Atallah
2
Irvan Dahlan
4 5
Hammed Hassan Waqed
3

  1. College of Water Resources Engineering, Al-Qasim Green University, 51013 Al-Qasim Province, Babylon, Iraq
  2. College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala 56100, Iraq
  3. College of Engineering, University of Kerbala, Karbala 56100, Iraq
  4. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Penang, Malaysia
  5. Solid Waste Management Cluster, Science and Engineering Research Centre, Universiti Sains Malaysia,Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The content of structural carbohydrates and lignin are important assessment criteria of the feed value of meadow plants. It is affected by many independent factors, including among others its development stage during the harvest as well as climatic conditions, especially the amount of rainfall. During the years 2014–2016, plant samples were harvested at weekly intervals, respectively five times from late April to late May. The effect of harvest date on cellulose, hemicelluloses and lignin contents was evaluated. The chemical composition of plants was varied, depending not only on harvest date but also on the year of study. Regardless of the course of meteorological conditions in subsequent growing seasons, the increase of cellulose (from 236.5 to 297.9 g∙kg–1 DM), hemicelluloses (from 159.3 to 210.8 g∙kg–1 DM), and lignin (from 31.5 to 43.1 g∙kg–1 DM) in the following dates of harvest were observed. These parameters were also positively correlated with the total rainfall from the begging of vegetation season to the date of plants sampling (R2 = 0.65, 0.12 and 0.44 for cellulose, hemicelluloses and lignin, respectively), and with the average daily air temperature in the moment of harvest (R2 = 0.66, 0.32 and 0.52 for cellulose, hemicelluloses and lignin, respectively). The cellulose and lignin content, regardless of the harvest date, were significantly higher in the first year of the study (2014), when moisture conditions for plant development were optimal.
Go to article

Authors and Affiliations

Barbara Wróbel
1
ORCID: ORCID
Waldemar Zielewicz
2
ORCID: ORCID
Anna Paszkiewicz-Jasińska
1
ORCID: ORCID
Bartosz Spychalski
1
Zuzanna Jakubowska
1

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  2. Poznań University of Life Sciences, Department of Grassland and Natural Landscape Sciences, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the effect of silage additive containing heterofermentative lactic acid bacteria (LAB) strain of Lactobacillus buchneri species on ensiling quality, as well as methane yield and the kinetics of biogas production from ensiled perennial energy grasses: Miscanthus × giganteus (miscanthus), Spartina pectinata (cordgrass), Panicum virgatum (switchgrass) and Andropogon gerardii (big bluestem). The listed plants are not commonly used for biogas production, their susceptibility to ensiling is also little known, hence the need to investigate their suitability for these processes. Effective methods for increasing the biogas yield from biomass are still demand, hence the research on the use of LAB for this purpose.
After harvesting the grasses were cut and ensiled in barrels with and without (controls) the usage of commercial silage inoculant containing Lactobacillus buchneri LN40177. After 90 days of ensiling obtained silages were analysed in order to compare their chemical composition: organic acids content, the loss of dry matter, the differences in particular fibres composition. The silages were then subjected to methane fermentation using OxiTop® sensors and exposed to air in order to check their aerobic stability.
The silages prepared with LAB additive had higher concentration of acetic acid than the control silages prepared without LAB addition, which contributed to increased aerobic stability but had no effect on the methane yield of miscanthus, switchgrass and big bluestem. Using the microbial inoculant during ensiling had beneficial effect in terms of reducing the duration of biogas production process from obtained silages: lag phase was shortened, daily biogas production rate was increased and 90% of biogas was produced in a shorter period of time compared to the control silages from investigated grasses. The modified Gompertz model well reflected the kinetics of biogas production process.
Go to article

Authors and Affiliations

Marta Kupryś-Caruk
1
ORCID: ORCID
Aleksander Lisowski
2
ORCID: ORCID
Chrystian Chomontowski
1
ORCID: ORCID

  1. Warsaw University of Life Sciences, Institute of Biology, 159 Nowoursynowska St, 02-776 Warsaw, Poland
  2. Warsaw University of Life Sciences, Institute of Mechanical Engineering, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Anaerobic digestion (AD) is an adequate alternative to treat wastewater generated from fruit and vegetable processing (FVWW); likewise, in recent years, artificial wetlands (AWs) have been applied as a post-treatment process for anaerobi-cally pre-treated wastewater. The objective of this work was to design a sustainable treatment system for FVWW composed of upflow anaerobic reactors (UASB) with phase separation and an AW system that receive the anaerobically pretreated effluent. Using the design methodologies for the UASB reactors and artificial wetlands with sub-surface flow (AW-SSF), the parameters of the combined AD-AW system that treat a wastewater flow of 300 m3∙d–1 were calculated. The UASB acidogenic system was adjusted to a hydraulic retention time (HRT) of 10 h and organic loading rate (OLR) of 13.84 kg COD m–3∙d–1; meanwhile, the methanogenic and cascade UASB reactors with OLRs of 10.0 and 3.0 kg COD m3∙d–1, and HRTs of 11 and 10 h, respectively, achieve a high COD removal efficiency (above 94%), and an overall biogas production rate of 1.53 m3 of biogas per m3 of reactor capacity per day. According to the results obtained with the theoretical design, anaerobic-wetland combined system achieves an overall efficiency greater than 98%. The wastewater treated by the pro-posed system will allow the reuse of 30% of the water used in the washing of fruits and vegetables.

Go to article

Authors and Affiliations

Yans Guardia-Puebla
ORCID: ORCID
Edilberto Llanes-Cedeño
ORCID: ORCID
Suyén Rodríguez-Pérez
Quirino Arias-Cedeño
ORCID: ORCID
Víctor Sánchez-Girón
ORCID: ORCID
Gert Morscheck
Bettina Eichler-Löbermann
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concentrations of the polycyclic aromatic hydrocarbons (PAH) and heavy metals in leachates from the autothermal thermophilic aerobic digestion (ATAD). The leachates from ATAD installations (Dąbrowa Białostocka, Hajnówka, Pisz, Olecko, Giżycko, Wysokie Mazowieckie) located in Poland were tested. The concentrations of PAHs in samples from Pisz, Giżycko, Wysokie Mazowieckie and Hajnówka were similar to those in industrial wastewater. The cluster analysis confirmed that in sites with a higher polyethylene (p.e.) input from the industrial sector, the leachates were more contaminated with PAH compounds. In samples from Dąbrowa Białostocka, Olecko, Pisz and Hajnówka, the heavy fraction of PAHs compounds prevailed over the light fraction. Concentrations of heavy metals in leachates from ATAD varied. The Ward’s method isolated the wastewater treatment plant in Giżycko. The p.e. from the industrial sector was the highest for this facility. Also, the samples from ATAD had the highest total concentration of heavy metals (5.87 mg/l). The leachates from ATAD are returned to biological systems of municipal sewage treatment plants, where they can be combined into more toxic compounds. Biological wastewater treatment processes do not ensure the removal of PAHs and heavy metals from the wastewater. As a result, harmful compounds can get into the water or ground, polluting the environment.
Go to article

Authors and Affiliations

Dariusz Boruszko
1
ORCID: ORCID
Ada Wojciula
1
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,15-351 Białystok, Wiejska 45E, Poland
Download PDF Download RIS Download Bibtex

Abstract

The methods arc described for determinations of Al, Fe, Ca, Mg, Ba, Cr, Mn, Ni, Cu, Zn, Pb, Cd, V and Sr in botanical, coal fly ash and soil samples by flame atomic absorption spectrometry (FAAS), and inductively coupled plasma atomic emission spectrometry (!CP-AES). Special attention has been paid to sample preparation, an important stage at which a sample is explored to contaminants. Results of the analysis of all samples arc discussed.
Go to article

Authors and Affiliations

Krystyna Srogi

This page uses 'cookies'. Learn more